메뉴 건너뛰기




Volumn 21, Issue 6, 2007, Pages 747-764

On selection of kernel parametes in relevance vector machines for hydrologic applications

Author keywords

Bayes information criterion; Bayesian learning; Interpolation; Leave one out cross validation; Power spectrum; Relevance vector machines; VC dimension

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN ANALYSIS; HYDRAULIC CONDUCTIVITY; HYDROLOGY; INTERPOLATION; MAXIMUM LIKELIHOOD ANALYSIS; PROBABILITY; VARIANCE ANALYSIS;

EID: 34648820349     PISSN: 14363240     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00477-006-0087-9     Document Type: Article
Times cited : (40)

References (59)
  • 2
    • 10944274219 scopus 로고    scopus 로고
    • Support vectors-based groundwater head observation networks design
    • W11509, DOI 11510.11029/12004WR003304
    • Asefa T, Kemblowski MW, Urroz G, McKee M, Khalil AF (2004) Support vectors-based groundwater head observation networks design. Water Resour Res 40 (11): W11509, DOI 11510.11029/12004WR003304
    • (2004) Water Resour Res , vol.40 , Issue.11
    • Asefa, T.1    Kemblowski, M.W.2    Urroz, G.3    McKee, M.4    Khalil, A.F.5
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach Learn 36(1-2):105-139
    • (1999) Mach Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0037844857 scopus 로고    scopus 로고
    • An empirical investigation of bias and variance in time series forecasting: Modeling considerations and error evaluation
    • Berardi VL, Zhang GP (2003) An empirical investigation of bias and variance in time series forecasting: Modeling considerations and error evaluation. IEEE Trans Neural Netw 14(3):668-679
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.3 , pp. 668-679
    • Berardi, V.L.1    Zhang, G.P.2
  • 6
    • 0003330326 scopus 로고    scopus 로고
    • Bias-variance, regularization, instability and stabilization
    • In: Bishop C (ed) Cambridge, UK
    • Breiman L (1998) Bias-variance, regularization, instability and stabilization. In: Bishop C (ed) Proceedings of the neural networks and machine learning, Cambridge, UK, pp 27-56
    • (1998) Proceedings of the Neural Networks and Machine Learning , pp. 27-56
    • Breiman, L.1
  • 8
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal nu in support vector regression for different noise models and parameter settings
    • Chalimourda A, Scholkopf B, Smola AJ (2004) Experimentally optimal nu in support vector regression for different noise models and parameter settings. Neural Netw 17(1):127-141
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Scholkopf, B.2    Smola, A.J.3
  • 9
    • 0037484691 scopus 로고    scopus 로고
    • Comparison of model selection for regression
    • Cherkassky V, Ma YQ (2003) Comparison of model selection for regression. Neural Comput 15(7):1691-1714
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1691-1714
    • Cherkassky, V.1    Ma, Y.Q.2
  • 10
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma YQ (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113-126
    • (2004) Neural Netw , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.Q.2
  • 12
    • 0032594968 scopus 로고    scopus 로고
    • Vapnik-Chervonenkis (VC) learning theory and its applications
    • Cherkassky V, Mulier F (1999) Vapnik-Chervonenkis (VC) learning theory and its applications. IEEE Trans Neural Netw 10(5):985-987
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 985-987
    • Cherkassky, V.1    Mulier, F.2
  • 13
    • 0032595046 scopus 로고    scopus 로고
    • Model complexity control for regression using VC generalization bounds
    • Cherkassky V, Shao XH, Mulier FM, Vapnik VN (1999) Model complexity control for regression using VC generalization bounds. IEEE Trans Neural Netw 10(5):1075-1089
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 1075-1089
    • Cherkassky, V.1    Shao, X.H.2    Mulier, F.M.3    Vapnik, V.N.4
  • 14
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput EC-14(3):326-334
    • (1965) IEEE Trans Electron Comput EC , vol.14 , Issue.3 , pp. 326-334
    • Cover, T.M.1
  • 15
  • 16
    • 0001942829 scopus 로고
    • Neural networks and the bias-variance dilemma
    • Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias-variance dilemma. Neural Comput 4(1):1-58
    • (1992) Neural Comput , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 17
    • 0027072328 scopus 로고
    • Determining and interpreting the order of a 2-state Markov-Chain-application to models of daily precipitation
    • Gregory JM, Wigley TML, Jones PD (1992) Determining and interpreting the order of a 2-state Markov-Chain-application to models of daily precipitation. Water Resour Res 28(5):1443-1446
    • (1992) Water Resour Res , vol.28 , Issue.5 , pp. 1443-1446
    • Gregory, J.M.1    Wigley, T.M.L.2    Jones, P.D.3
  • 18
    • 0035280264 scopus 로고    scopus 로고
    • Modelling diurnal cycles in point rainfall properties
    • Gyasi-Agyei Y (2001) Modelling diurnal cycles in point rainfall properties. Hydrol Processes 15(4):595-608
    • (2001) Hydrol Processes , vol.15 , Issue.4 , pp. 595-608
    • Gyasi-Agyei, Y.1
  • 20
    • 0003353181 scopus 로고    scopus 로고
    • Neural networks: A comprehensive foundation
    • Haykin SS (1999) Neural networks: A comprehensive foundation. Prentice Hall, Upper Saddle River, xxi, 842 p
    • (1999) Prentice Hall, Upper Saddle River , vol.21 , pp. 842
    • Haykin, S.S.1
  • 21
    • 0032922532 scopus 로고    scopus 로고
    • Matching objective and subjective information in groundwater inverse analysis by Akaike's Bayesian information criterion
    • Honjo Y, Kashiwagi N (1999) Matching objective and subjective information in groundwater inverse analysis by Akaike's Bayesian information criterion. Water Resour Res 35(2):435-447
    • (1999) Water Resour Res , vol.35 , Issue.2 , pp. 435-447
    • Honjo, Y.1    Kashiwagi, N.2
  • 22
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in groundwater quality modeling
    • W05010, DOI 05010.01029/02004WR003608
    • Khalil AF, Almasri MN, McKee M, Kaluarachchi JJ (2005a) Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour Res 41(5): W05010, DOI 05010.01029/02004WR003608
    • (2005) Water Resour Res , vol.41 , Issue.5
    • Khalil, A.F.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 23
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • W11401, DOI 11410.11029/12004WR003891
    • Khalil AF, McKee M, Kemblowski M, Asefa T (2005b) Sparse Bayesian learning machine for real-time management of reservoir releases. Water Resour Res 41(11): W11401, DOI 11410.11029/12004WR003891
    • (2005) Water Resour Res , vol.41 , Issue.11
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4
  • 24
    • 28444480680 scopus 로고    scopus 로고
    • Multiobjective analysis of chaotic dynamic systems with sparse learning machines
    • Khalil AF, McKee M, Kemblowski M, Asefa T, Bastidas L (2006) Multiobjective analysis of chaotic dynamic systems with sparse learning machines. Adv Water Resour 29(1):72-88
    • (2006) Adv Water Resour , vol.29 , Issue.1 , pp. 72-88
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4    Bastidas, L.5
  • 25
    • 0033104702 scopus 로고    scopus 로고
    • TARSO modeling of water table depths
    • Knotters M, De Gooijer JG (1999) TARSO modeling of water table depths. Water Resour Res 35(3):695-705
    • (1999) Water Resour Res , vol.35 , Issue.3 , pp. 695-705
    • Knotters, M.1    De Gooijer, J.G.2
  • 27
    • 5444264929 scopus 로고    scopus 로고
    • Analysis of wideband forward looking synthetic aperture radar for sensing land mines
    • DOI 10.1029/2003RS002967
    • Kovvali N, Carin L (2004) Analysis of wideband forward looking synthetic aperture radar for sensing land mines. Radio Sci 39(4):RS4S08, DOI 10.1029/2003RS002967
    • (2004) Radio Sci , vol.39 , Issue.4
    • Kovvali, N.1    Carin, L.2
  • 29
    • 0003281852 scopus 로고
    • On estimation of characters obtained in statistical procedure of recognition
    • (in Russian)
    • Luntz A, Brailovsky V (1969) On estimation of characters obtained in statistical procedure of recognition. Techicheskaya Kibernetica, 3 (in Russian)
    • (1969) Techicheskaya Kibernetica , vol.3
    • Luntz, A.1    Brailovsky, V.2
  • 30
    • 0000335983 scopus 로고
    • Bayesian methods for backpropagation networks
    • In: Domany E, van Hemmen JL, Schulten K (eds) Springer, Berlin Heidelberg New York
    • MacKay DJC (1994) Bayesian methods for backpropagation networks. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks III. Springer, Berlin Heidelberg New York, pp 211-254 211-254
    • (1994) Models of Neural Networks III , pp. 211-254
    • MacKay, D.J.C.1
  • 31
    • 17744369892 scopus 로고    scopus 로고
    • Relevance vector machine for optical diagnosis of cancer
    • Majumder SK, Ghosh N, Gupta PK (2005) Relevance vector machine for optical diagnosis of cancer. Lasers Surg Med 36(4):323-333
    • (2005) Lasers Surg Med , vol.36 , Issue.4 , pp. 323-333
    • Majumder, S.K.1    Ghosh, N.2    Gupta, P.K.3
  • 32
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer D, Leisch F, Hornik K (2003) The support vector machine under test. Neurocomputing 55(1-2):169-186
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 35
    • 0028444428 scopus 로고
    • The use of the Akaike information criterion in the identification of an optimum flood frequency model
    • Mutua FM (1994) The use of the Akaike information criterion in the identification of an optimum flood frequency model. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 39(3):235-244
    • (1994) Hydrological Sciences Journal-Journal Des Sciences Hydrologiques , vol.39 , Issue.3 , pp. 235-244
    • Mutua, F.M.1
  • 39
    • 33845258041 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • MIT Press, Cambridge
    • Scholkopf B, Smola AJ (2002) Learning with kernels: Support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press, Cambridge, xviii, 626 pp
    • (2002) Adaptive Computation and Machine Learning , vol.18 , pp. 626
    • Scholkopf, B.1    Smola, A.J.2
  • 40
    • 0003798627 scopus 로고    scopus 로고
    • B. Scholkopf Burges C.J.C. Smola A.J. (eds) MIT Press, Cambridge
    • Scholkopf B, Burges CJC, Smola AJ (eds) (1999) Advances in kernel methods: Support vector learning. MIT Press, Cambridge, vii, 376 p
    • (1999) Advances in Kernel Methods: Support Vector Learning , vol.7 , pp. 376
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461-464
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 42
    • 0034241362 scopus 로고    scopus 로고
    • Measuring the VC-dimension using optimized experimental design
    • Shao XH, Cherkassky V, Li W (2000) Measuring the VC-dimension using optimized experimental design. Neural Comput 12(8):1969-1986
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1969-1986
    • Shao, X.H.1    Cherkassky, V.2    Li, W.3
  • 43
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola AJ, Scholkopf B, Muller KR (1998) The connection between regularization operators and support vector kernels. Neural Netw 11(4):637-649
    • (1998) Neural Netw , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.R.3
  • 44
    • 0031639883 scopus 로고    scopus 로고
    • Finding the bias-variance tradeoff during neural network training and its implication on structure selection
    • In: Anchorage, AK, USA
    • Snijder E, Babuska R, Verhaegen M (1998) Finding the bias-variance tradeoff during neural network training and its implication on structure selection. In: International conference on neural networks, Anchorage, AK, USA, pp 1613-1618
    • (1998) International Conference on Neural Networks , pp. 1613-1618
    • Snijder, E.1    Babuska, R.2    Verhaegen, M.3
  • 47
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(3):211-244
    • (2001) J Mach Learn Res , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 48
    • 35048822888 scopus 로고    scopus 로고
    • Bayesian inference: An introduction to principles and practice in machine learning. Advanced lectures on machine learning
    • Springer, Berlin Heidelberg NewYork
    • Tipping ME (2004) Bayesian inference: An introduction to principles and practice in machine learning. Advanced lectures on machine learning. Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg NewYork, pp 41-62
    • (2004) Lecture Notes in Artificial Intelligence , pp. 41-62
    • Tipping, M.E.1
  • 49
    • 0037209489 scopus 로고    scopus 로고
    • The use of kernel principal component analysis to model data distributions
    • Twining CJ, Taylor CJ (2003) The use of kernel principal component analysis to model data distributions. Pattern Recognit 36(1):217-227
    • (2003) Pattern Recognit , vol.36 , Issue.1 , pp. 217-227
    • Twining, C.J.1    Taylor, C.J.2
  • 50
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey JM, Smith AE (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Syst Man Cybernet C Appl Rev 28(3):417-430
    • (1998) IEEE Trans Syst Man Cybernet C Appl Rev , vol.28 , Issue.3 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 51
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G, Dietterich TG (2004) Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5:725-775
    • (2004) J Mach Learn Res , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 54
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988-999
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 55
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang WJ, Xu ZB, Lu WZ, Zhang XY (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55(3-4):643-663
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 643-663
    • Wang, W.J.1    Xu, Z.B.2    Lu, W.Z.3    Zhang, X.Y.4
  • 56
    • 26844433062 scopus 로고    scopus 로고
    • Relevance vector machine for automatic detection of clustered microcalcifications
    • Wei LY, Yang YY, Nishikawa RM, Wernick MN, Edwards A (2005) Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imaging 24(10):1278-1285
    • (2005) IEEE Trans Med Imaging , vol.24 , Issue.10 , pp. 1278-1285
    • Wei, L.Y.1    Yang, Y.Y.2    Nishikawa, R.M.3    Wernick, M.N.4    Edwards, A.5
  • 57
    • 0031002587 scopus 로고    scopus 로고
    • The kernel PCA algorithms for wide data. 1. Theory and algorithms
    • Wu W, Massart DL, deJong S (1997) The kernel PCA algorithms for wide data. 1. Theory and algorithms. Chemometr Intell Lab Syst 36(2):165-172
    • (1997) Chemometr Intell Lab Syst , vol.36 , Issue.2 , pp. 165-172
    • Wu, W.1    Massart, D.L.2    deJong, S.3
  • 58
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu ZX, Li JY (2002) Short-term inflow forecasting using an artificial neural network model. Hydrol Processes 16(12):2423-2439
    • (2002) Hydrol Processes , vol.16 , Issue.12 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 59
    • 0011723514 scopus 로고
    • Soil variability and geostatistical applications
    • Ph.D. thesis, The University of Arizona
    • Zhang R (1990) Soil variability and geostatistical applications. Ph.D. thesis, The University of Arizona
    • (1990)
    • Zhang, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.