메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1245-1248

Automatic fusion and classification of hyperspectral and LiDAR data using random forests

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; OPTICAL RADAR; REMOTE SENSING; SPECTROSCOPY;

EID: 84911415501     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2014.6946658     Document Type: Conference Paper
Times cited : (16)

References (12)
  • 2
    • 84899943917 scopus 로고    scopus 로고
    • Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane
    • April
    • A. Merentitis, C. Debes, and R. Heremans, "Application of ensemble learning in hyperspectral image classification: Towards selecting favorable spots in the bias-variance plane," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, pp. 1089-1102, April 2014.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , pp. 1089-1102
    • Merentitis, A.1    Debes, C.2    Heremans, R.3
  • 3
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J.A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognition, Vol. 43, no. 7, pp. 2367-2379, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 4
    • 45849104692 scopus 로고    scopus 로고
    • Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines
    • S. van der Linden, A. Janz, B. Waske, M. Eiden, and P. Hostert, "Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines," Journal of Applied Remote Sensing, Vol. 1, 2007.
    • (2007) Journal of Applied Remote Sensing , vol.1
    • Van Der Linden, S.1    Janz, A.2    Waske, B.3    Eiden, M.4    Hostert, P.5
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine Learning, Vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • V. Svetnik et al., "Random forest: A classification and regression tool for compound classification and QSAR modeling," Journal of Chemical Information and Computer Sciences, Vol. 43, pp. 1947-1958, 2003.
    • (2003) Journal of Chemical Information and Computer Sciences , vol.43 , pp. 1947-1958
    • Svetnik, V.1
  • 7
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Diaz-Uriarte and S. Alvarez de Andres, "Gene selection and classification of microarray data using random forest," BMC Bioinformatics, Vol. 7 (3), pp. 1-13, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.3 , pp. 1-13
    • Diaz-Uriarte, R.1    Alvarez De Andres, S.2
  • 12


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.