메뉴 건너뛰기




Volumn 33, Issue 9, 2015, Pages 514-524

Biomimetic particles as therapeutics

Author keywords

Biomaterial; Biomimetic; Drug delivery; Micro nanoparticle

Indexed keywords

BIOMATERIALS; BIOMIMETICS; CONTROLLED DRUG DELIVERY; CYTOLOGY; DRUG DELIVERY; MEMBRANE TECHNOLOGY; VIRUSES;

EID: 84940450222     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.07.001     Document Type: Review
Times cited : (105)

References (103)
  • 1
    • 84897954314 scopus 로고    scopus 로고
    • Structure-based programming of lymph-node targeting in molecular vaccines
    • Liu H., et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014, 507:519-522.
    • (2014) Nature , vol.507 , pp. 519-522
    • Liu, H.1
  • 2
    • 79959967622 scopus 로고    scopus 로고
    • Bio-inspired, bioengineered and biomimetic drug delivery carriers
    • Yoo J.W., et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10:521-535.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 521-535
    • Yoo, J.W.1
  • 3
    • 52649093273 scopus 로고    scopus 로고
    • Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy
    • Yan F., et al. Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy. Chem. Commun. (Camb.) 2008, 38:4579-4581.
    • (2008) Chem. Commun. (Camb.) , vol.38 , pp. 4579-4581
    • Yan, F.1
  • 4
    • 56949084877 scopus 로고    scopus 로고
    • Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles
    • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132:171-183.
    • (2008) J. Control. Release , vol.132 , pp. 171-183
    • Kratz, F.1
  • 5
    • 0026641188 scopus 로고
    • Surface contact requirements for activation of cytotoxic T lymphocytes
    • Mescher M. Surface contact requirements for activation of cytotoxic T lymphocytes. J. Immunol. 1992, 149:2402-2405.
    • (1992) J. Immunol. , vol.149 , pp. 2402-2405
    • Mescher, M.1
  • 6
    • 2442509783 scopus 로고    scopus 로고
    • Absorbable microparticulate cation exchanger for immunotherapeutic delivery
    • Shalaby W.S., et al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J. Biomed. Mater. Res. B: Appl. Biomater. 2004, 69:173-182.
    • (2004) J. Biomed. Mater. Res. B: Appl. Biomater. , vol.69 , pp. 173-182
    • Shalaby, W.S.1
  • 7
    • 20144370963 scopus 로고    scopus 로고
    • Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C θ translocation to the T cell plasma membrane
    • Giannoni F., et al. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C θ translocation to the T cell plasma membrane. J. Immunol. 2005, 174:3204-3211.
    • (2005) J. Immunol. , vol.174 , pp. 3204-3211
    • Giannoni, F.1
  • 8
    • 41149095125 scopus 로고    scopus 로고
    • A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells
    • Steenblock E.R., Fahmy T.M. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther. 2008, 16:765-772.
    • (2008) Mol. Ther. , vol.16 , pp. 765-772
    • Steenblock, E.R.1    Fahmy, T.M.2
  • 9
    • 84923169786 scopus 로고    scopus 로고
    • Linking form to function: biophysical aspects of artificial antigen presenting cell design
    • Perica K., et al. Linking form to function: biophysical aspects of artificial antigen presenting cell design. Biochim. Biophys. Acta 2015, 1853:781-790.
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 781-790
    • Perica, K.1
  • 10
    • 79959906941 scopus 로고    scopus 로고
    • The immunological synapse: a cause or consequence of T-cell receptor triggering?
    • Alarcon B., et al. The immunological synapse: a cause or consequence of T-cell receptor triggering?. Immunology 2011, 133:420-425.
    • (2011) Immunology , vol.133 , pp. 420-425
    • Alarcon, B.1
  • 11
    • 0034536760 scopus 로고    scopus 로고
    • Artificial antigen-presenting cells as a tool to exploit the immunesynapse
    • Prakken B., et al. Artificial antigen-presenting cells as a tool to exploit the immunesynapse. Nat. Med. 2000, 6:1406-1410.
    • (2000) Nat. Med. , vol.6 , pp. 1406-1410
    • Prakken, B.1
  • 12
    • 84879673266 scopus 로고    scopus 로고
    • Nanoengineering approaches to the design of artificial antigen-presenting cells
    • Sunshine J.C., Green J.J. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 2013, 8:1173-1189.
    • (2013) Nanomedicine , vol.8 , pp. 1173-1189
    • Sunshine, J.C.1    Green, J.J.2
  • 13
    • 84891018543 scopus 로고    scopus 로고
    • Nanoscale artificial antigen presenting cells for T cell immunotherapy
    • Perica K., et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine 2014, 10:119-129.
    • (2014) Nanomedicine , vol.10 , pp. 119-129
    • Perica, K.1
  • 14
    • 84896991574 scopus 로고    scopus 로고
    • Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity
    • Perica K., et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014, 8:2252-2260.
    • (2014) ACS Nano , vol.8 , pp. 2252-2260
    • Perica, K.1
  • 15
    • 50149110878 scopus 로고    scopus 로고
    • The effect of particle design on cellular internalization pathways
    • Gratton S.E., et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:11613-11618.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 11613-11618
    • Gratton, S.E.1
  • 16
    • 79956337963 scopus 로고    scopus 로고
    • Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials
    • Zhao F., et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7:1322-1337.
    • (2011) Small , vol.7 , pp. 1322-1337
    • Zhao, F.1
  • 18
    • 77956494575 scopus 로고    scopus 로고
    • Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses
    • Oyewumi M.O., et al. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010, 9:1095-1107.
    • (2010) Expert Rev. Vaccines , vol.9 , pp. 1095-1107
    • Oyewumi, M.O.1
  • 19
    • 21344448185 scopus 로고    scopus 로고
    • Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model
    • Foged C., et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 2005, 298:315-322.
    • (2005) Int. J. Pharm. , vol.298 , pp. 315-322
    • Foged, C.1
  • 20
    • 38049161380 scopus 로고    scopus 로고
    • Mesoporous silica particles induce size dependent effects on human dendritic cells
    • Vallhov H., et al. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 2007, 7:3576-3582.
    • (2007) Nano Lett. , vol.7 , pp. 3576-3582
    • Vallhov, H.1
  • 21
    • 47049100427 scopus 로고    scopus 로고
    • (2008) Nanoparticles target distinct dendritic cell populations according to their size
    • Manolova V. (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38:1404-1413.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 1404-1413
    • Manolova, V.1
  • 22
    • 36849067019 scopus 로고    scopus 로고
    • Nanocarriers as an emerging platform for cancer therapy
    • Peer D., et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2:751-760.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 751-760
    • Peer, D.1
  • 23
    • 74349095104 scopus 로고    scopus 로고
    • Non-spherical hydrogel microparticles
    • Haghgooie R., et al. Non-spherical hydrogel microparticles. Macromol. Rapid Commun. 2010, 31:128-134.
    • (2010) Macromol. Rapid Commun. , vol.31 , pp. 128-134
    • Haghgooie, R.1
  • 24
    • 79551679772 scopus 로고    scopus 로고
    • Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles
    • Merkel T.J., et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:586-591.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 586-591
    • Merkel, T.J.1
  • 25
    • 84864678204 scopus 로고    scopus 로고
    • The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles
    • Merkel T.J., et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 2012, 162:37-44.
    • (2012) J. Control. Release , vol.162 , pp. 37-44
    • Merkel, T.J.1
  • 26
    • 76049111633 scopus 로고    scopus 로고
    • Red blood cell-mimicking synthetic biomaterial particles
    • Doshi N., et al. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21495-21499.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21495-21499
    • Doshi, N.1
  • 27
    • 0042825878 scopus 로고    scopus 로고
    • Virus-like particles as immunogens
    • Noad R., Roy P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11:438-444.
    • (2003) Trends Microbiol. , vol.11 , pp. 438-444
    • Noad, R.1    Roy, P.2
  • 28
    • 84889571890 scopus 로고    scopus 로고
    • Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale
    • Rosenthal J.A., et al. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 2014, 28:51-58.
    • (2014) Curr. Opin. Biotechnol. , vol.28 , pp. 51-58
    • Rosenthal, J.A.1
  • 29
    • 77957936654 scopus 로고    scopus 로고
    • Virus-like particles in vaccine development
    • Roldão A., et al. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9:1149-1176.
    • (2010) Expert Rev. Vaccines , vol.9 , pp. 1149-1176
    • Roldão, A.1
  • 30
    • 73949087550 scopus 로고    scopus 로고
    • Effect of surface properties on nanoparticle-cell interactions
    • Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6:12-21.
    • (2010) Small , vol.6 , pp. 12-21
    • Verma, A.1    Stellacci, F.2
  • 31
    • 65249086959 scopus 로고    scopus 로고
    • Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant
    • Cho E.C., et al. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009, 9:1080-1084.
    • (2009) Nano Lett. , vol.9 , pp. 1080-1084
    • Cho, E.C.1
  • 32
    • 53149095854 scopus 로고    scopus 로고
    • Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli
    • Fadel T.R. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 2008, 8:2070-2076.
    • (2008) Nano Lett. , vol.8 , pp. 2070-2076
    • Fadel, T.R.1
  • 33
    • 84905864143 scopus 로고    scopus 로고
    • A carbon nanotube-polymer composite for T-cell therapy
    • Fadel T.R., et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 2014, 9:639-647.
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 639-647
    • Fadel, T.R.1
  • 34
    • 75749107907 scopus 로고    scopus 로고
    • Cell mechanics and the cytoskeleton
    • Fletcher D.A., Mullins R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463:485-492.
    • (2010) Nature , vol.463 , pp. 485-492
    • Fletcher, D.A.1    Mullins, R.D.2
  • 35
    • 34248402413 scopus 로고    scopus 로고
    • Shape effects of filaments versus spherical particles in flow and drug delivery
    • Geng Y., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2:249-255.
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 249-255
    • Geng, Y.1
  • 36
    • 0027591152 scopus 로고
    • Preparation of monodisperse ellipsoidal polystyrene particles
    • Ho C., et al. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 1993, 271:469-479.
    • (1993) Colloid Polym. Sci. , vol.271 , pp. 469-479
    • Ho, C.1
  • 37
    • 34547507000 scopus 로고    scopus 로고
    • Making polymeric micro- and nanoparticles of complex shapes
    • Champion J.A., et al. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:11901-11904.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 11901-11904
    • Champion, J.A.1
  • 38
    • 84933544078 scopus 로고    scopus 로고
    • An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles
    • Meyer R.A., et al. An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles. J. Biomed. Mater. Res. A 2015, 103:2747-2757.
    • (2015) J. Biomed. Mater. Res. A , vol.103 , pp. 2747-2757
    • Meyer, R.A.1
  • 39
    • 22244460241 scopus 로고    scopus 로고
    • Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
    • Rolland J.P., et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 2005, 127:10096-10100.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 10096-10100
    • Rolland, J.P.1
  • 40
    • 78651266054 scopus 로고    scopus 로고
    • Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates
    • Wang Y., et al. Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. Langmuir 2011, 27:524-528.
    • (2011) Langmuir , vol.27 , pp. 524-528
    • Wang, Y.1
  • 41
    • 84883813343 scopus 로고    scopus 로고
    • Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles
    • Morton S.W., et al. Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles. Adv. Mater. 2013, 25:4707-4713.
    • (2013) Adv. Mater. , vol.25 , pp. 4707-4713
    • Morton, S.W.1
  • 42
    • 82955168402 scopus 로고    scopus 로고
    • Controllable preparation of particles with microfluidics
    • Luo G., et al. Controllable preparation of particles with microfluidics. Particuology 2011, 9:545-558.
    • (2011) Particuology , vol.9 , pp. 545-558
    • Luo, G.1
  • 43
    • 84959225132 scopus 로고    scopus 로고
    • Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design
    • Published online May 15, 2015
    • Meyer R.A., Green J.J. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, Published online May 15, 2015. 10.1002/wnan.1348.
    • (2015) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
    • Meyer, R.A.1    Green, J.J.2
  • 44
    • 24344501661 scopus 로고    scopus 로고
    • Artificial antigen-presenting cells: artificial solutions for real diseases
    • Oelke M., et al. Artificial antigen-presenting cells: artificial solutions for real diseases. Trends Mol. Med. 2005, 11:412-420.
    • (2005) Trends Mol. Med. , vol.11 , pp. 412-420
    • Oelke, M.1
  • 45
    • 84887026240 scopus 로고    scopus 로고
    • + T cell activation by artificial antigen presenting cells
    • + T cell activation by artificial antigen presenting cells. Biomaterials 2014, 35:269-277.
    • (2014) Biomaterials , vol.35 , pp. 269-277
    • Sunshine, J.C.1
  • 46
    • 84926505220 scopus 로고    scopus 로고
    • Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation
    • Meyer R.A., et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 2014, 11:1519-1525.
    • (2014) Small , vol.11 , pp. 1519-1525
    • Meyer, R.A.1
  • 47
    • 57749178400 scopus 로고    scopus 로고
    • Shape induced inhibition of phagocytosis of polymer particles
    • Champion J.A., Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26:244-249.
    • (2009) Pharm. Res. , vol.26 , pp. 244-249
    • Champion, J.A.1    Mitragotri, S.2
  • 48
    • 78049465753 scopus 로고    scopus 로고
    • Polymer particle shape independently influences binding and internalization by macrophages
    • Sharma G., et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 2010, 147:408-412.
    • (2010) J. Control. Release , vol.147 , pp. 408-412
    • Sharma, G.1
  • 49
    • 84864142684 scopus 로고    scopus 로고
    • How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells
    • Florez L., et al. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 2012, 8:2222-2230.
    • (2012) Small , vol.8 , pp. 2222-2230
    • Florez, L.1
  • 51
    • 84886416161 scopus 로고    scopus 로고
    • Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms
    • Agarwal R., et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:17247-17252.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 17247-17252
    • Agarwal, R.1
  • 52
    • 84874460666 scopus 로고    scopus 로고
    • Particle shape enhances specificity of antibody-displaying nanoparticles
    • Barua S., et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3270-3275.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 3270-3275
    • Barua, S.1
  • 53
    • 84879536016 scopus 로고    scopus 로고
    • Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium
    • Kolhar P., et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:10753-10758.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 10753-10758
    • Kolhar, P.1
  • 54
    • 84896504632 scopus 로고    scopus 로고
    • Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles
    • Toy R., et al. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9:121-134.
    • (2014) Nanomedicine , vol.9 , pp. 121-134
    • Toy, R.1
  • 55
    • 84855787431 scopus 로고    scopus 로고
    • Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer
    • Hasan W., et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012, 12:287-292.
    • (2012) Nano Lett. , vol.12 , pp. 287-292
    • Hasan, W.1
  • 56
    • 84883573474 scopus 로고    scopus 로고
    • RNA replicon delivery via lipid-complexed PRINT protein particles
    • Xu J., et al. RNA replicon delivery via lipid-complexed PRINT protein particles. Mol. Pharm. 2013, 10:3366-3374.
    • (2013) Mol. Pharm. , vol.10 , pp. 3366-3374
    • Xu, J.1
  • 57
    • 84879459400 scopus 로고    scopus 로고
    • Plasma, tumor and tissue pharmacokinetics of docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft
    • Chu K.S., et al. Plasma, tumor and tissue pharmacokinetics of docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 2013, 9:686-693.
    • (2013) Nanomedicine , vol.9 , pp. 686-693
    • Chu, K.S.1
  • 58
    • 84896341106 scopus 로고    scopus 로고
    • Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity
    • Chu K.S., et al. Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett. 2014, 14:1472-1476.
    • (2014) Nano Lett. , vol.14 , pp. 1472-1476
    • Chu, K.S.1
  • 59
    • 84881661205 scopus 로고    scopus 로고
    • Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy
    • Chu K.S., et al. Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 2013, 34:8424-8429.
    • (2013) Biomaterials , vol.34 , pp. 8424-8429
    • Chu, K.S.1
  • 60
    • 79959890525 scopus 로고    scopus 로고
    • String-like micellar nanoparticles formed by complexation of PEG-b-PPA and plasmid DNA and their transfection efficiency
    • Jiang X., et al. String-like micellar nanoparticles formed by complexation of PEG-b-PPA and plasmid DNA and their transfection efficiency. Pharm. Res. 2011, 28:1317-1327.
    • (2011) Pharm. Res. , vol.28 , pp. 1317-1327
    • Jiang, X.1
  • 61
    • 84872120777 scopus 로고    scopus 로고
    • Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles
    • Jiang X., et al. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 2013, 25:227-232.
    • (2013) Adv. Mater. , vol.25 , pp. 227-232
    • Jiang, X.1
  • 62
    • 84890454439 scopus 로고    scopus 로고
    • Polymerization-induced self-assembly (PISA) - control over the morphology of nanoparticles for drug delivery applications
    • Karagoz B., et al. Polymerization-induced self-assembly (PISA) - control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 2014, 5:350.
    • (2014) Polym. Chem. , vol.5 , pp. 350
    • Karagoz, B.1
  • 63
    • 78649855808 scopus 로고    scopus 로고
    • The space and time frames of T cell activation at the immunological synapse
    • Valitutti S., et al. The space and time frames of T cell activation at the immunological synapse. FEBS Lett. 2010, 584:4851-4857.
    • (2010) FEBS Lett. , vol.584 , pp. 4851-4857
    • Valitutti, S.1
  • 64
    • 84922778332 scopus 로고    scopus 로고
    • Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction
    • Peña J.R., et al. Localized delivery of mechano-growth factor E-domain peptide via polymeric microstructures improves cardiac function following myocardial infarction. Biomaterials 2015, 46:26-34.
    • (2015) Biomaterials , vol.46 , pp. 26-34
    • Peña, J.R.1
  • 65
    • 84940457776 scopus 로고    scopus 로고
    • Evaluation of PLGA nanoparticles carrying leukaemia inhibitory factor for stromal-like support of rat fetal dopaminergic cells
    • Published online June 20, 2014
    • Dyson S., et al. Evaluation of PLGA nanoparticles carrying leukaemia inhibitory factor for stromal-like support of rat fetal dopaminergic cells. J. Nanomater. Mol. Nanotechnol. 2014, Published online June 20, 2014. 10.4172/2324-8777.S2-003.
    • (2014) J. Nanomater. Mol. Nanotechnol.
    • Dyson, S.1
  • 66
    • 14844348859 scopus 로고    scopus 로고
    • Directed cell migration via chemoattractants released from degradable microspheres
    • Zhao X., et al. Directed cell migration via chemoattractants released from degradable microspheres. Biomaterials 2005, 26:5048-5063.
    • (2005) Biomaterials , vol.26 , pp. 5048-5063
    • Zhao, X.1
  • 67
    • 84940451913 scopus 로고    scopus 로고
    • Chemokine-releasing nanoparticles for manipulation of the lymph node microenvironment
    • Popova T.G., et al. Chemokine-releasing nanoparticles for manipulation of the lymph node microenvironment. Nanomaterials 2015, 5:298-320.
    • (2015) Nanomaterials , vol.5 , pp. 298-320
    • Popova, T.G.1
  • 68
    • 84863011394 scopus 로고    scopus 로고
    • Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles
    • Huang Y-C., Liu T-J. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012, 8:1048-1056.
    • (2012) Acta Biomater. , vol.8 , pp. 1048-1056
    • Huang, Y.-C.1    Liu, T.-J.2
  • 69
    • 80053413863 scopus 로고    scopus 로고
    • An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response
    • Steenblock E.R., et al. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem. 2011, 286:34883-34892.
    • (2011) J. Biol. Chem. , vol.286 , pp. 34883-34892
    • Steenblock, E.R.1
  • 70
    • 33846841057 scopus 로고    scopus 로고
    • Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus
    • Lai S.K., et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1482-1487.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1482-1487
    • Lai, S.K.1
  • 71
    • 0343191443 scopus 로고    scopus 로고
    • 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
    • Gref R., et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B: Biointerfaces 2000, 18:301-313.
    • (2000) Colloids Surf. B: Biointerfaces , vol.18 , pp. 301-313
    • Gref, R.1
  • 72
    • 84858626874 scopus 로고    scopus 로고
    • Surface functionalization of nanoparticles for nanomedicine
    • Mout R., et al. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev. 2012, 41:2539-2544.
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 2539-2544
    • Mout, R.1
  • 73
    • 84874169973 scopus 로고    scopus 로고
    • Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
    • Rodriguez P.L., et al. Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339:971-975.
    • (2013) Science , vol.339 , pp. 971-975
    • Rodriguez, P.L.1
  • 74
    • 23144456813 scopus 로고    scopus 로고
    • Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system
    • Sengupta S., et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005, 436:568-572.
    • (2005) Nature , vol.436 , pp. 568-572
    • Sengupta, S.1
  • 75
    • 26944478236 scopus 로고    scopus 로고
    • Polymer-supported membranes as models of the cell surface
    • Tanaka M., Sackmann E. Polymer-supported membranes as models of the cell surface. Nature 2005, 437:656-663.
    • (2005) Nature , vol.437 , pp. 656-663
    • Tanaka, M.1    Sackmann, E.2
  • 76
    • 84914118707 scopus 로고    scopus 로고
    • Rapid transfer of transmembrane proteins for single molecule dimerization assays in polymer-supported membranes
    • Roder F., et al. Rapid transfer of transmembrane proteins for single molecule dimerization assays in polymer-supported membranes. ACS Chem. Biol. 2014, 9:2479-2484.
    • (2014) ACS Chem. Biol. , vol.9 , pp. 2479-2484
    • Roder, F.1
  • 77
    • 84873844278 scopus 로고    scopus 로고
    • Spatial organization of lipid phases in micropatterned polymer-supported membranes
    • Roder F., et al. Spatial organization of lipid phases in micropatterned polymer-supported membranes. J. Am. Chem. Soc. 2013, 135:1189-1192.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 1189-1192
    • Roder, F.1
  • 78
    • 84874039926 scopus 로고    scopus 로고
    • Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes
    • Waichman S., et al. Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes. Small 2013, 9:570-577.
    • (2013) Small , vol.9 , pp. 570-577
    • Waichman, S.1
  • 79
    • 80052314755 scopus 로고    scopus 로고
    • Reconstitution of membrane proteins into polymer-supported membranes for probing diffusion and interactions by single molecule techniques
    • Roder F., et al. Reconstitution of membrane proteins into polymer-supported membranes for probing diffusion and interactions by single molecule techniques. Anal. Chem. 2011, 83:6792-6799.
    • (2011) Anal. Chem. , vol.83 , pp. 6792-6799
    • Roder, F.1
  • 80
    • 0033538574 scopus 로고    scopus 로고
    • The immunological synapse: a molecular machine controlling T cell activation
    • Grakoui A., et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999, 285:221-227.
    • (1999) Science , vol.285 , pp. 221-227
    • Grakoui, A.1
  • 81
    • 0026046515 scopus 로고
    • Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2
    • Chan P.Y., et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2. J. Cell Biol. 1991, 115:245-255.
    • (1991) J. Cell Biol. , vol.115 , pp. 245-255
    • Chan, P.Y.1
  • 82
    • 0142134858 scopus 로고    scopus 로고
    • Supported planar bilayers in studies on immune cell adhesion and communication
    • Groves J.T., Dustin M.L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 2003, 278:19-32.
    • (2003) J. Immunol. Methods , vol.278 , pp. 19-32
    • Groves, J.T.1    Dustin, M.L.2
  • 83
    • 0030569732 scopus 로고    scopus 로고
    • Supported membranes: scientific and practical applications
    • Sackmann E. Supported membranes: scientific and practical applications. Science 1996, 271:43-48.
    • (1996) Science , vol.271 , pp. 43-48
    • Sackmann, E.1
  • 84
    • 0029824326 scopus 로고    scopus 로고
    • The thermodynamic control of protein binding to lipid bilayers for protein chromatography
    • Loidl-Stahlhofen A., et al. The thermodynamic control of protein binding to lipid bilayers for protein chromatography. Nat. Biotechnol. 1996, 14:999-1002.
    • (1996) Nat. Biotechnol. , vol.14 , pp. 999-1002
    • Loidl-Stahlhofen, A.1
  • 85
    • 0035029841 scopus 로고    scopus 로고
    • Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology
    • Galneder R., et al. Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophys. J. 2001, 80:2298-2309.
    • (2001) Biophys. J. , vol.80 , pp. 2298-2309
    • Galneder, R.1
  • 86
    • 0017342078 scopus 로고
    • Plasma-membrane - rapid isolation and exposure of cytoplasmic surface by use of positively charged beads
    • Jacobson B.S., Branton D. Plasma-membrane - rapid isolation and exposure of cytoplasmic surface by use of positively charged beads. Science 1977, 195:302-304.
    • (1977) Science , vol.195 , pp. 302-304
    • Jacobson, B.S.1    Branton, D.2
  • 87
    • 0017695990 scopus 로고
    • Membrane isolation on polylysine-coated beads - plasma-membrane from HeLa-cells
    • Cohen C.M., et al. Membrane isolation on polylysine-coated beads - plasma-membrane from HeLa-cells. J. Cell Biol. 1977, 75:119-134.
    • (1977) J. Cell Biol. , vol.75 , pp. 119-134
    • Cohen, C.M.1
  • 88
    • 0042310968 scopus 로고    scopus 로고
    • Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads
    • Kaufmann S., Tanaka M. Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads. Chemphyschem 2003, 4:699-704.
    • (2003) Chemphyschem , vol.4 , pp. 699-704
    • Kaufmann, S.1    Tanaka, M.2
  • 89
    • 63149168075 scopus 로고    scopus 로고
    • Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles
    • Liu J., et al. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J. Am. Chem. Soc. 2009, 131:1354-1355.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 1354-1355
    • Liu, J.1
  • 90
    • 69249090473 scopus 로고    scopus 로고
    • Silica nanoparticle supported lipid bilayers for gene delivery
    • Liu J.W., et al. Silica nanoparticle supported lipid bilayers for gene delivery. Chem. Commun. (Camb.) 2009, 34:5100-5102.
    • (2009) Chem. Commun. (Camb.) , vol.34 , pp. 5100-5102
    • Liu, J.W.1
  • 91
    • 67650523182 scopus 로고    scopus 로고
    • Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery
    • Liu J.W., et al. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131:7567-7569.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 7567-7569
    • Liu, J.W.1
  • 92
    • 79955007145 scopus 로고    scopus 로고
    • The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers
    • Ashley C.E., et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10:389-397.
    • (2011) Nat. Mater. , vol.10 , pp. 389-397
    • Ashley, C.E.1
  • 93
    • 39449126839 scopus 로고    scopus 로고
    • Drug loaded erythrocytes: as novel drug delivery system
    • Patel P.D., et al. Drug loaded erythrocytes: as novel drug delivery system. Curr. Pharm. Des. 2008, 14:63-70.
    • (2008) Curr. Pharm. Des. , vol.14 , pp. 63-70
    • Patel, P.D.1
  • 94
    • 84894426345 scopus 로고    scopus 로고
    • Carrier erythrocytes: recent advances, present status, current trends and future horizons
    • Zarrin A., et al. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin. Drug Deliv. 2014, 11:433-447.
    • (2014) Expert Opin. Drug Deliv. , vol.11 , pp. 433-447
    • Zarrin, A.1
  • 95
    • 77949878932 scopus 로고    scopus 로고
    • Drug delivery by red blood cells: vascular carriers designed by mother nature
    • Muzykantov V.R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv. 2010, 7:403-427.
    • (2010) Expert Opin. Drug Deliv. , vol.7 , pp. 403-427
    • Muzykantov, V.R.1
  • 96
    • 79960583505 scopus 로고    scopus 로고
    • Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
    • Hu C.M., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10980-10985.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 10980-10985
    • Hu, C.M.1
  • 97
    • 84886046021 scopus 로고    scopus 로고
    • 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach
    • Hu C.M., et al. 'Marker-of-self' functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013, 5:2664-2668.
    • (2013) Nanoscale , vol.5 , pp. 2664-2668
    • Hu, C.M.1
  • 98
    • 84877583385 scopus 로고    scopus 로고
    • A biomimetic nanosponge that absorbs pore-forming toxins
    • Hu C.M., et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8:336-340.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 336-340
    • Hu, C.M.1
  • 99
    • 84890564255 scopus 로고    scopus 로고
    • Nanoparticle-detained toxins for safe and effective vaccination
    • Hu C.M., et al. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8:933-938.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 933-938
    • Hu, C.M.1
  • 100
    • 84871730525 scopus 로고    scopus 로고
    • Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions
    • Parodi A., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8:61-68.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 61-68
    • Parodi, A.1
  • 101
    • 0023601043 scopus 로고
    • Role of platelet membrane in enhancement of tumor-cell adhesion to endothelial-cell extracellular-matrix
    • Menter D.G., et al. Role of platelet membrane in enhancement of tumor-cell adhesion to endothelial-cell extracellular-matrix. Cancer Res. 1987, 47:6751-6762.
    • (1987) Cancer Res. , vol.47 , pp. 6751-6762
    • Menter, D.G.1
  • 102
    • 84880145555 scopus 로고    scopus 로고
    • Reconstructed stem cell nanoghosts: a natural tumor targeting platform
    • Furman N.E.T., et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013, 13:3248-3255.
    • (2013) Nano Lett. , vol.13 , pp. 3248-3255
    • Furman, N.E.T.1
  • 103
    • 84897989669 scopus 로고    scopus 로고
    • Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
    • Fang R.H., et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14:2181-2188.
    • (2014) Nano Lett. , vol.14 , pp. 2181-2188
    • Fang, R.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.