메뉴 건너뛰기




Volumn 28, Issue 4, 2015, Pages 365-372

Tracking trauma-induced structural and functional changes above the level of spinal cord injury

Author keywords

atrophy; cortical reorganization; quantitative MRI; spinal cord injury

Indexed keywords

BIOLOGICAL MARKER;

EID: 84941207240     PISSN: 13507540     EISSN: 14736551     Source Type: Journal    
DOI: 10.1097/WCO.0000000000000224     Document Type: Review
Times cited : (15)

References (78)
  • 1
    • 33748358811 scopus 로고    scopus 로고
    • Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey?
    • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 2006; 44:523-529.
    • (2006) Spinal Cord , vol.44 , pp. 523-529
    • Wyndaele, M.1    Wyndaele, J.J.2
  • 2
    • 79953303613 scopus 로고    scopus 로고
    • A global map for traumatic spinal cord injury epidemiology: Towards a living data repository for injury prevention
    • Cripps RA, Lee BB, Wing P, et al. A global map for traumatic spinal cord injury epidemiology: towards a living data repository for injury prevention. Spinal Cord 2011; 49:493-501.
    • (2011) Spinal Cord , vol.49 , pp. 493-501
    • Cripps, R.A.1    Lee, B.B.2    Wing, P.3
  • 3
    • 0035090029 scopus 로고    scopus 로고
    • Pain following spinal cord injury
    • Siddall PJ, Loeser JD. Pain following spinal cord injury. Spinal Cord 2001; 39:63-73.
    • (2001) Spinal Cord , vol.39 , pp. 63-73
    • Siddall, P.J.1    Loeser, J.D.2
  • 4
    • 0037683297 scopus 로고    scopus 로고
    • A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury
    • Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003; 103:249-257.
    • (2003) Pain , vol.103 , pp. 249-257
    • Siddall, P.J.1    McClelland, J.M.2    Rutkowski, S.B.3    Cousins, M.J.4
  • 5
    • 1342328010 scopus 로고    scopus 로고
    • Nogo and axon regeneration
    • Schwab ME. Nogo and axon regeneration. Curr Opin Neurobiol 2004; 14:118-124.
    • (2004) Curr Opin Neurobiol , vol.14 , pp. 118-124
    • Schwab, M.E.1
  • 6
    • 84922393967 scopus 로고    scopus 로고
    • Targeting inhibitory chondroitin sulphate proteoglycans to promote plasticity after injury
    • Kwok JC, Heller JP, Zhao RR, Fawcett JW. Targeting inhibitory chondroitin sulphate proteoglycans to promote plasticity after injury. Methods Mol Biol 2014; 1162:127-138.
    • (2014) Methods Mol Biol , vol.1162 , pp. 127-138
    • Kwok, J.C.1    Heller, J.P.2    Zhao, R.R.3    Fawcett, J.W.4
  • 7
    • 84859897495 scopus 로고    scopus 로고
    • Anti-Nogo-A and training: Can one plus one equal three?
    • Starkey ML, Schwab ME. Anti-Nogo-A and training: can one plus one equal three? Exper Neurol 2012; 235:53-61.
    • (2012) Exper Neurol , vol.235 , pp. 53-61
    • Starkey, M.L.1    Schwab, M.E.2
  • 8
    • 84927618396 scopus 로고    scopus 로고
    • Investigational drugs for the treatment of spinal cord injury: Review of preclinical studies and evaluation of clinical trials from phase i to II
    • Nagoshi N, Fehlings MG. Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from phase I to II. Expert Opin Investig Drugs 2015; 24:1-14.
    • (2015) Expert Opin Investig Drugs , vol.24 , pp. 1-14
    • Nagoshi, N.1    Fehlings, M.G.2
  • 9
    • 84903617932 scopus 로고    scopus 로고
    • Identifying homogeneous subgroups in neurological disorders: Unbiased recursive partitioning in cervical complete spinal cord injury
    • Tanadini LG, Steeves JD, Hothorn T, et al. Identifying homogeneous subgroups in neurological disorders: unbiased recursive partitioning in cervical complete spinal cord injury. Neurorehabil Neural Repair 2014; 28:507-515.
    • (2014) Neurorehabil Neural Repair , vol.28 , pp. 507-515
    • Tanadini, L.G.1    Steeves, J.D.2    Hothorn, T.3
  • 10
    • 84906238592 scopus 로고    scopus 로고
    • Prediction and stratification of upper limb function and self-care in acute cervical spinal cord injury with the graded redefined assessment of strength, sensibility, and prehension (GRASSP)
    • Velstra IM, Bolliger M, Tanadini LG, et al. Prediction and stratification of upper limb function and self-care in acute cervical spinal cord injury with the graded redefined assessment of strength, sensibility, and prehension (GRASSP). Neurorehabil Neural Repair 2014; 28:632-642.
    • (2014) Neurorehabil Neural Repair , vol.28 , pp. 632-642
    • Velstra, I.M.1    Bolliger, M.2    Tanadini, L.G.3
  • 11
    • 84881551859 scopus 로고    scopus 로고
    • Will imaging biomarkers transform spinal cord injury trials?
    • Cadotte DW, Fehlings MG. Will imaging biomarkers transform spinal cord injury trials? Lancet Neurol 2013; 12:843-844.
    • (2013) Lancet Neurol , vol.12 , pp. 843-844
    • Cadotte, D.W.1    Fehlings, M.G.2
  • 12
    • 33745947283 scopus 로고    scopus 로고
    • Neurological aspects of spinal-cord repair: Promises and challenges
    • Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol 2006; 5:688-694.
    • (2006) Lancet Neurol , vol.5 , pp. 688-694
    • Dietz, V.1    Curt, A.2
  • 13
    • 79955961172 scopus 로고    scopus 로고
    • A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury
    • Fehlings MG, Theodore N, Harrop J, et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 2011; 28:787-796.
    • (2011) J Neurotrauma , vol.28 , pp. 787-796
    • Fehlings, M.G.1    Theodore, N.2    Harrop, J.3
  • 14
    • 84899898647 scopus 로고    scopus 로고
    • Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging
    • Callaghan MF, Freund P, Draganski B, et al. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 2014; 35:1862-1872.
    • (2014) Neurobiol Aging , vol.35 , pp. 1862-1872
    • Callaghan, M.F.1    Freund, P.2    Draganski, B.3
  • 15
    • 84873296556 scopus 로고    scopus 로고
    • The impact of postprocessing on spinal cord diffusion tensor imaging
    • Mohammadi S, Freund P, Feiweier T, et al. The impact of postprocessing on spinal cord diffusion tensor imaging. Neuroimage 2013; 70:377-385.
    • (2013) Neuroimage , vol.70 , pp. 377-385
    • Mohammadi, S.1    Freund, P.2    Feiweier, T.3
  • 16
    • 84921768425 scopus 로고    scopus 로고
    • High-resolution diffusion kurtosis imaging at 3T enabled by advanced postprocessing
    • Mohammadi S, Tabelow K, Ruthotto L, et al. High-resolution diffusion kurtosis imaging at 3T enabled by advanced postprocessing. Front Neurosci 2014; 8:427.
    • (2014) Front Neurosci , vol.8 , pp. 427
    • Mohammadi, S.1    Tabelow, K.2    Ruthotto, L.3
  • 17
    • 79952705538 scopus 로고    scopus 로고
    • Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ)
    • Draganski B, Ashburner J, Hutton C, et al. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 2011; 55:1423-1434.
    • (2011) Neuroimage , vol.55 , pp. 1423-1434
    • Draganski, B.1    Ashburner, J.2    Hutton, C.3
  • 18
    • 78650194424 scopus 로고    scopus 로고
    • Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT)
    • Weiskopf N, Lutti A, Helms G, et al. Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). Neuroimage 2011; 54:2116-2124.
    • (2011) Neuroimage , vol.54 , pp. 2116-2124
    • Weiskopf, N.1    Lutti, A.2    Helms, G.3
  • 19
    • 84869015515 scopus 로고    scopus 로고
    • In vivo functional and myeloarchitectonic mapping of human primary auditory areas
    • Dick F, Tierney AT, Lutti A, et al. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 2012; 32:16095-16105.
    • (2012) J Neurosci , vol.32 , pp. 16095-16105
    • Dick, F.1    Tierney, A.T.2    Lutti, A.3
  • 20
    • 84892367098 scopus 로고    scopus 로고
    • Quantitative multiparameter mapping of R1, PD(∗), MT, and R2(∗) at 3T: A multicenter validation
    • Weiskopf N, Suckling J, Williams G, et al. Quantitative multiparameter mapping of R1, PD(∗), MT, and R2(∗) at 3T: a multicenter validation. Front Neurosci 2013; 7:95.
    • (2013) Front Neurosci , vol.7 , pp. 95
    • Weiskopf, N.1    Suckling, J.2    Williams, G.3
  • 21
    • 84903480132 scopus 로고    scopus 로고
    • Using high-resolution quantitative mapping of R1 as an index of cortical myelination
    • Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 2014; 93 (Pt 2):176-188.
    • (2014) Neuroimage , vol.93 , pp. 176-188
    • Lutti, A.1    Dick, F.2    Sereno, M.I.3    Weiskopf, N.4
  • 22
    • 84860723389 scopus 로고    scopus 로고
    • Diffusion MRI at 25: Exploring brain tissue structure and function
    • Le Bihan D, Johansen-Berg H. Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 2012; 61:324-341.
    • (2012) Neuroimage , vol.61 , pp. 324-341
    • Le Bihan, D.1    Johansen-Berg, H.2
  • 23
    • 70049108710 scopus 로고    scopus 로고
    • Computational anatomy with the SPM software
    • Ashburner J. Computational anatomy with the SPM software. Magn Resone Imaging 2009; 27:1163-1174.
    • (2009) Magn Resone Imaging , vol.27 , pp. 1163-1174
    • Ashburner, J.1
  • 24
    • 68749098078 scopus 로고    scopus 로고
    • A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging
    • Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 2009; 48:371-380.
    • (2009) Neuroimage , vol.48 , pp. 371-380
    • Hutton, C.1    Draganski, B.2    Ashburner, J.3    Weiskopf, N.4
  • 25
    • 79957804043 scopus 로고    scopus 로고
    • Disability, atrophy and cortical reorganization following spinal cord injury
    • Freund P, Weiskopf N, Ward NS, et al. Disability, atrophy and cortical reorganization following spinal cord injury. Brain 2011; 134 (Pt 6):1610-1622.
    • (2011) Brain , vol.134 , pp. 1610-1622
    • Freund, P.1    Weiskopf, N.2    Ward, N.S.3
  • 26
    • 84861968407 scopus 로고    scopus 로고
    • Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures
    • Petersen JA, Wilm BJ, von Meyenburg J, et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 2012; 29:1556-1566.
    • (2012) J Neurotrauma , vol.29 , pp. 1556-1566
    • Petersen, J.A.1    Wilm, B.J.2    Von Meyenburg, J.3
  • 27
    • 79952069989 scopus 로고    scopus 로고
    • Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI
    • Cohen-Adad J, El Mendili MM, Lehericy S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 2011; 55:1024-1033.
    • (2011) Neuroimage , vol.55 , pp. 1024-1033
    • Cohen-Adad, J.1    El Mendili, M.M.2    Lehericy, S.3
  • 28
    • 84860920957 scopus 로고    scopus 로고
    • Axonal integrity predicts cortical reorganisation following cervical injury
    • Freund P, Wheeler-Kingshott CA, Nagy Z, et al. Axonal integrity predicts cortical reorganisation following cervical injury. J Neurol Neurosurg Psychiatry 2012; 83:629-637.
    • (2012) J Neurol Neurosurg Psychiatry , vol.83 , pp. 629-637
    • Freund, P.1    Wheeler-Kingshott, C.A.2    Nagy, Z.3
  • 29
    • 33645842779 scopus 로고    scopus 로고
    • Somatosensory cortical atrophy after spinal cord injury: A voxel-based morphometry study
    • Jurkiewicz MT, Crawley AP, Verrier MC, et al. Somatosensory cortical atrophy after spinal cord injury: a voxel-based morphometry study. Neurology 2006; 66:762-764.
    • (2006) Neurology , vol.66 , pp. 762-764
    • Jurkiewicz, M.T.1    Crawley, A.P.2    Verrier, M.C.3
  • 30
    • 58149163278 scopus 로고    scopus 로고
    • Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury
    • Wrigley PJ, Press SR, Gustin SM, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 2009; 141:52-59.
    • (2009) Pain , vol.141 , pp. 52-59
    • Wrigley, P.J.1    Press, S.R.2    Gustin, S.M.3
  • 31
    • 84881552399 scopus 로고    scopus 로고
    • MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: A prospective longitudinal study
    • Freund P, Weiskopf N, Ashburner J, et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 2013; 12:873-881.
    • (2013) Lancet Neurol , vol.12 , pp. 873-881
    • Freund, P.1    Weiskopf, N.2    Ashburner, J.3
  • 32
    • 84255173310 scopus 로고    scopus 로고
    • International standards for neurological classification of spinal cord injury (revised 2011)
    • Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011; 34:535-546.
    • (2011) J Spinal Cord Med , vol.34 , pp. 535-546
    • Kirshblum, S.C.1    Burns, S.P.2    Biering-Sorensen, F.3
  • 33
    • 84871220387 scopus 로고    scopus 로고
    • Degeneration of the injured cervical cord is associated with remote changes in corticospinal tract integrity and upper limb impairment
    • Freund P, Schneider T, Nagy Z, et al. Degeneration of the injured cervical cord is associated with remote changes in corticospinal tract integrity and upper limb impairment. PLoS One 2012; 7:e51729.
    • (2012) PLoS One , vol.7 , pp. e51729
    • Freund, P.1    Schneider, T.2    Nagy, Z.3
  • 34
    • 78651292668 scopus 로고    scopus 로고
    • Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury
    • Lundell H, Barthelemy D, Skimminge A, et al. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 2011; 49:70-75.
    • (2011) Spinal Cord , vol.49 , pp. 70-75
    • Lundell, H.1    Barthelemy, D.2    Skimminge, A.3
  • 35
    • 82455212838 scopus 로고    scopus 로고
    • Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury
    • Freund P, Rothwell J, Craggs M, et al. Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 2011; 34:1839-1846.
    • (2011) Eur J Neurosci , vol.34 , pp. 1839-1846
    • Freund, P.1    Rothwell, J.2    Craggs, M.3
  • 36
    • 46149116992 scopus 로고    scopus 로고
    • Descending pathways in motor control
    • Lemon RN. Descending pathways in motor control. Annu Rev Neurosci 2008; 31:195-218.
    • (2008) Annu Rev Neurosci , vol.31 , pp. 195-218
    • Lemon, R.N.1
  • 37
    • 35348878462 scopus 로고    scopus 로고
    • Sensorimotor cortical plasticity during recovery following spinal cord injury: A longitudinal fMRI study
    • Jurkiewicz MT, Mikulis DJ, McIlroy WE, et al. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neu-rorehabil Neural Repair 2007; 21:527-538.
    • (2007) Neu-rorehabil Neural Repair , vol.21 , pp. 527-538
    • Jurkiewicz, M.T.1    Mikulis, D.J.2    McIlroy, W.E.3
  • 38
    • 84877796369 scopus 로고    scopus 로고
    • Tracking changes following spinal cord injury: Insights from neuroimaging
    • Freund P, Curt A, Friston K, Thompson A. Tracking changes following spinal cord injury: insights from neuroimaging. Neuroscientist 2013; 19:116-128.
    • (2013) Neuroscientist , vol.19 , pp. 116-128
    • Freund, P.1    Curt, A.2    Friston, K.3    Thompson, A.4
  • 39
    • 0032466045 scopus 로고    scopus 로고
    • How does the human brain deal with a spinal cord injury?
    • Bruehlmeier M, Dietz V, Leenders KL, et al. How does the human brain deal with a spinal cord injury? Eur J Neurosci 1998; 10:3918-3922.
    • (1998) Eur J Neurosci , vol.10 , pp. 3918-3922
    • Bruehlmeier, M.1    Dietz, V.2    Leenders, K.L.3
  • 40
    • 0036158867 scopus 로고    scopus 로고
    • Differential effect of spinal cord injury and functional impairment on human brain activation
    • Curt A, Bruehlmeier M, Leenders KL, et al. Differential effect of spinal cord injury and functional impairment on human brain activation. J Neurotrauma 2002; 19:43-51.
    • (2002) J Neurotrauma , vol.19 , pp. 43-51
    • Curt, A.1    Bruehlmeier, M.2    Leenders, K.L.3
  • 41
    • 82455212838 scopus 로고    scopus 로고
    • Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury
    • Freund P, Rothwell J, Craggs M, et al. Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 2011; 34:1839-1846.
    • (2011) Eur J Neurosci , vol.34 , pp. 1839-1846
    • Freund, P.1    Rothwell, J.2    Craggs, M.3
  • 42
    • 84933678662 scopus 로고    scopus 로고
    • Relationship between structural brainstem and brain plasticity and lower-limb training: A longitudinal pilot study
    • Villiger M, Grabher P, Hepp-Reymond M, et al. Relationship between structural brainstem and brain plasticity and lower-limb training: a longitudinal pilot study. Front Hum Neurosci 2015; 9:254.
    • (2015) Front Hum Neurosci , vol.9 , pp. 254
    • Villiger, M.1    Grabher, P.2    Hepp-Reymond, M.3
  • 43
    • 84867802034 scopus 로고    scopus 로고
    • Pain and plasticity: Is chronic pain always associated with somatosensory cortex activity and reorganization?
    • Gustin SM, Peck CC, Cheney LB, et al. Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci 2012; 32:14874-14884.
    • (2012) J Neurosci , vol.32 , pp. 14874-14884
    • Gustin, S.M.1    Peck, C.C.2    Cheney, L.B.3
  • 44
    • 84872055533 scopus 로고    scopus 로고
    • Brain EEG activity correlates of chronic pain in persons with spinal cord injury: Clinical implications
    • Jensen MP, Sherlin LH, Gertz KJ, et al. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord 2013; 51:55-58.
    • (2013) Spinal Cord , vol.51 , pp. 55-58
    • Jensen, M.P.1    Sherlin, L.H.2    Gertz, K.J.3
  • 45
    • 84901833363 scopus 로고    scopus 로고
    • Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury
    • Yoon EJ, Kim YK, Shin HI, et al. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res 2013; 1540:64-73.
    • (2013) Brain Res , vol.1540 , pp. 64-73
    • Yoon, E.J.1    Kim, Y.K.2    Shin, H.I.3
  • 46
    • 84911891998 scopus 로고    scopus 로고
    • Cortical reorganization after spinal cord injury: Always for good?
    • Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94.
    • (2014) Neuroscience , vol.283 , pp. 78-94
    • Moxon, K.A.1    Oliviero, A.2    Aguilar, J.3    Foffani, G.4
  • 47
    • 84901758649 scopus 로고    scopus 로고
    • Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury
    • Vuckovic A, Hasan MA, Fraser M, et al. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain 2014; 15: 645-655.
    • (2014) J Pain , vol.15 , pp. 645-655
    • Vuckovic, A.1    Hasan, M.A.2    Fraser, M.3
  • 48
    • 84926006631 scopus 로고    scopus 로고
    • Neural markers of neuropathic pain associated with maladaptive plasticity in spinal cord injury
    • Pascoal-Faria P, Yalcin N, Fregni F. Neural markers of neuropathic pain associated with maladaptive plasticity in spinal cord injury. Pain Pract 2014; 15:371-377.
    • (2014) Pain Pract , vol.15 , pp. 371-377
    • Pascoal-Faria, P.1    Yalcin, N.2    Fregni, F.3
  • 49
    • 84893066630 scopus 로고    scopus 로고
    • Deactivation of distant pain-related regions induced by 20-day rTMS: A case study of one-week pain relief for long-term intractable deafferentation pain
    • Qiu YQ, Hua XY, Zuo CT, et al. Deactivation of distant pain-related regions induced by 20-day rTMS: a case study of one-week pain relief for long-term intractable deafferentation pain. Pain Physician 2014; 17: E99-E105.
    • (2014) Pain Physician , vol.17 , pp. E99-E105
    • Qiu, Y.Q.1    Hua, X.Y.2    Zuo, C.T.3
  • 50
    • 56349116240 scopus 로고    scopus 로고
    • The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain
    • Lefaucheur JP, Antal A, Ahdab R, et al. The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul 2008; 1:337-344.
    • (2008) Brain Stimul , vol.1 , pp. 337-344
    • Lefaucheur, J.P.1    Antal, A.2    Ahdab, R.3
  • 51
    • 68249105673 scopus 로고    scopus 로고
    • RTMS for suppressing neuropathic pain: A meta-analysis
    • Leung A, Donohue M, Xu R, et al. rTMS for suppressing neuropathic pain: a meta-analysis. J Pain 2009; 10:1205-1216.
    • (2009) J Pain , vol.10 , pp. 1205-1216
    • Leung, A.1    Donohue, M.2    Xu, R.3
  • 52
    • 84925308593 scopus 로고    scopus 로고
    • Repetitive transcranial magnetic stimulation (rTMS) in chronic pain: A review of the literature
    • Galhardoni R, Correia GS, Araujo H, et al. Repetitive transcranial magnetic stimulation (rTMS) in chronic pain: a review of the literature. Arch Phys Med Rehabil 2014; 96:S156-S172.
    • (2014) Arch Phys Med Rehabil , vol.96 , pp. S156-S172
    • Galhardoni, R.1    Correia, G.S.2    Araujo, H.3
  • 53
    • 84961686408 scopus 로고    scopus 로고
    • Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: A systematic review
    • [Epub ahead of print]
    • Nardone R, Holler Y, Brigo F, et al. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain Res 2014. [Epub ahead of print]
    • (2014) Brain Res
    • Nardone, R.1    Holler, Y.2    Brigo, F.3
  • 54
    • 0036902786 scopus 로고    scopus 로고
    • Paralysis recovery in humans and model systems
    • Edgerton VR, Roy RR. Paralysis recovery in humans and model systems. Curr Opin Neurobiol 2002; 12:658-667.
    • (2002) Curr Opin Neurobiol , vol.12 , pp. 658-667
    • Edgerton, V.R.1    Roy, R.R.2
  • 55
    • 0037782137 scopus 로고    scopus 로고
    • Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord
    • Buss A, Schwab ME. Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord. Glia 2003; 42:424-432.
    • (2003) Glia , vol.42 , pp. 424-432
    • Buss, A.1    Schwab, M.E.2
  • 56
    • 34249080402 scopus 로고    scopus 로고
    • Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome-prospective study with 100 consecutive patients
    • Miyanji F, Furlan JC, Aarabi B, et al. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome-prospective study with 100 consecutive patients. Radiology 2007; 243:820-827.
    • (2007) Radiology , vol.243 , pp. 820-827
    • Miyanji, F.1    Furlan, J.C.2    Aarabi, B.3
  • 57
    • 84892850576 scopus 로고    scopus 로고
    • Functional regeneration beyond the glial scar
    • Cregg JM, DePaul MA, Filous AR, et al. Functional regeneration beyond the glial scar. Exp Neurol 2014; 253:197-207.
    • (2014) Exp Neurol , vol.253 , pp. 197-207
    • Cregg, J.M.1    DePaul, M.A.2    Filous, A.R.3
  • 58
    • 84941228645 scopus 로고    scopus 로고
    • Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury
    • [Epub ahead of print]
    • Nielson JL, Haefeli J, Salegio EA, et al. Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Res 2014. [Epub ahead of print]
    • (2014) Brain Res
    • Nielson, J.L.1    Haefeli, J.2    Salegio, E.A.3
  • 59
    • 84868331049 scopus 로고    scopus 로고
    • Invasion of lesion territory by regenerating fibers after spinal cord injury in adult macaque monkeys
    • Beaud ML, Rouiller EM, Bloch J, et al. Invasion of lesion territory by regenerating fibers after spinal cord injury in adult macaque monkeys. Neuroscience 2012; 227:271-282.
    • (2012) Neuroscience , vol.227 , pp. 271-282
    • Beaud, M.L.1    Rouiller, E.M.2    Bloch, J.3
  • 60
    • 84875219696 scopus 로고    scopus 로고
    • Functional brain reorganization after spinal cord injury: Systematic review of animal and human studies
    • Nardone R, Holler Y, Brigo F, et al. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 2013; 1504:58-73.
    • (2013) Brain Res , vol.1504 , pp. 58-73
    • Nardone, R.1    Holler, Y.2    Brigo, F.3
  • 61
    • 78651441820 scopus 로고    scopus 로고
    • Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection
    • Yague JG, Foffani G, Aguilar J. Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection. Exp Neurol 2011; 227:252-263.
    • (2011) Exp Neurol , vol.227 , pp. 252-263
    • Yague, J.G.1    Foffani, G.2    Aguilar, J.3
  • 62
    • 84899671867 scopus 로고    scopus 로고
    • Functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection in rats
    • Yague JG, Humanes-Valera D, Aguilar J, Foffani G. Functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection in rats. Exp Neurol 2014; 257:19-24.
    • (2014) Exp Neurol , vol.257 , pp. 19-24
    • Yague, J.G.1    Humanes-Valera, D.2    Aguilar, J.3    Foffani, G.4
  • 63
    • 84891070666 scopus 로고    scopus 로고
    • Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats
    • Sydekum E, Ghosh A, Gullo M, et al. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats. Neuroimage 2014; 87:72-79.
    • (2014) Neuroimage , vol.87 , pp. 72-79
    • Sydekum, E.1    Ghosh, A.2    Gullo, M.3
  • 64
    • 77953225603 scopus 로고    scopus 로고
    • Spinal cord injury immediately changes the state of the brain
    • Aguilar J, Humanes-Valera D, Alonso-Calvino E, et al. Spinal cord injury immediately changes the state of the brain. J Neurosci 2010; 30:7528-7537.
    • (2010) J Neurosci , vol.30 , pp. 7528-7537
    • Aguilar, J.1    Humanes-Valera, D.2    Alonso-Calvino, E.3
  • 65
    • 84900535785 scopus 로고    scopus 로고
    • Large-scale reorganization of the somatosensory cortex of adult macaque monkeys revealed by fMRI
    • Dutta A, Kambi N, Raghunathan P, et al. Large-scale reorganization of the somatosensory cortex of adult macaque monkeys revealed by fMRI. Brain Struct Funct 2014; 219:1305-1320.
    • (2014) Brain Struct Funct , vol.219 , pp. 1305-1320
    • Dutta, A.1    Kambi, N.2    Raghunathan, P.3
  • 66
    • 84880764824 scopus 로고    scopus 로고
    • Reorganization of the intact soma-tosensory cortex immediately after spinal cord injury
    • Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact soma-tosensory cortex immediately after spinal cord injury. PLoS One 2013; 8:e69655.
    • (2013) PLoS One , vol.8 , pp. e69655
    • Humanes-Valera, D.1    Aguilar, J.2    Foffani, G.3
  • 67
    • 84899091138 scopus 로고    scopus 로고
    • Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: A resting-state fMRI study
    • Rao JS, Ma M, Zhao C, et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Magn Reson Imaging 2014; 32:482-486.
    • (2014) Magn Reson Imaging , vol.32 , pp. 482-486
    • Rao, J.S.1    Ma, M.2    Zhao, C.3
  • 68
    • 84896065367 scopus 로고    scopus 로고
    • Atrophy and primary somatosensory cortical reorganization after unilateral thoracic spinal cord injury: A longitudinal functional magnetic resonance imaging study
    • Rao JS, Manxiu M, Zhao C, et al. Atrophy and primary somatosensory cortical reorganization after unilateral thoracic spinal cord injury: a longitudinal functional magnetic resonance imaging study. Biomed Res Int 2013; 2013:753061.
    • (2013) Biomed Res Int , vol.2013 , pp. 753061
    • Rao, J.S.1    Manxiu, M.2    Zhao, C.3
  • 69
    • 84904015370 scopus 로고    scopus 로고
    • Parallel functional reorganizations of somatosensory areas 3b and 1, and S2 following spinal cord injury in squirrel monkeys
    • Yang PF, Qi HX, Kaas JH, Chen LM. Parallel functional reorganizations of somatosensory areas 3b and 1, and S2 following spinal cord injury in squirrel monkeys. J Neurosci 2014; 34:9351-9363.
    • (2014) J Neurosci , vol.34 , pp. 9351-9363
    • Yang, P.F.1    Qi, H.X.2    Kaas, J.H.3    Chen, L.M.4
  • 70
    • 84920701178 scopus 로고    scopus 로고
    • Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats
    • Bazley FA, Maybhate A, Tan CS, et al. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats. IEEE Trans Neural Syst Rehabil Eng 2014; 22:953.
    • (2014) IEEE Trans Neural Syst Rehabil Eng , vol.22 , pp. 953
    • Bazley, F.A.1    Maybhate, A.2    Tan, C.S.3
  • 71
    • 84919372253 scopus 로고    scopus 로고
    • Intrinsically organized resting state networks in the human spinal cord
    • Kong Y, Eippert F, Beckmann CF, et al. Intrinsically organized resting state networks in the human spinal cord. Proc Natl Acad Sci USA 2014; 111:18067-18072.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 18067-18072
    • Kong, Y.1    Eippert, F.2    Beckmann, C.F.3
  • 72
    • 84922411701 scopus 로고    scopus 로고
    • Challenges for defining minimal clinically important difference (MCID) after spinal cord injury
    • Wu X, Liu J, Tanadini LG, et al. Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord 2015; 53:84-91.
    • (2015) Spinal Cord , vol.53 , pp. 84-91
    • Wu, X.1    Liu, J.2    Tanadini, L.G.3
  • 73
    • 84865452189 scopus 로고    scopus 로고
    • Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER)
    • Mohammadi S, Nagy Z, Hutton C, et al. Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER). Magn Reson Med 2012; 68: 882-889.
    • (2012) Magn Reson Med , vol.68 , pp. 882-889
    • Mohammadi, S.1    Nagy, Z.2    Hutton, C.3
  • 74
    • 84858722466 scopus 로고    scopus 로고
    • Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane
    • Finsterbusch J. Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane. J Magn Reson Imaging 2012; 35:984-992.
    • (2012) J Magn Reson Imaging , vol.35 , pp. 984-992
    • Finsterbusch, J.1
  • 75
    • 84888003938 scopus 로고    scopus 로고
    • Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations
    • Finsterbusch J, Busch MG, Larson PE. Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations. Magn Reson Med 2013; 70:1491-1499.
    • (2013) Magn Reson Med , vol.70 , pp. 1491-1499
    • Finsterbusch, J.1    Busch, M.G.2    Larson, P.E.3
  • 76
    • 84907462771 scopus 로고    scopus 로고
    • Framework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template
    • Fonov VS, Le Troter A, Taso M, et al. Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuro-image 2014; 102 (Pt 2):817-827.
    • (2014) Neuro-image , vol.102 , pp. 817-827
    • Fonov, V.S.1    Le Troter, A.2    Taso, M.3
  • 77
    • 84861864341 scopus 로고    scopus 로고
    • Attention modulates spinal cord responses to pain
    • Sprenger C, Eippert F, Finsterbusch J, et al. Attention modulates spinal cord responses to pain. Curr Biol 2012; 22:1019-1022.
    • (2012) Curr Biol , vol.22 , pp. 1019-1022
    • Sprenger, C.1    Eippert, F.2    Finsterbusch, J.3
  • 78
    • 84886821507 scopus 로고    scopus 로고
    • Symmetric diffeomorphic modeling of longitudinal structural MRI
    • Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 2012; 6:197.
    • (2012) Front Neurosci , vol.6 , pp. 197
    • Ashburner, J.1    Ridgway, G.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.