메뉴 건너뛰기




Volumn 27, Issue 6, 2013, Pages 1423-1440

Multi-lead ahead prediction model of reference evapotranspiration utilizing ANN with ensemble procedure

Author keywords

Ensemble neural network; Evapotranspiration; Neural network; Over fitting; Rasht City (Iran)

Indexed keywords

ACCURATE PREDICTION; ENSEMBLE NEURAL NETWORK; MAXIMUM AND MINIMUM TEMPERATURES; OVERFITTING; PENMAN-MONTEITH METHOD; RASHT CITY (IRAN); REFERENCE EVAPOTRANSPIRATION; TIME SERIES PREDICTION;

EID: 84880082142     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-012-0678-6     Document Type: Article
Times cited : (29)

References (62)
  • 3
    • 84880074824 scopus 로고    scopus 로고
    • Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, Food and Agricultural Organization of the United Nations (FAO), Rome. Artificial Neural Network
    • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, Food and Agricultural Organization of the United Nations (FAO), Rome. Artificial Neural Network. J Irrig Drain Eng 129(6): 454-457.
    • (1998) J Irrig Drain Eng , vol.129 , Issue.6 , pp. 454-457
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 4
    • 77956252626 scopus 로고    scopus 로고
    • Application of radial basis function neural networks for reference evapotranspiration prediction
    • Awchi TA (2008) Application of radial basis function neural networks for reference evapotranspiration prediction. Al-Rafi-dain Eng 16(1): 117-129.
    • (2008) Al-Rafi-dain Eng , vol.16 , Issue.1 , pp. 117-129
    • Awchi, T.A.1
  • 5
    • 41649106264 scopus 로고    scopus 로고
    • A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts
    • Birkinshaw SJ, Parkin G, Rao Z (2008) A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts. J Hydroinformatics 10(2): 127-137.
    • (2008) J Hydroinformatics , vol.10 , Issue.2 , pp. 127-137
    • Birkinshaw, S.J.1    Parkin, G.2    Rao, Z.3
  • 9
    • 77954427278 scopus 로고    scopus 로고
    • How Bayesian data assimilation can be used to estimate the mathematical structure of a model
    • Bulygina N, Gupta H (2010) How Bayesian data assimilation can be used to estimate the mathematical structure of a model. Stoch Environ Res Risk Assess 24: 925-937.
    • (2010) Stoch Environ Res Risk Assess , vol.24 , pp. 925-937
    • Bulygina, N.1    Gupta, H.2
  • 10
    • 41649089759 scopus 로고    scopus 로고
    • Identification of the best hidden layer size for three layered neural net in predicting monsoon rainfall in India
    • Chattopadhyay S, Chattopadhyay G (2008) Identification of the best hidden layer size for three layered neural net in predicting monsoon rainfall in India. J Hydroinformatics 10(2): 181-188.
    • (2008) J Hydroinformatics , vol.10 , Issue.2 , pp. 181-188
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 11
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2008) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23: 825-837.
    • (2008) Water Resour Manag , vol.23 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 12
    • 72149133064 scopus 로고    scopus 로고
    • Multisite seasonal forecast of arid river flows using a dynamic model combination approach
    • art. no. W10428
    • Chowdhury S, Sharma A (2009) Multisite seasonal forecast of arid river flows using a dynamic model combination approach. Water Resour Res 45(10): art. no. W10428.
    • (2009) Water Resour Res , vol.45 , Issue.10
    • Chowdhury, S.1    Sharma, A.2
  • 13
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair TA, Ehrman JM (1998) Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resour Res 34(3): 447-455.
    • (1998) Water Resour Res , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 14
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3-4): 244-257.
    • (2000) J Hydrol , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 15
    • 54449083865 scopus 로고    scopus 로고
    • TDNN with logical values for hydrologic modeling in a cold and snowy climate
    • Dibike BY, Coulibaly P (2008) TDNN with logical values for hydrologic modeling in a cold and snowy climate. J Hydroinformatics 10(4): 289-300.
    • (2008) J Hydroinformatics , vol.10 , Issue.4 , pp. 289-300
    • Dibike, B.Y.1    Coulibaly, P.2
  • 16
    • 0001337304 scopus 로고
    • Boosting and other ensemble methods
    • Drucker H, Cortes C, Jackel D (1994) Boosting and other ensemble methods. Neural Comput 6: 1289-1301.
    • (1994) Neural Comput , vol.6 , pp. 1289-1301
    • Drucker, H.1    Cortes, C.2    Jackel, D.3
  • 17
    • 69249208624 scopus 로고    scopus 로고
    • Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements
    • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23(11): 2289-2315.
    • (2009) Water Resour Manag , vol.23 , Issue.11 , pp. 2289-2315
    • El-Shafie, A.1    Abdin, A.E.2    Noureldin, A.3    Taha, M.R.4
  • 18
    • 79957945389 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt
    • El-Shafie AH, El-Shafie A, El Mazoghi HG, Shehata A, Taha MR (2011) Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt. Int J Phys Sci 6(6): 1306-1316.
    • (2011) Int J Phys Sci , vol.6 , Issue.6 , pp. 1306-1316
    • El-Shafie, A.H.1    El-Shafie, A.2    El Mazoghi, H.G.3    Shehata, A.4    Taha, M.R.5
  • 19
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
    • El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6(12): 2875-2888.
    • (2011) Int J Phys Sci , vol.6 , Issue.12 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Seyed, A.3
  • 20
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • Elshorbagy A, Simonovic SP, Panu US (2000) Performance evaluation of artificial neural networks for runoff prediction. J Hydrol Eng 5(4): 424-427.
    • (2000) J Hydrol Eng , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 21
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando DA, Jayawardena AW (1998) Runoff forecasting using RBF networks with OLS algorithm. J Hydrol Eng 3(3): 203-209.
    • (1998) J Hydrol Eng , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.1    Jayawardena, A.W.2
  • 22
    • 79960789309 scopus 로고    scopus 로고
    • Evaluation of some equations for estimating evapotranspiration in the south of Iran
    • Fooladmand HR (2011) Evaluation of some equations for estimating evapotranspiration in the south of Iran. Arch Agron Soil Sci 57(7): 741-752.
    • (2011) Arch Agron Soil Sci , vol.57 , Issue.7 , pp. 741-752
    • Fooladmand, H.R.1
  • 23
    • 84861649398 scopus 로고    scopus 로고
    • Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China
    • Gao G, Chong-Yu X, Chen D, Singh VP (2012) Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch Environ Res Risk Assess 26: 655-669.
    • (2012) Stoch Environ Res Risk Assess , vol.26 , pp. 655-669
    • Gao, G.1    Chong-Yu, X.2    Chen, D.3    Singh, V.P.4
  • 24
    • 0025507332 scopus 로고
    • On the decision regions of multilayer perceptrons
    • Gibson GJ, Cowan CFN (1990) On the decision regions of multilayer perceptrons. Proc IEEE 78(10): 1590-1594.
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1590-1594
    • Gibson, G.J.1    Cowan, C.F.N.2
  • 25
    • 85000344171 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluiedébit
    • Giustolisi O, Laucelli D (2005) Improving generalization of artificial neural networks in rainfall-runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluiedébit. Hydrol Sci J 50(3): 457.
    • (2005) Hydrol Sci J , vol.50 , Issue.3 , pp. 457
    • Giustolisi, O.1    Laucelli, D.2
  • 26
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions
    • Giustolisi O, Simeone V (2006) Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrol Sci J 51(3): 502-523.
    • (2006) Hydrol Sci J , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 28
    • 0002370669 scopus 로고
    • Reference crop evapotranspiration from temperature
    • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2): 96-99.
    • (1985) Appl Eng Agric , vol.1 , Issue.2 , pp. 96-99
    • Hargreaves, G.H.1    Samani, Z.A.2
  • 30
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10): 2517-2530.
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 31
    • 84880047437 scopus 로고    scopus 로고
    • Summary for policymakers Climate change 2007
    • In: Solomon S, Qin D, Jain M, Das A, Srivastava DK (eds), IPCC 2007
    • IPCC 2007 (2009) Summary for policymakers. In: Solomon S, Qin D, Jain M, Das A, Srivastava DK (eds) Climate change 2007. Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manag 125(5): 263-271.
    • (2009) Application of ANN for reservoir inflow prediction and operation., J Water Resour Plan Manag , vol.125 , Issue.5 , pp. 263-271
  • 32
    • 68949105694 scopus 로고    scopus 로고
    • Review of the application of fuzzy inference systems in river flow forecasting
    • Jacquin AP, Shamseldin AY (2009) Review of the application of fuzzy inference systems in river flow forecasting. J Hydroinformatics 11(3-4): 202-210.
    • (2009) J Hydroinformatics , vol.11 , Issue.3-4 , pp. 202-210
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 33
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain SK, Nayak PC, Sudheer KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13): 2225-2234.
    • (2008) Hydrol Process , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 34
    • 77953339569 scopus 로고    scopus 로고
    • A comparison of australian open water body evaporation trends for current and future climates estimated from class a evaporation pans and general circulation models
    • Johnson F, Sharma A (2010) A comparison of australian open water body evaporation trends for current and future climates estimated from class a evaporation pans and general circulation models. J Hydrometeorol 11(1): 105-121.
    • (2010) J Hydrometeorol , vol.11 , Issue.1 , pp. 105-121
    • Johnson, F.1    Sharma, A.2
  • 35
    • 79960550274 scopus 로고    scopus 로고
    • Modified particle swarm optimization for optimum design of spread footing and retaining wall
    • Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2011) Modified particle swarm optimization for optimum design of spread footing and retaining wall. J Zhejiang U: Science A 12(6): 415-427.
    • (2011) J Zhejiang U: Science A , vol.12 , Issue.6 , pp. 415-427
    • Khajehzadeh, M.1    Taha, M.R.2    El-Shafie, A.3    Eslami, M.4
  • 36
    • 39649125438 scopus 로고    scopus 로고
    • Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
    • Khoob AR (2008) Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3): 253-259.
    • (2008) Irrig Sci , vol.26 , Issue.3 , pp. 253-259
    • Khoob, A.R.1
  • 37
    • 67849114055 scopus 로고    scopus 로고
    • Modeling monthly evaporation using two different neural computing techniques
    • Kisi O (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27: 417-430.
    • (2009) Irrig Sci , vol.27 , pp. 417-430
    • Kisi, O.1
  • 39
    • 0034746067 scopus 로고    scopus 로고
    • Derivation of Pareto front with genetic algorithm and neural network
    • Liong SY, Khu ST, Chan WT (2001) Derivation of Pareto front with genetic algorithm and neural network. J Hydrol Eng 6(1): 52-61.
    • (2001) J Hydrol Eng , vol.6 , Issue.1 , pp. 52-61
    • Liong, S.Y.1    Khu, S.T.2    Chan, W.T.3
  • 40
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • Maier HR, Dandy GC (1999) Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resour Res 35(8): 2591-2596.
    • (1999) Water Resour Res , vol.35 , Issue.8 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 41
    • 77956965234 scopus 로고    scopus 로고
    • GPS/INS integration utilizing dynamic neural networks for vehicular navigation
    • Noureldin A, El-Shafie A, Bayoumi M (2011) GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf Fusion 12(1): 48-57.
    • (2011) Inf Fusion , vol.12 , Issue.1 , pp. 48-57
    • Noureldin, A.1    El-Shafie, A.2    Bayoumi, M.3
  • 42
    • 0035727321 scopus 로고    scopus 로고
    • Optimization of fuzzy evapotranspiration model through neural training with input-output examples
    • Odhiambo LO, Yoder RE, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6): 1625-1633.
    • (2001) Trans ASAE , vol.44 , Issue.6 , pp. 1625-1633
    • Odhiambo, L.O.1    Yoder, R.E.2    Hines, J.W.3
  • 43
    • 84862607794 scopus 로고    scopus 로고
    • An evaluation of four reference evapotranspiration models in a subtropical climate
    • Rahimi Khoob A, Behbahani MB, Fakheri J (2012) An evaluation of four reference evapotranspiration models in a subtropical climate. Water Resour Manag 26(10): 2867-2881.
    • (2012) Water Resour Manag , vol.26 , Issue.10 , pp. 2867-2881
    • Rahimi Khoob, A.1    Behbahani, M.B.2    Fakheri, J.3
  • 44
    • 77953765681 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting of fuzzy time series
    • Reuter U, Möller B (2010) Artificial neural networks for forecasting of fuzzy time series. Comput Aided Civil Infrastruct Eng 25(5): 363-374.
    • (2010) Comput Aided Civil Infrastruct Eng , vol.25 , Issue.5 , pp. 363-374
    • Reuter, U.1    Möller, B.2
  • 47
    • 77956802913 scopus 로고    scopus 로고
    • Regional estimation of reference evapotranspiration in arid and semi-arid regions
    • Sabziparvar AA, Tabari H (2010) Regional estimation of reference evapotranspiration in arid and semi-arid regions. J Irrig Drain Eng ASCE 136(10): 724-731.
    • (2010) J Irrig Drain Eng ASCE , vol.136 , Issue.10 , pp. 724-731
    • Sabziparvar, A.A.1    Tabari, H.2
  • 48
    • 0033737589 scopus 로고    scopus 로고
    • Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis
    • Samant A, Adeli H (2000) Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis. Comput Aided Civil Infrastruct Eng 15(4): 241-250.
    • (2000) Comput Aided Civil Infrastruct Eng , vol.15 , Issue.4 , pp. 241-250
    • Samant, A.1    Adeli, H.2
  • 49
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3): 214-218.
    • (2003) J Irrig Drain Eng , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 50
    • 77955053288 scopus 로고    scopus 로고
    • Evaluation of reference crop evapotranspiration equations in various climates
    • Tabari H (2010) Evaluation of reference crop evapotranspiration equations in various climates. Water Resour Manag 24: 2311-2337.
    • (2010) Water Resour Manag , vol.24 , pp. 2311-2337
    • Tabari, H.1
  • 51
    • 84873751056 scopus 로고    scopus 로고
    • Comparative analysis of 31 reference evapotranspiration methods under humid conditions
    • doi:10.1007/s00271-011-0295
    • Tabari H, Grismer ME, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci. doi: 10. 1007/s00271-011-0295.
    • (2011) Irrig Sci
    • Tabari, H.1    Grismer, M.E.2    Trajkovic, S.3
  • 52
    • 84879235935 scopus 로고    scopus 로고
    • Applicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecasting
    • doi:10.1007/s00271-012-0332-6
    • Tabari H, Martinez C, Ezani A, Hosseinzadeh Talaee P (2012) Applicability of support vector machines and adaptive neurofuzzy inference system for potato crop evapotranspiration forecasting. Irrig Sci. doi: 10. 1007/s00271-012-0332-6.
    • (2012) Irrig Sci
    • Tabari, H.1    Martinez, C.2    Ezani, A.3    Hosseinzadeh Talaee, P.4
  • 53
    • 84878543696 scopus 로고    scopus 로고
    • Power spectral characteristics of drought indices in the Ebro river basin at different temporal scales
    • doi: 10. 1007/s00477-012-0651-4
    • Telesca L, Vicente-Serrano SM, Lo′pez-Moreno JI (2012) Power spectral characteristics of drought indices in the Ebro river basin at different temporal scales. Stoch Environ Res Risk Assess. doi: 10. 1007/s00477-012-0651-4.
    • (2012) Stoch Environ Res Risk Assess
    • Telesca, L.1    Vicente-Serrano, S.M.2    Lo′pez-Moreno, J.I.3
  • 55
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3): 232-239.
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 56
    • 84880048616 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric Water Manag 97(5): 707-714.
    • (2003) Agric Water Manag , vol.97 , Issue.5 , pp. 707-714
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 57
    • 54449098749 scopus 로고    scopus 로고
    • Improving groundwater level forecasting with a feed forward neural network and linearly regressed projected precipitation
    • Tsanis IK, Coulibaly P, Daliakopoulos IN (2008) Improving groundwater level forecasting with a feed forward neural network and linearly regressed projected precipitation. J Hydroinformatics 10(4): 317-330.
    • (2008) J Hydroinformatics , vol.10 , Issue.4 , pp. 317-330
    • Tsanis, I.K.1    Coulibaly, P.2    Daliakopoulos, I.N.3
  • 58
    • 48749093170 scopus 로고    scopus 로고
    • Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso
    • Wang YM, Kerh T (2008) Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS Trans Comput 7(6): 704-713.
    • (2008) WSEAS Trans Comput , vol.7 , Issue.6 , pp. 704-713
    • Wang, Y.M.1    Kerh, T.2
  • 59
    • 71149097423 scopus 로고    scopus 로고
    • Spatio-temporal changes of hydrological processes and underlying driving forces in Guizhou region, Southwest China
    • Yang T, Chen X, Xu Chong-Yu, Zhang Z-C (2009) Spatio-temporal changes of hydrological processes and underlying driving forces in Guizhou region, Southwest China. Stoch Environ Res Risk Assess 23: 1071-1087.
    • (2009) Stoch Environ Res Risk Assess , vol.23 , pp. 1071-1087
    • Yang, T.1    Chen, X.2    Xu, C.-Y.3    Zhang, Z.-C.4
  • 60
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2): 83-89.
    • (2007) J Irrig Drain Eng , vol.133 , Issue.2 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3    Almeida, F.T.4    Bernardo, S.5
  • 61
    • 64349097098 scopus 로고    scopus 로고
    • Wave height prediction at the Caspian Sea using a data driven model and ensemble-based data assimilation methods
    • Zamani A, Heemink A, Solomatine D (2009) Wave height prediction at the Caspian Sea using a data driven model and ensemble-based data assimilation methods. J Hydroinformatics 11(2): 154-164.
    • (2009) J Hydroinformatics , vol.11 , Issue.2 , pp. 154-164
    • Zamani, A.1    Heemink, A.2    Solomatine, D.3
  • 62
    • 78751610784 scopus 로고    scopus 로고
    • Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China
    • Zhang Q, Chong-Yu X, Chen YD, Ren L (2011) Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China. Stoch Environ Res Risk Assess 25: 139-150.
    • (2011) Stoch Environ Res Risk Assess , vol.25 , pp. 139-150
    • Zhang, Q.1    Chong-Yu, X.2    Chen, Y.D.3    Ren, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.