메뉴 건너뛰기




Volumn 29, Issue 5, 2015, Pages 1317-1329

Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data

Author keywords

Artificial neural networks; Estimation; Linear regression; Precipitation; Wavelet transformation

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; ESTIMATION; FORECASTING; LINEAR REGRESSION; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS; METEOROLOGY; NEURAL NETWORKS; POWER TRANSFORMERS; PRECIPITATION (CHEMICAL); RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS;

EID: 84930543077     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-015-1061-1     Document Type: Article
Times cited : (57)

References (43)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamovski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40
    • (2011) J Hydrol , vol.407 , pp. 28-40
    • Adamovski, J.1    Chan, H.F.2
  • 2
    • 33750474052 scopus 로고    scopus 로고
    • Treatment of multi-dimensional data to enhance neural network estimators in regression problems
    • Altun A, Bilgil A, Fidan BC (2007) Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Syst Appl 32:599–605
    • (2007) Expert Syst Appl , vol.32 , pp. 599-605
    • Altun, A.1    Bilgil, A.2    Fidan, B.C.3
  • 3
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F, Tape DG (2004) An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3:121–128
    • (2004) J Environ Eng Sci , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, D.G.2
  • 4
    • 0036693803 scopus 로고    scopus 로고
    • Comparison of methodologies for probabilistic quantitative precipitation forecasting
    • Applequist S, Gahrs GE, Pfeffer RL (2002) Comparison of methodologies for probabilistic quantitative precipitation forecasting. Am Meteorol Soc 17:783–799
    • (2002) Am Meteorol Soc , vol.17 , pp. 783-799
    • Applequist, S.1    Gahrs, G.E.2    Pfeffer, R.L.3
  • 5
    • 84890235995 scopus 로고    scopus 로고
    • Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models
    • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J Hydrol 508:418–429
    • (2014) J Hydrol , vol.508 , pp. 418-429
    • Belayneh, A.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 6
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Bromhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Bromhead, D.1    Lowe, D.2
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361
    • (2003) Hydrol Sci J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv Water Res 27:185–195
    • (2004) Adv Water Res , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 10
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu HK (2005) Generalized regression neural network in monthly flow forecasting. Civ Eng Environ Syst 22(2):71–84
    • (2005) Civ Eng Environ Syst , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 11
    • 9444245344 scopus 로고    scopus 로고
    • Alp M (2004) Rainfall–runoff modelling using three neural network methods, artificial intelligence and soft computing—ICAISC
    • Cigizoglu HK, Alp M (2004) Rainfall–runoff modelling using three neural network methods, artificial intelligence and soft computing—ICAISC 2004. Lecture notes in artificial intelligence, vol 3070, pp 166–171
    • (2004) Lecture notes in artificial intelligence , vol.3070 , pp. 166-171
    • Cigizoglu, H.K.1
  • 12
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modelling river sediment yield
    • Cigizoglu HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37(2):63–68
    • (2006) Adv Eng Softw , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 13
    • 2042453329 scopus 로고    scopus 로고
    • Wavelet analysis of variability in annual Canadian streamflows
    • Coulibaly P, Burn HD (2004) Wavelet analysis of variability in annual Canadian streamflows. Water Resour Res 40:W03105
    • (2004) Water Resour Res , vol.40 , pp. 03105
    • Coulibaly, P.1    Burn, H.D.2
  • 14
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Dabechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005
    • (1990) IEEE Trans Inf Theory , vol.36 , Issue.5 , pp. 961-1005
    • Dabechies, I.1
  • 15
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • COI: 1:CAS:528:DC%2BD2MXisVKrtbw%3D
    • Freiwan M, Cigizoglu HK (2005) Prediction of total monthly rainfall in Jordan using feed forward backpropagation method. Fresenious Environ Bull 14(2):142–151
    • (2005) Fresenious Environ Bull , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 16
    • 77955056913 scopus 로고    scopus 로고
    • Projected streamflow in the Huaihe River Basin (2010–2100) using artificial neural network
    • Gao C, Gemmer M, Zeng X, Liu B, Su B, Wen Y (2009) Projected streamflow in the Huaihe River Basin (2010–2100) using artificial neural network. Stoch Environ Res Risk Assess 24(5):685–697
    • (2009) Stoch Environ Res Risk Assess , vol.24 , Issue.5 , pp. 685-697
    • Gao, C.1    Gemmer, M.2    Zeng, X.3    Liu, B.4    Su, B.5    Wen, Y.6
  • 17
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7:585–592
    • (2007) Appl Soft Comput , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 18
    • 0032030147 scopus 로고    scopus 로고
    • Use of radial basis function type artificial neural networks for runoff simulation
    • Jayawardena AW, Fernando DAK (1998) Use of radial basis function type artificial neural networks for runoff simulation. Comput Aided Civ Infrastruct Eng 13:91–99
    • (1998) Comput Aided Civ Infrastruct Eng , vol.13 , pp. 91-99
    • Jayawardena, A.W.1    Fernando, D.A.K.2
  • 19
    • 84886728620 scopus 로고    scopus 로고
    • Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff
    • Kermania MZ, Kisi O, Rajaeec T (2013) Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Appl Soft Comput 13(12):4633–4644
    • (2013) Appl Soft Comput , vol.13 , Issue.12 , pp. 4633-4644
    • Kermania, M.Z.1    Kisi, O.2    Rajaeec, T.3
  • 20
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim TW, Valdes JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng ASCE 6:319–328
    • (2003) J Hydrol Eng ASCE , vol.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 21
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modeling
    • Kisi O (2006) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51(6):1092–1105
    • (2006) Hydrol Sci J , vol.51 , Issue.6 , pp. 1092-1105
    • Kisi, O.1
  • 22
    • 80355147337 scopus 로고    scopus 로고
    • A combined generalized regression neural network wavelet model for monthly streamflow prediction
    • Kisi O (2011) A combined generalized regression neural network wavelet model for monthly streamflow prediction. KSCE J Civ Eng 15(8):1469–1479
    • (2011) KSCE J Civ Eng , vol.15 , Issue.8 , pp. 1469-1479
    • Kisi, O.1
  • 23
    • 0032434569 scopus 로고    scopus 로고
    • Localized precipitation from a numerical weather prediction model using Artificial Neural Networks
    • Kulligowski RJ, Barros AP (1998) Localized precipitation from a numerical weather prediction model using Artificial Neural Networks. Weather Forecast 13:1195–1205
    • (1998) Weather Forecast , vol.13 , pp. 1195-1205
    • Kulligowski, R.J.1    Barros, A.P.2
  • 24
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Kumar ARS, Sudheer KP, Jain SK (2005) Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol Process 19(6):1277–1291
    • (2005) Hydrol Process , vol.19 , Issue.6 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3
  • 25
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: the wavelet representation
    • Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 26
    • 0003544046 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia
    • Meyer Y (1993) Wavelets algorithms & applications. Society for Industrial and Applied Mathematics, Philadelphia
    • (1993) Wavelets algorithms & applications
    • Meyer, Y.1
  • 27
    • 79952984882 scopus 로고    scopus 로고
    • Wet and dry spell analysis of global climate model-generated precipitation using power laws and wavelet transforms
    • Mishra AK, Özger M, Singh VP (2011) Wet and dry spell analysis of global climate model-generated precipitation using power laws and wavelet transforms. Stoch Environ Res Risk Assess 25(4):517–535
    • (2011) Stoch Environ Res Risk Assess , vol.25 , Issue.4 , pp. 517-535
    • Mishra, A.K.1    Özger, M.2    Singh, V.P.3
  • 28
    • 0029538471 scopus 로고
    • Evaluation 33 years of quantitative precipitation forecasting at NMC
    • Olson DA, Junker NW, Korty B (1995) Evaluation 33 years of quantitative precipitation forecasting at NMC. Weather Forecast 10:498–511
    • (1995) Weather Forecast , vol.10 , pp. 498-511
    • Olson, D.A.1    Junker, N.W.2    Korty, B.3
  • 30
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural networks algorithms and wavelet transform
    • Partal T (2009) River flow forecasting using different artificial neural networks algorithms and wavelet transform. Can J Civ Eng 36:26–39
    • (2009) Can J Civ Eng , vol.36 , pp. 26-39
    • Partal, T.1
  • 31
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal T, Cigizoglu HK (2009) Prediction of daily precipitation using wavelet-neural networks. Hydrol Sci J 54:234–246
    • (2009) Hydrol Sci J , vol.54 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 32
    • 84880043630 scopus 로고    scopus 로고
    • Monthly rainfall prediction using wavelet neural network analysis
    • Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network analysis. Water Resour Manag 27:3697–3711
    • (2013) Water Resour Manag , vol.27 , pp. 3697-3711
    • Ramana, R.V.1    Krishna, B.2    Kumar, S.R.3    Pandey, N.G.4
  • 33
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Ramirez MCV, Velho HFC, Ferreira NJ (2005) Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J Hydrol 301:146–162
    • (2005) J Hydrol , vol.301 , pp. 146-162
    • Ramirez, M.C.V.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 34
    • 84900000488 scopus 로고    scopus 로고
    • Comparative study of different wavelet based neural network models for rainfall–runoff modeling
    • Shoaib M, Shamseldin AY, Melville BW (2014) Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J Hydrol 515:47–58
    • (2014) J Hydrol , vol.515 , pp. 47-58
    • Shoaib, M.1    Shamseldin, A.Y.2    Melville, B.W.3
  • 35
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation prediction in California
    • Silverman D, Dracup JA (2000) Artificial neural networks and long-range precipitation prediction in California. J Appl Meteorol 39(1):57–66
    • (2000) J Appl Meteorol , vol.39 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 36
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith LC, Turcotte DL, Isacks B (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12:233–249
    • (1998) Hydrol Process , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.3
  • 38
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer KP, Jain A (2003) Radial basis function neural network for modeling rating curves. J Hydrol Eng ASCE 8(3):161–164
    • (2003) J Hydrol Eng ASCE , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, A.2
  • 39
    • 0036843660 scopus 로고    scopus 로고
    • Modeling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan DM, Saheb SM (2002) Modeling evaporation using an artificial neural network algorithm. Hydrol Process 16:3189–3202
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 40
    • 1342329662 scopus 로고    scopus 로고
    • A statistical downscaling method for monthly total precipitation over Turkey
    • Tatlı H, Dalfes HN, Menteş ŞS (2004) A statistical downscaling method for monthly total precipitation over Turkey. Int J Climatol 24:161–180
    • (2004) Int J Climatol , vol.24 , pp. 161-180
    • Tatlı, H.1    Dalfes, H.N.2    Menteş, Ş.S.3
  • 41
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • Torrence C, Compo GP (1997) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78
    • (1997) Bull Am Meteorol Soc , vol.79 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 43
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W, Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nat Sci 1:67–71
    • (2003) Nat Sci , vol.1 , pp. 67-71
    • Wang, W.1    Ding, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.