-
2
-
-
10944274219
-
Support vectors-based groundwater head observation networks design
-
W11509, DOI 11510.11029/12004WR003304
-
Asefa T, Kemblowski MW, Urroz G, McKee M, Khalil AF (2004) Support vectors-based groundwater head observation networks design. Water Resour Res 40 (11): W11509, DOI 11510.11029/12004WR003304
-
(2004)
Water Resour Res
, vol.40
, Issue.11
-
-
Asefa, T.1
Kemblowski, M.W.2
Urroz, G.3
McKee, M.4
Khalil, A.F.5
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach Learn 36(1-2):105-139
-
(1999)
Mach Learn
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0037844857
-
An empirical investigation of bias and variance in time series forecasting: Modeling considerations and error evaluation
-
Berardi VL, Zhang GP (2003) An empirical investigation of bias and variance in time series forecasting: Modeling considerations and error evaluation. IEEE Trans Neural Netw 14(3):668-679
-
(2003)
IEEE Trans Neural Netw
, vol.14
, Issue.3
, pp. 668-679
-
-
Berardi, V.L.1
Zhang, G.P.2
-
6
-
-
0003330326
-
Bias-variance, regularization, instability and stabilization
-
In: Bishop C (ed) Cambridge, UK
-
Breiman L (1998) Bias-variance, regularization, instability and stabilization. In: Bishop C (ed) Proceedings of the neural networks and machine learning, Cambridge, UK, pp 27-56
-
(1998)
Proceedings of the Neural Networks and Machine Learning
, pp. 27-56
-
-
Breiman, L.1
-
7
-
-
0036448025
-
On the stability of support vector machines for face detection
-
In: Rochester, NY
-
Buciu I, Kotropoulos C, Pitas I (2002) On the stability of support vector machines for face detection. In: Proceedings of the international conference on image processing, Rochester, NY, pp 121-124
-
(2002)
Proceedings of the International Conference on Image Processing
, pp. 121-124
-
-
Buciu, I.1
Kotropoulos, C.2
Pitas, I.3
-
8
-
-
0346881149
-
Experimentally optimal nu in support vector regression for different noise models and parameter settings
-
Chalimourda A, Scholkopf B, Smola AJ (2004) Experimentally optimal nu in support vector regression for different noise models and parameter settings. Neural Netw 17(1):127-141
-
(2004)
Neural Netw
, vol.17
, Issue.1
, pp. 127-141
-
-
Chalimourda, A.1
Scholkopf, B.2
Smola, A.J.3
-
9
-
-
0037484691
-
Comparison of model selection for regression
-
Cherkassky V, Ma YQ (2003) Comparison of model selection for regression. Neural Comput 15(7):1691-1714
-
(2003)
Neural Comput
, vol.15
, Issue.7
, pp. 1691-1714
-
-
Cherkassky, V.1
Ma, Y.Q.2
-
10
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V, Ma YQ (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113-126
-
(2004)
Neural Netw
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.Q.2
-
11
-
-
0003890671
-
-
wiley, New York
-
Cherkassky V, Mulier F (1998) Learning from data: Concepts, theory, and methods. Wiley, New York, xviii, 441 pp
-
(1998)
Learning from Data: Concepts, Theory, and Methods
, vol.18
, pp. 441
-
-
Cherkassky, V.1
Mulier, F.2
-
12
-
-
0032594968
-
Vapnik-Chervonenkis (VC) learning theory and its applications
-
Cherkassky V, Mulier F (1999) Vapnik-Chervonenkis (VC) learning theory and its applications. IEEE Trans Neural Netw 10(5):985-987
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 985-987
-
-
Cherkassky, V.1
Mulier, F.2
-
13
-
-
0032595046
-
Model complexity control for regression using VC generalization bounds
-
Cherkassky V, Shao XH, Mulier FM, Vapnik VN (1999) Model complexity control for regression using VC generalization bounds. IEEE Trans Neural Netw 10(5):1075-1089
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 1075-1089
-
-
Cherkassky, V.1
Shao, X.H.2
Mulier, F.M.3
Vapnik, V.N.4
-
14
-
-
84918441630
-
Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
-
Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput EC-14(3):326-334
-
(1965)
IEEE Trans Electron Comput EC
, vol.14
, Issue.3
, pp. 326-334
-
-
Cover, T.M.1
-
16
-
-
0001942829
-
Neural networks and the bias-variance dilemma
-
Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias-variance dilemma. Neural Comput 4(1):1-58
-
(1992)
Neural Comput
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
17
-
-
0027072328
-
Determining and interpreting the order of a 2-state Markov-Chain-application to models of daily precipitation
-
Gregory JM, Wigley TML, Jones PD (1992) Determining and interpreting the order of a 2-state Markov-Chain-application to models of daily precipitation. Water Resour Res 28(5):1443-1446
-
(1992)
Water Resour Res
, vol.28
, Issue.5
, pp. 1443-1446
-
-
Gregory, J.M.1
Wigley, T.M.L.2
Jones, P.D.3
-
18
-
-
0035280264
-
Modelling diurnal cycles in point rainfall properties
-
Gyasi-Agyei Y (2001) Modelling diurnal cycles in point rainfall properties. Hydrol Processes 15(4):595-608
-
(2001)
Hydrol Processes
, vol.15
, Issue.4
, pp. 595-608
-
-
Gyasi-Agyei, Y.1
-
19
-
-
0003684449
-
-
Springer, Berlin Heidelberg New York
-
Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: Data mining, inference, and prediction. Springer series in statistics. Springer, Berlin Heidelberg New York, xvi, 533 p
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics
, vol.16
, pp. 533
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
20
-
-
0003353181
-
Neural networks: A comprehensive foundation
-
Haykin SS (1999) Neural networks: A comprehensive foundation. Prentice Hall, Upper Saddle River, xxi, 842 p
-
(1999)
Prentice Hall, Upper Saddle River
, vol.21
, pp. 842
-
-
Haykin, S.S.1
-
21
-
-
0032922532
-
Matching objective and subjective information in groundwater inverse analysis by Akaike's Bayesian information criterion
-
Honjo Y, Kashiwagi N (1999) Matching objective and subjective information in groundwater inverse analysis by Akaike's Bayesian information criterion. Water Resour Res 35(2):435-447
-
(1999)
Water Resour Res
, vol.35
, Issue.2
, pp. 435-447
-
-
Honjo, Y.1
Kashiwagi, N.2
-
22
-
-
20844458468
-
Applicability of statistical learning algorithms in groundwater quality modeling
-
W05010, DOI 05010.01029/02004WR003608
-
Khalil AF, Almasri MN, McKee M, Kaluarachchi JJ (2005a) Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour Res 41(5): W05010, DOI 05010.01029/02004WR003608
-
(2005)
Water Resour Res
, vol.41
, Issue.5
-
-
Khalil, A.F.1
Almasri, M.N.2
McKee, M.3
Kaluarachchi, J.J.4
-
23
-
-
29944444287
-
Sparse Bayesian learning machine for real-time management of reservoir releases
-
W11401, DOI 11410.11029/12004WR003891
-
Khalil AF, McKee M, Kemblowski M, Asefa T (2005b) Sparse Bayesian learning machine for real-time management of reservoir releases. Water Resour Res 41(11): W11401, DOI 11410.11029/12004WR003891
-
(2005)
Water Resour Res
, vol.41
, Issue.11
-
-
Khalil, A.F.1
McKee, M.2
Kemblowski, M.3
Asefa, T.4
-
24
-
-
28444480680
-
Multiobjective analysis of chaotic dynamic systems with sparse learning machines
-
Khalil AF, McKee M, Kemblowski M, Asefa T, Bastidas L (2006) Multiobjective analysis of chaotic dynamic systems with sparse learning machines. Adv Water Resour 29(1):72-88
-
(2006)
Adv Water Resour
, vol.29
, Issue.1
, pp. 72-88
-
-
Khalil, A.F.1
McKee, M.2
Kemblowski, M.3
Asefa, T.4
Bastidas, L.5
-
25
-
-
0033104702
-
TARSO modeling of water table depths
-
Knotters M, De Gooijer JG (1999) TARSO modeling of water table depths. Water Resour Res 35(3):695-705
-
(1999)
Water Resour Res
, vol.35
, Issue.3
, pp. 695-705
-
-
Knotters, M.1
De Gooijer, J.G.2
-
27
-
-
5444264929
-
Analysis of wideband forward looking synthetic aperture radar for sensing land mines
-
DOI 10.1029/2003RS002967
-
Kovvali N, Carin L (2004) Analysis of wideband forward looking synthetic aperture radar for sensing land mines. Radio Sci 39(4):RS4S08, DOI 10.1029/2003RS002967
-
(2004)
Radio Sci
, vol.39
, Issue.4
-
-
Kovvali, N.1
Carin, L.2
-
28
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27-72
-
(2004)
J Mach Learn Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
29
-
-
0003281852
-
On estimation of characters obtained in statistical procedure of recognition
-
(in Russian)
-
Luntz A, Brailovsky V (1969) On estimation of characters obtained in statistical procedure of recognition. Techicheskaya Kibernetica, 3 (in Russian)
-
(1969)
Techicheskaya Kibernetica
, vol.3
-
-
Luntz, A.1
Brailovsky, V.2
-
30
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
In: Domany E, van Hemmen JL, Schulten K (eds) Springer, Berlin Heidelberg New York
-
MacKay DJC (1994) Bayesian methods for backpropagation networks. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks III. Springer, Berlin Heidelberg New York, pp 211-254 211-254
-
(1994)
Models of Neural Networks III
, pp. 211-254
-
-
MacKay, D.J.C.1
-
31
-
-
17744369892
-
Relevance vector machine for optical diagnosis of cancer
-
Majumder SK, Ghosh N, Gupta PK (2005) Relevance vector machine for optical diagnosis of cancer. Lasers Surg Med 36(4):323-333
-
(2005)
Lasers Surg Med
, vol.36
, Issue.4
, pp. 323-333
-
-
Majumder, S.K.1
Ghosh, N.2
Gupta, P.K.3
-
32
-
-
0242288813
-
The support vector machine under test
-
Meyer D, Leisch F, Hornik K (2003) The support vector machine under test. Neurocomputing 55(1-2):169-186
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 169-186
-
-
Meyer, D.1
Leisch, F.2
Hornik, K.3
-
33
-
-
0033337021
-
Fisher discriminant analysis with kernels, neural networks for signal processing IX
-
In: Madison, WI, USA
-
Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR (1999) Fisher discriminant analysis with kernels, neural networks for signal processing IX. In: Proceedings of the 1999 IEEE signal processing society workshop, Madison, WI, USA, pp 41-48
-
(1999)
Proceedings of the 1999 IEEE Signal Processing Society Workshop
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Scholkopf, B.4
Mullers, K.R.5
-
34
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181-201
-
(2001)
IEEE Trans Neural Netw
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
35
-
-
0028444428
-
The use of the Akaike information criterion in the identification of an optimum flood frequency model
-
Mutua FM (1994) The use of the Akaike information criterion in the identification of an optimum flood frequency model. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 39(3):235-244
-
(1994)
Hydrological Sciences Journal-Journal Des Sciences Hydrologiques
, vol.39
, Issue.3
, pp. 235-244
-
-
Mutua, F.M.1
-
37
-
-
0036289929
-
Time series prediction based on the relevance vector machine with adaptive kernels
-
In: Orlando, FL, USA
-
Quinonero-Candela J, Hansen LK (2002) Time series prediction based on the relevance vector machine with adaptive kernels. In: IEEE international conference on acoustics, speech and signal processing, Orlando, FL, USA, pp 985-988
-
(2002)
IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 985-988
-
-
Quinonero-Candela, J.1
Hansen, L.K.2
-
39
-
-
33845258041
-
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
MIT Press, Cambridge
-
Scholkopf B, Smola AJ (2002) Learning with kernels: Support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press, Cambridge, xviii, 626 pp
-
(2002)
Adaptive Computation and Machine Learning
, vol.18
, pp. 626
-
-
Scholkopf, B.1
Smola, A.J.2
-
40
-
-
0003798627
-
-
B. Scholkopf Burges C.J.C. Smola A.J. (eds) MIT Press, Cambridge
-
Scholkopf B, Burges CJC, Smola AJ (eds) (1999) Advances in kernel methods: Support vector learning. MIT Press, Cambridge, vii, 376 p
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, vol.7
, pp. 376
-
-
-
41
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461-464
-
(1978)
Ann Stat
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
42
-
-
0034241362
-
Measuring the VC-dimension using optimized experimental design
-
Shao XH, Cherkassky V, Li W (2000) Measuring the VC-dimension using optimized experimental design. Neural Comput 12(8):1969-1986
-
(2000)
Neural Comput
, vol.12
, Issue.8
, pp. 1969-1986
-
-
Shao, X.H.1
Cherkassky, V.2
Li, W.3
-
43
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola AJ, Scholkopf B, Muller KR (1998) The connection between regularization operators and support vector kernels. Neural Netw 11(4):637-649
-
(1998)
Neural Netw
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Scholkopf, B.2
Muller, K.R.3
-
44
-
-
0031639883
-
Finding the bias-variance tradeoff during neural network training and its implication on structure selection
-
In: Anchorage, AK, USA
-
Snijder E, Babuska R, Verhaegen M (1998) Finding the bias-variance tradeoff during neural network training and its implication on structure selection. In: International conference on neural networks, Anchorage, AK, USA, pp 1613-1618
-
(1998)
International Conference on Neural Networks
, pp. 1613-1618
-
-
Snijder, E.1
Babuska, R.2
Verhaegen, M.3
-
45
-
-
34648812359
-
Statistical learning: Data mining and prediction with applications to medicine and genomics
-
In: NEUREL 2002, Belgrade, Yugoslavia
-
Stankovic S, Milosavljevic M, Buturovic L, Stankovic M, Stankovic M (2002) Statistical learning: Data mining and prediction with applications to medicine and genomics. In: 6th seminar on neural network applications in electrical engineering. NEUREL 2002, Belgrade, Yugoslavia, pp 5-6
-
(2002)
6th Seminar on Neural Network Applications in Electrical Engineering
, pp. 5-6
-
-
Stankovic, S.1
Milosavljevic, M.2
Buturovic, L.3
Stankovic, M.4
Stankovic, M.5
-
47
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(3):211-244
-
(2001)
J Mach Learn Res
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
48
-
-
35048822888
-
Bayesian inference: An introduction to principles and practice in machine learning. Advanced lectures on machine learning
-
Springer, Berlin Heidelberg NewYork
-
Tipping ME (2004) Bayesian inference: An introduction to principles and practice in machine learning. Advanced lectures on machine learning. Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg NewYork, pp 41-62
-
(2004)
Lecture Notes in Artificial Intelligence
, pp. 41-62
-
-
Tipping, M.E.1
-
49
-
-
0037209489
-
The use of kernel principal component analysis to model data distributions
-
Twining CJ, Taylor CJ (2003) The use of kernel principal component analysis to model data distributions. Pattern Recognit 36(1):217-227
-
(2003)
Pattern Recognit
, vol.36
, Issue.1
, pp. 217-227
-
-
Twining, C.J.1
Taylor, C.J.2
-
50
-
-
0032140934
-
Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
-
Twomey JM, Smith AE (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Syst Man Cybernet C Appl Rev 28(3):417-430
-
(1998)
IEEE Trans Syst Man Cybernet C Appl Rev
, vol.28
, Issue.3
, pp. 417-430
-
-
Twomey, J.M.1
Smith, A.E.2
-
51
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini G, Dietterich TG (2004) Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J Mach Learn Res 5:725-775
-
(2004)
J Mach Learn Res
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
53
-
-
0003450542
-
-
Wiley, New York
-
Vapnik VN (1998) Statistical learning theory. Adaptive and learning systems for signal processing, communications, and control. Wiley, New York, xxiv, 736 pp
-
(1998)
Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control
, vol.24
, pp. 736
-
-
Vapnik, V.N.1
-
54
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988-999
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
55
-
-
0345688978
-
Determination of the spread parameter in the Gaussian kernel for classification and regression
-
Wang WJ, Xu ZB, Lu WZ, Zhang XY (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55(3-4):643-663
-
(2003)
Neurocomputing
, vol.55
, Issue.3-4
, pp. 643-663
-
-
Wang, W.J.1
Xu, Z.B.2
Lu, W.Z.3
Zhang, X.Y.4
-
56
-
-
26844433062
-
Relevance vector machine for automatic detection of clustered microcalcifications
-
Wei LY, Yang YY, Nishikawa RM, Wernick MN, Edwards A (2005) Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imaging 24(10):1278-1285
-
(2005)
IEEE Trans Med Imaging
, vol.24
, Issue.10
, pp. 1278-1285
-
-
Wei, L.Y.1
Yang, Y.Y.2
Nishikawa, R.M.3
Wernick, M.N.4
Edwards, A.5
-
57
-
-
0031002587
-
The kernel PCA algorithms for wide data. 1. Theory and algorithms
-
Wu W, Massart DL, deJong S (1997) The kernel PCA algorithms for wide data. 1. Theory and algorithms. Chemometr Intell Lab Syst 36(2):165-172
-
(1997)
Chemometr Intell Lab Syst
, vol.36
, Issue.2
, pp. 165-172
-
-
Wu, W.1
Massart, D.L.2
deJong, S.3
-
58
-
-
0037200134
-
Short-term inflow forecasting using an artificial neural network model
-
Xu ZX, Li JY (2002) Short-term inflow forecasting using an artificial neural network model. Hydrol Processes 16(12):2423-2439
-
(2002)
Hydrol Processes
, vol.16
, Issue.12
, pp. 2423-2439
-
-
Xu, Z.X.1
Li, J.Y.2
-
59
-
-
0011723514
-
Soil variability and geostatistical applications
-
Ph.D. thesis, The University of Arizona
-
Zhang R (1990) Soil variability and geostatistical applications. Ph.D. thesis, The University of Arizona
-
(1990)
-
-
Zhang, R.1
|