메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages 1049-1052

Random forest classification of multisource remote sensing and geographic data

Author keywords

Classification; Decision trees; Multisource remote sensing data; Random forests

Indexed keywords

ALGORITHMS; DATA MINING; DATA REDUCTION; DECISION THEORY; MATRIX ALGEBRA; SYNTHETIC APERTURE RADAR; TREES (MATHEMATICS);

EID: 15944365217     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (115)

References (10)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random Forests," Machine Learning, Vol. 40. No. 1. 2001.
    • (2001) Machine Learning , vol.40 , Issue.1
    • Breiman, L.1
  • 10
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte, "Very simple classification rules perform well on most commonly used datasets." Mach. Learn., vol. 11. 1993.
    • (1993) Mach. Learn. , vol.11
    • Holte, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.