-
1
-
-
84897954314
-
Structure-based programming of lymph-node targeting in molecular vaccines
-
Liu H., et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014, 507:519-522.
-
(2014)
Nature
, vol.507
, pp. 519-522
-
-
Liu, H.1
-
2
-
-
79959967622
-
Bio-inspired, bioengineered and biomimetic drug delivery carriers
-
Yoo J.W., et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10:521-535.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 521-535
-
-
Yoo, J.W.1
-
3
-
-
52649093273
-
Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy
-
Yan F., et al. Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy. Chem. Commun. (Camb.) 2008, 38:4579-4581.
-
(2008)
Chem. Commun. (Camb.)
, vol.38
, pp. 4579-4581
-
-
Yan, F.1
-
4
-
-
56949084877
-
Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles
-
Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132:171-183.
-
(2008)
J. Control. Release
, vol.132
, pp. 171-183
-
-
Kratz, F.1
-
5
-
-
0026641188
-
Surface contact requirements for activation of cytotoxic T lymphocytes
-
Mescher M. Surface contact requirements for activation of cytotoxic T lymphocytes. J. Immunol. 1992, 149:2402-2405.
-
(1992)
J. Immunol.
, vol.149
, pp. 2402-2405
-
-
Mescher, M.1
-
6
-
-
2442509783
-
Absorbable microparticulate cation exchanger for immunotherapeutic delivery
-
Shalaby W.S., et al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J. Biomed. Mater. Res. B: Appl. Biomater. 2004, 69:173-182.
-
(2004)
J. Biomed. Mater. Res. B: Appl. Biomater.
, vol.69
, pp. 173-182
-
-
Shalaby, W.S.1
-
7
-
-
20144370963
-
Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C θ translocation to the T cell plasma membrane
-
Giannoni F., et al. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C θ translocation to the T cell plasma membrane. J. Immunol. 2005, 174:3204-3211.
-
(2005)
J. Immunol.
, vol.174
, pp. 3204-3211
-
-
Giannoni, F.1
-
8
-
-
41149095125
-
A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells
-
Steenblock E.R., Fahmy T.M. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther. 2008, 16:765-772.
-
(2008)
Mol. Ther.
, vol.16
, pp. 765-772
-
-
Steenblock, E.R.1
Fahmy, T.M.2
-
9
-
-
84923169786
-
Linking form to function: biophysical aspects of artificial antigen presenting cell design
-
Perica K., et al. Linking form to function: biophysical aspects of artificial antigen presenting cell design. Biochim. Biophys. Acta 2015, 1853:781-790.
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 781-790
-
-
Perica, K.1
-
10
-
-
79959906941
-
The immunological synapse: a cause or consequence of T-cell receptor triggering?
-
Alarcon B., et al. The immunological synapse: a cause or consequence of T-cell receptor triggering?. Immunology 2011, 133:420-425.
-
(2011)
Immunology
, vol.133
, pp. 420-425
-
-
Alarcon, B.1
-
11
-
-
0034536760
-
Artificial antigen-presenting cells as a tool to exploit the immunesynapse
-
Prakken B., et al. Artificial antigen-presenting cells as a tool to exploit the immunesynapse. Nat. Med. 2000, 6:1406-1410.
-
(2000)
Nat. Med.
, vol.6
, pp. 1406-1410
-
-
Prakken, B.1
-
12
-
-
84879673266
-
Nanoengineering approaches to the design of artificial antigen-presenting cells
-
Sunshine J.C., Green J.J. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 2013, 8:1173-1189.
-
(2013)
Nanomedicine
, vol.8
, pp. 1173-1189
-
-
Sunshine, J.C.1
Green, J.J.2
-
13
-
-
84891018543
-
Nanoscale artificial antigen presenting cells for T cell immunotherapy
-
Perica K., et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine 2014, 10:119-129.
-
(2014)
Nanomedicine
, vol.10
, pp. 119-129
-
-
Perica, K.1
-
14
-
-
84896991574
-
Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity
-
Perica K., et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014, 8:2252-2260.
-
(2014)
ACS Nano
, vol.8
, pp. 2252-2260
-
-
Perica, K.1
-
15
-
-
50149110878
-
The effect of particle design on cellular internalization pathways
-
Gratton S.E., et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:11613-11618.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 11613-11618
-
-
Gratton, S.E.1
-
16
-
-
79956337963
-
Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials
-
Zhao F., et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7:1322-1337.
-
(2011)
Small
, vol.7
, pp. 1322-1337
-
-
Zhao, F.1
-
18
-
-
77956494575
-
Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses
-
Oyewumi M.O., et al. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010, 9:1095-1107.
-
(2010)
Expert Rev. Vaccines
, vol.9
, pp. 1095-1107
-
-
Oyewumi, M.O.1
-
19
-
-
21344448185
-
Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model
-
Foged C., et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 2005, 298:315-322.
-
(2005)
Int. J. Pharm.
, vol.298
, pp. 315-322
-
-
Foged, C.1
-
20
-
-
38049161380
-
Mesoporous silica particles induce size dependent effects on human dendritic cells
-
Vallhov H., et al. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 2007, 7:3576-3582.
-
(2007)
Nano Lett.
, vol.7
, pp. 3576-3582
-
-
Vallhov, H.1
-
21
-
-
47049100427
-
(2008) Nanoparticles target distinct dendritic cell populations according to their size
-
Manolova V. (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38:1404-1413.
-
(2008)
Eur. J. Immunol.
, vol.38
, pp. 1404-1413
-
-
Manolova, V.1
-
22
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2:751-760.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 751-760
-
-
Peer, D.1
-
23
-
-
74349095104
-
Non-spherical hydrogel microparticles
-
Haghgooie R., et al. Non-spherical hydrogel microparticles. Macromol. Rapid Commun. 2010, 31:128-134.
-
(2010)
Macromol. Rapid Commun.
, vol.31
, pp. 128-134
-
-
Haghgooie, R.1
-
24
-
-
79551679772
-
Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles
-
Merkel T.J., et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:586-591.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 586-591
-
-
Merkel, T.J.1
-
25
-
-
84864678204
-
The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles
-
Merkel T.J., et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 2012, 162:37-44.
-
(2012)
J. Control. Release
, vol.162
, pp. 37-44
-
-
Merkel, T.J.1
-
26
-
-
76049111633
-
Red blood cell-mimicking synthetic biomaterial particles
-
Doshi N., et al. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21495-21499.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21495-21499
-
-
Doshi, N.1
-
27
-
-
0042825878
-
Virus-like particles as immunogens
-
Noad R., Roy P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11:438-444.
-
(2003)
Trends Microbiol.
, vol.11
, pp. 438-444
-
-
Noad, R.1
Roy, P.2
-
28
-
-
84889571890
-
Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale
-
Rosenthal J.A., et al. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 2014, 28:51-58.
-
(2014)
Curr. Opin. Biotechnol.
, vol.28
, pp. 51-58
-
-
Rosenthal, J.A.1
-
29
-
-
77957936654
-
Virus-like particles in vaccine development
-
Roldão A., et al. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9:1149-1176.
-
(2010)
Expert Rev. Vaccines
, vol.9
, pp. 1149-1176
-
-
Roldão, A.1
-
30
-
-
73949087550
-
Effect of surface properties on nanoparticle-cell interactions
-
Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6:12-21.
-
(2010)
Small
, vol.6
, pp. 12-21
-
-
Verma, A.1
Stellacci, F.2
-
31
-
-
65249086959
-
Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant
-
Cho E.C., et al. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009, 9:1080-1084.
-
(2009)
Nano Lett.
, vol.9
, pp. 1080-1084
-
-
Cho, E.C.1
-
32
-
-
53149095854
-
Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli
-
Fadel T.R. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 2008, 8:2070-2076.
-
(2008)
Nano Lett.
, vol.8
, pp. 2070-2076
-
-
Fadel, T.R.1
-
33
-
-
84905864143
-
A carbon nanotube-polymer composite for T-cell therapy
-
Fadel T.R., et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 2014, 9:639-647.
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 639-647
-
-
Fadel, T.R.1
-
34
-
-
75749107907
-
Cell mechanics and the cytoskeleton
-
Fletcher D.A., Mullins R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463:485-492.
-
(2010)
Nature
, vol.463
, pp. 485-492
-
-
Fletcher, D.A.1
Mullins, R.D.2
-
35
-
-
34248402413
-
Shape effects of filaments versus spherical particles in flow and drug delivery
-
Geng Y., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2:249-255.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 249-255
-
-
Geng, Y.1
-
36
-
-
0027591152
-
Preparation of monodisperse ellipsoidal polystyrene particles
-
Ho C., et al. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 1993, 271:469-479.
-
(1993)
Colloid Polym. Sci.
, vol.271
, pp. 469-479
-
-
Ho, C.1
-
37
-
-
34547507000
-
Making polymeric micro- and nanoparticles of complex shapes
-
Champion J.A., et al. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:11901-11904.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 11901-11904
-
-
Champion, J.A.1
-
38
-
-
84933544078
-
An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles
-
Meyer R.A., et al. An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles. J. Biomed. Mater. Res. A 2015, 103:2747-2757.
-
(2015)
J. Biomed. Mater. Res. A
, vol.103
, pp. 2747-2757
-
-
Meyer, R.A.1
-
39
-
-
22244460241
-
Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
-
Rolland J.P., et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 2005, 127:10096-10100.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10096-10100
-
-
Rolland, J.P.1
-
40
-
-
78651266054
-
Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates
-
Wang Y., et al. Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. Langmuir 2011, 27:524-528.
-
(2011)
Langmuir
, vol.27
, pp. 524-528
-
-
Wang, Y.1
-
41
-
-
84883813343
-
Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles
-
Morton S.W., et al. Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles. Adv. Mater. 2013, 25:4707-4713.
-
(2013)
Adv. Mater.
, vol.25
, pp. 4707-4713
-
-
Morton, S.W.1
-
42
-
-
82955168402
-
Controllable preparation of particles with microfluidics
-
Luo G., et al. Controllable preparation of particles with microfluidics. Particuology 2011, 9:545-558.
-
(2011)
Particuology
, vol.9
, pp. 545-558
-
-
Luo, G.1
-
43
-
-
84959225132
-
Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design
-
Published online May 15, 2015
-
Meyer R.A., Green J.J. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, Published online May 15, 2015. 10.1002/wnan.1348.
-
(2015)
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
-
-
Meyer, R.A.1
Green, J.J.2
-
44
-
-
24344501661
-
Artificial antigen-presenting cells: artificial solutions for real diseases
-
Oelke M., et al. Artificial antigen-presenting cells: artificial solutions for real diseases. Trends Mol. Med. 2005, 11:412-420.
-
(2005)
Trends Mol. Med.
, vol.11
, pp. 412-420
-
-
Oelke, M.1
-
45
-
-
84887026240
-
+ T cell activation by artificial antigen presenting cells
-
+ T cell activation by artificial antigen presenting cells. Biomaterials 2014, 35:269-277.
-
(2014)
Biomaterials
, vol.35
, pp. 269-277
-
-
Sunshine, J.C.1
-
46
-
-
84926505220
-
Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation
-
Meyer R.A., et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 2014, 11:1519-1525.
-
(2014)
Small
, vol.11
, pp. 1519-1525
-
-
Meyer, R.A.1
-
47
-
-
57749178400
-
Shape induced inhibition of phagocytosis of polymer particles
-
Champion J.A., Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26:244-249.
-
(2009)
Pharm. Res.
, vol.26
, pp. 244-249
-
-
Champion, J.A.1
Mitragotri, S.2
-
48
-
-
78049465753
-
Polymer particle shape independently influences binding and internalization by macrophages
-
Sharma G., et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 2010, 147:408-412.
-
(2010)
J. Control. Release
, vol.147
, pp. 408-412
-
-
Sharma, G.1
-
49
-
-
84864142684
-
How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells
-
Florez L., et al. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 2012, 8:2222-2230.
-
(2012)
Small
, vol.8
, pp. 2222-2230
-
-
Florez, L.1
-
51
-
-
84886416161
-
Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms
-
Agarwal R., et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:17247-17252.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 17247-17252
-
-
Agarwal, R.1
-
52
-
-
84874460666
-
Particle shape enhances specificity of antibody-displaying nanoparticles
-
Barua S., et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3270-3275.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 3270-3275
-
-
Barua, S.1
-
53
-
-
84879536016
-
Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium
-
Kolhar P., et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:10753-10758.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 10753-10758
-
-
Kolhar, P.1
-
54
-
-
84896504632
-
Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles
-
Toy R., et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9:121-134.
-
(2014)
Nanomedicine
, vol.9
, pp. 121-134
-
-
Toy, R.1
-
55
-
-
84855787431
-
Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer
-
Hasan W., et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012, 12:287-292.
-
(2012)
Nano Lett.
, vol.12
, pp. 287-292
-
-
Hasan, W.1
-
56
-
-
84883573474
-
RNA replicon delivery via lipid-complexed PRINT protein particles
-
Xu J., et al. RNA replicon delivery via lipid-complexed PRINT protein particles. Mol. Pharm. 2013, 10:3366-3374.
-
(2013)
Mol. Pharm.
, vol.10
, pp. 3366-3374
-
-
Xu, J.1
-
57
-
-
84879459400
-
Plasma, tumor and tissue pharmacokinetics of docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft
-
Chu K.S., et al. Plasma, tumor and tissue pharmacokinetics of docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 2013, 9:686-693.
-
(2013)
Nanomedicine
, vol.9
, pp. 686-693
-
-
Chu, K.S.1
-
58
-
-
84896341106
-
Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity
-
Chu K.S., et al. Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett. 2014, 14:1472-1476.
-
(2014)
Nano Lett.
, vol.14
, pp. 1472-1476
-
-
Chu, K.S.1
-
59
-
-
84881661205
-
Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy
-
Chu K.S., et al. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 2013, 34:8424-8429.
-
(2013)
Biomaterials
, vol.34
, pp. 8424-8429
-
-
Chu, K.S.1
-
60
-
-
79959890525
-
String-like micellar nanoparticles formed by complexation of PEG-b-PPA and plasmid DNA and their transfection efficiency
-
Jiang X., et al. String-like micellar nanoparticles formed by complexation of PEG-b-PPA and plasmid DNA and their transfection efficiency. Pharm. Res. 2011, 28:1317-1327.
-
(2011)
Pharm. Res.
, vol.28
, pp. 1317-1327
-
-
Jiang, X.1
-
61
-
-
84872120777
-
Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles
-
Jiang X., et al. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 2013, 25:227-232.
-
(2013)
Adv. Mater.
, vol.25
, pp. 227-232
-
-
Jiang, X.1
-
62
-
-
84890454439
-
Polymerization-induced self-assembly (PISA) - control over the morphology of nanoparticles for drug delivery applications
-
Karagoz B., et al. Polymerization-induced self-assembly (PISA) - control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 2014, 5:350.
-
(2014)
Polym. Chem.
, vol.5
, pp. 350
-
-
Karagoz, B.1
-
63
-
-
78649855808
-
The space and time frames of T cell activation at the immunological synapse
-
Valitutti S., et al. The space and time frames of T cell activation at the immunological synapse. FEBS Lett. 2010, 584:4851-4857.
-
(2010)
FEBS Lett.
, vol.584
, pp. 4851-4857
-
-
Valitutti, S.1
-
64
-
-
84922778332
-
Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction
-
Peña J.R., et al. Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction. Biomaterials 2015, 46:26-34.
-
(2015)
Biomaterials
, vol.46
, pp. 26-34
-
-
Peña, J.R.1
-
65
-
-
84940457776
-
Evaluation of PLGA nanoparticles carrying leukaemia inhibitory factor for stromal-like support of rat fetal dopaminergic cells
-
Published online June 20, 2014
-
Dyson S., et al. Evaluation of PLGA nanoparticles carrying leukaemia inhibitory factor for stromal-like support of rat fetal dopaminergic cells. J. Nanomater. Mol. Nanotechnol. 2014, Published online June 20, 2014. 10.4172/2324-8777.S2-003.
-
(2014)
J. Nanomater. Mol. Nanotechnol.
-
-
Dyson, S.1
-
66
-
-
14844348859
-
Directed cell migration via chemoattractants released from degradable microspheres
-
Zhao X., et al. Directed cell migration via chemoattractants released from degradable microspheres. Biomaterials 2005, 26:5048-5063.
-
(2005)
Biomaterials
, vol.26
, pp. 5048-5063
-
-
Zhao, X.1
-
67
-
-
84940451913
-
Chemokine-releasing nanoparticles for manipulation of the lymph node microenvironment
-
Popova T.G., et al. Chemokine-releasing nanoparticles for manipulation of the lymph node microenvironment. Nanomaterials 2015, 5:298-320.
-
(2015)
Nanomaterials
, vol.5
, pp. 298-320
-
-
Popova, T.G.1
-
68
-
-
84863011394
-
Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles
-
Huang Y-C., Liu T-J. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012, 8:1048-1056.
-
(2012)
Acta Biomater.
, vol.8
, pp. 1048-1056
-
-
Huang, Y.-C.1
Liu, T.-J.2
-
69
-
-
80053413863
-
An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response
-
Steenblock E.R., et al. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem. 2011, 286:34883-34892.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 34883-34892
-
-
Steenblock, E.R.1
-
70
-
-
33846841057
-
Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus
-
Lai S.K., et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1482-1487.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1482-1487
-
-
Lai, S.K.1
-
71
-
-
0343191443
-
'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
-
Gref R., et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B: Biointerfaces 2000, 18:301-313.
-
(2000)
Colloids Surf. B: Biointerfaces
, vol.18
, pp. 301-313
-
-
Gref, R.1
-
72
-
-
84858626874
-
Surface functionalization of nanoparticles for nanomedicine
-
Mout R., et al. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 2012, 41:2539-2544.
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2539-2544
-
-
Mout, R.1
-
73
-
-
84874169973
-
Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
Rodriguez P.L., et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971-975.
-
(2013)
Science
, vol.339
, pp. 971-975
-
-
Rodriguez, P.L.1
-
74
-
-
23144456813
-
Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system
-
Sengupta S., et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005, 436:568-572.
-
(2005)
Nature
, vol.436
, pp. 568-572
-
-
Sengupta, S.1
-
75
-
-
26944478236
-
Polymer-supported membranes as models of the cell surface
-
Tanaka M., Sackmann E. Polymer-supported membranes as models of the cell surface. Nature 2005, 437:656-663.
-
(2005)
Nature
, vol.437
, pp. 656-663
-
-
Tanaka, M.1
Sackmann, E.2
-
76
-
-
84914118707
-
Rapid transfer of transmembrane proteins for single molecule dimerization assays in polymer-supported membranes
-
Roder F., et al. Rapid transfer of transmembrane proteins for single molecule dimerization assays in polymer-supported membranes. ACS Chem. Biol. 2014, 9:2479-2484.
-
(2014)
ACS Chem. Biol.
, vol.9
, pp. 2479-2484
-
-
Roder, F.1
-
77
-
-
84873844278
-
Spatial organization of lipid phases in micropatterned polymer-supported membranes
-
Roder F., et al. Spatial organization of lipid phases in micropatterned polymer-supported membranes. J. Am. Chem. Soc. 2013, 135:1189-1192.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1189-1192
-
-
Roder, F.1
-
78
-
-
84874039926
-
Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes
-
Waichman S., et al. Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes. Small 2013, 9:570-577.
-
(2013)
Small
, vol.9
, pp. 570-577
-
-
Waichman, S.1
-
79
-
-
80052314755
-
Reconstitution of membrane proteins into polymer-supported membranes for probing diffusion and interactions by single molecule techniques
-
Roder F., et al. Reconstitution of membrane proteins into polymer-supported membranes for probing diffusion and interactions by single molecule techniques. Anal. Chem. 2011, 83:6792-6799.
-
(2011)
Anal. Chem.
, vol.83
, pp. 6792-6799
-
-
Roder, F.1
-
80
-
-
0033538574
-
The immunological synapse: a molecular machine controlling T cell activation
-
Grakoui A., et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999, 285:221-227.
-
(1999)
Science
, vol.285
, pp. 221-227
-
-
Grakoui, A.1
-
81
-
-
0026046515
-
Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2
-
Chan P.Y., et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2. J. Cell Biol. 1991, 115:245-255.
-
(1991)
J. Cell Biol.
, vol.115
, pp. 245-255
-
-
Chan, P.Y.1
-
82
-
-
0142134858
-
Supported planar bilayers in studies on immune cell adhesion and communication
-
Groves J.T., Dustin M.L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 2003, 278:19-32.
-
(2003)
J. Immunol. Methods
, vol.278
, pp. 19-32
-
-
Groves, J.T.1
Dustin, M.L.2
-
83
-
-
0030569732
-
Supported membranes: scientific and practical applications
-
Sackmann E. Supported membranes: scientific and practical applications. Science 1996, 271:43-48.
-
(1996)
Science
, vol.271
, pp. 43-48
-
-
Sackmann, E.1
-
84
-
-
0029824326
-
The thermodynamic control of protein binding to lipid bilayers for protein chromatography
-
Loidl-Stahlhofen A., et al. The thermodynamic control of protein binding to lipid bilayers for protein chromatography. Nat. Biotechnol. 1996, 14:999-1002.
-
(1996)
Nat. Biotechnol.
, vol.14
, pp. 999-1002
-
-
Loidl-Stahlhofen, A.1
-
85
-
-
0035029841
-
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology
-
Galneder R., et al. Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophys. J. 2001, 80:2298-2309.
-
(2001)
Biophys. J.
, vol.80
, pp. 2298-2309
-
-
Galneder, R.1
-
86
-
-
0017342078
-
Plasma-membrane - rapid isolation and exposure of cytoplasmic surface by use of positively charged beads
-
Jacobson B.S., Branton D. Plasma-membrane - rapid isolation and exposure of cytoplasmic surface by use of positively charged beads. Science 1977, 195:302-304.
-
(1977)
Science
, vol.195
, pp. 302-304
-
-
Jacobson, B.S.1
Branton, D.2
-
87
-
-
0017695990
-
Membrane isolation on polylysine-coated beads - plasma-membrane from HeLa-cells
-
Cohen C.M., et al. Membrane isolation on polylysine-coated beads - plasma-membrane from HeLa-cells. J. Cell Biol. 1977, 75:119-134.
-
(1977)
J. Cell Biol.
, vol.75
, pp. 119-134
-
-
Cohen, C.M.1
-
88
-
-
0042310968
-
Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads
-
Kaufmann S., Tanaka M. Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads. Chemphyschem 2003, 4:699-704.
-
(2003)
Chemphyschem
, vol.4
, pp. 699-704
-
-
Kaufmann, S.1
Tanaka, M.2
-
89
-
-
63149168075
-
Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles
-
Liu J., et al. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc. 2009, 131:1354-1355.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 1354-1355
-
-
Liu, J.1
-
90
-
-
69249090473
-
Silica nanoparticle supported lipid bilayers for gene delivery
-
Liu J.W., et al. Silica nanoparticle supported lipid bilayers for gene delivery. Chem. Commun. (Camb.) 2009, 34:5100-5102.
-
(2009)
Chem. Commun. (Camb.)
, vol.34
, pp. 5100-5102
-
-
Liu, J.W.1
-
91
-
-
67650523182
-
Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery
-
Liu J.W., et al. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131:7567-7569.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 7567-7569
-
-
Liu, J.W.1
-
92
-
-
79955007145
-
The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers
-
Ashley C.E., et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10:389-397.
-
(2011)
Nat. Mater.
, vol.10
, pp. 389-397
-
-
Ashley, C.E.1
-
93
-
-
39449126839
-
Drug loaded erythrocytes: as novel drug delivery system
-
Patel P.D., et al. Drug loaded erythrocytes: as novel drug delivery system. Curr. Pharm. Des. 2008, 14:63-70.
-
(2008)
Curr. Pharm. Des.
, vol.14
, pp. 63-70
-
-
Patel, P.D.1
-
94
-
-
84894426345
-
Carrier erythrocytes: recent advances, present status, current trends and future horizons
-
Zarrin A., et al. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin. Drug Deliv. 2014, 11:433-447.
-
(2014)
Expert Opin. Drug Deliv.
, vol.11
, pp. 433-447
-
-
Zarrin, A.1
-
95
-
-
77949878932
-
Drug delivery by red blood cells: vascular carriers designed by mother nature
-
Muzykantov V.R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv. 2010, 7:403-427.
-
(2010)
Expert Opin. Drug Deliv.
, vol.7
, pp. 403-427
-
-
Muzykantov, V.R.1
-
96
-
-
79960583505
-
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
-
Hu C.M., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10980-10985.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10980-10985
-
-
Hu, C.M.1
-
97
-
-
84886046021
-
'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach
-
Hu C.M., et al. 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013, 5:2664-2668.
-
(2013)
Nanoscale
, vol.5
, pp. 2664-2668
-
-
Hu, C.M.1
-
98
-
-
84877583385
-
A biomimetic nanosponge that absorbs pore-forming toxins
-
Hu C.M., et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8:336-340.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 336-340
-
-
Hu, C.M.1
-
99
-
-
84890564255
-
Nanoparticle-detained toxins for safe and effective vaccination
-
Hu C.M., et al. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8:933-938.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 933-938
-
-
Hu, C.M.1
-
100
-
-
84871730525
-
Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
-
Parodi A., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8:61-68.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 61-68
-
-
Parodi, A.1
-
101
-
-
0023601043
-
Role of platelet membrane in enhancement of tumor-cell adhesion to endothelial-cell extracellular-matrix
-
Menter D.G., et al. Role of platelet membrane in enhancement of tumor-cell adhesion to endothelial-cell extracellular-matrix. Cancer Res. 1987, 47:6751-6762.
-
(1987)
Cancer Res.
, vol.47
, pp. 6751-6762
-
-
Menter, D.G.1
-
102
-
-
84880145555
-
Reconstructed stem cell nanoghosts: a natural tumor targeting platform
-
Furman N.E.T., et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013, 13:3248-3255.
-
(2013)
Nano Lett.
, vol.13
, pp. 3248-3255
-
-
Furman, N.E.T.1
-
103
-
-
84897989669
-
Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
-
Fang R.H., et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14:2181-2188.
-
(2014)
Nano Lett.
, vol.14
, pp. 2181-2188
-
-
Fang, R.H.1
|