메뉴 건너뛰기




Volumn 26, Issue 9, 2015, Pages 455-466

Brain glucose sensing in homeostatic and hedonic regulation

Author keywords

Autonomic nervous system; Counter regulation; Dopamine; Feeding behavior; Glucose; Glucose sensing

Indexed keywords

GLUCOSE;

EID: 84940446931     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.06.005     Document Type: Review
Times cited : (66)

References (141)
  • 1
    • 34548207654 scopus 로고    scopus 로고
    • Brain glucose sensing, counterregulation, and energy homeostasis
    • Marty N., et al. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 2007, 22:241-251.
    • (2007) Physiology , vol.22 , pp. 241-251
    • Marty, N.1
  • 2
    • 79961206371 scopus 로고    scopus 로고
    • Brain glucose sensing and neural regulation of insulin and glucagon secretion
    • Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 2011, 13(Suppl. 1):82-88.
    • (2011) Diabetes Obes. Metab. , vol.13 , pp. 82-88
    • Thorens, B.1
  • 3
    • 84922104312 scopus 로고    scopus 로고
    • GLUT2, glucose sensing and glucose homeostasis
    • Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015, 58:221-232.
    • (2015) Diabetologia , vol.58 , pp. 221-232
    • Thorens, B.1
  • 4
    • 84891822239 scopus 로고    scopus 로고
    • Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar
    • Domingos A.I., et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2013, 2:e01462.
    • (2013) Elife , vol.2 , pp. e01462
    • Domingos, A.I.1
  • 5
    • 84898030245 scopus 로고    scopus 로고
    • Neural pathways that control the glucose counterregulatory response
    • Verberne A.J., et al. Neural pathways that control the glucose counterregulatory response. Front. Neurosci. 2014, 8:38.
    • (2014) Front. Neurosci. , vol.8 , pp. 38
    • Verberne, A.J.1
  • 6
    • 80054952681 scopus 로고    scopus 로고
    • Minireview. The value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit
    • Ritter S., et al. Minireview. The value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 2011, 152:4019-4032.
    • (2011) Endocrinology , vol.152 , pp. 4019-4032
    • Ritter, S.1
  • 7
    • 85052275753 scopus 로고    scopus 로고
    • Glucose sensing neurons in the ventromedial hypothalamus
    • Routh V.H. Glucose sensing neurons in the ventromedial hypothalamus. Sensors (Basel) 2010, 10:9002-9025.
    • (2010) Sensors (Basel) , vol.10 , pp. 9002-9025
    • Routh, V.H.1
  • 9
    • 84873162774 scopus 로고    scopus 로고
    • Hypothalamic tanycytes: potential roles in the control of feeding and energy balance
    • Bolborea M., Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013, 36:91-100.
    • (2013) Trends Neurosci. , vol.36 , pp. 91-100
    • Bolborea, M.1    Dale, N.2
  • 10
    • 84908500914 scopus 로고    scopus 로고
    • Neural regulation of pancreatic islet cell mass and function
    • Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 2014, 16(Suppl. 1):87-95.
    • (2014) Diabetes Obes. Metab. , vol.16 , pp. 87-95
    • Thorens, B.1
  • 11
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: function and physiological significance
    • Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 12
    • 0034077279 scopus 로고    scopus 로고
    • New insights into sympathetic regulation of glucose and fat metabolism
    • Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000, 43:533-549.
    • (2000) Diabetologia , vol.43 , pp. 533-549
    • Nonogaki, K.1
  • 13
    • 84893428884 scopus 로고    scopus 로고
    • Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies
    • Geerling J.J., et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J. Lipid Res. 2014, 55:180-189.
    • (2014) J. Lipid Res. , vol.55 , pp. 180-189
    • Geerling, J.J.1
  • 14
    • 0035911803 scopus 로고    scopus 로고
    • Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake
    • Buijs R.M., et al. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 2001, 431:405-423.
    • (2001) J. Comp. Neurol. , vol.431 , pp. 405-423
    • Buijs, R.M.1
  • 15
    • 0031843809 scopus 로고    scopus 로고
    • Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue
    • Bamshad M., et al. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 1998, 275:R291-R299.
    • (1998) Am. J. Physiol. , vol.275 , pp. R291-R299
    • Bamshad, M.1
  • 16
    • 0033036199 scopus 로고    scopus 로고
    • CNS origins of the sympathetic nervous system outflow to brown adipose tissue
    • Bamshad M., et al. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 1999, 276:R1569-R1578.
    • (1999) Am. J. Physiol. , vol.276 , pp. R1569-R1578
    • Bamshad, M.1
  • 17
    • 0030885584 scopus 로고    scopus 로고
    • CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study
    • Jansen A.S., et al. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 1997, 766:29-38.
    • (1997) Brain Res. , vol.766 , pp. 29-38
    • Jansen, A.S.1
  • 18
    • 84856354253 scopus 로고    scopus 로고
    • Sensing of glucose in the brain
    • Thorens B. Sensing of glucose in the brain. Handb. Exp. Pharmacol. 2012, 209:277-294.
    • (2012) Handb. Exp. Pharmacol. , vol.209 , pp. 277-294
    • Thorens, B.1
  • 19
    • 5044231048 scopus 로고    scopus 로고
    • Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain - an immunohistochemical study
    • Arluison M., et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain - an immunohistochemical study. J. Chem. Neuroanat. 2004, 28:117-136.
    • (2004) J. Chem. Neuroanat. , vol.28 , pp. 117-136
    • Arluison, M.1
  • 20
    • 0034115117 scopus 로고    scopus 로고
    • Localization of glucokinase gene expression in the rat brain
    • Lynch R.M., et al. Localization of glucokinase gene expression in the rat brain. Diabetes 2000, 49:693-700.
    • (2000) Diabetes , vol.49 , pp. 693-700
    • Lynch, R.M.1
  • 21
  • 22
    • 10244241840 scopus 로고    scopus 로고
    • Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonist as an inhibitory signal for food and water intake
    • Navarro M., et al. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonist as an inhibitory signal for food and water intake. J. Neurochem. 1996, 67:1982-1991.
    • (1996) J. Neurochem. , vol.67 , pp. 1982-1991
    • Navarro, M.1
  • 23
    • 33845516690 scopus 로고    scopus 로고
    • Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing
    • O'Malley D., et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes 2006, 55:3381-3386.
    • (2006) Diabetes , vol.55 , pp. 3381-3386
    • O'Malley, D.1
  • 24
    • 2642641299 scopus 로고    scopus 로고
    • Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons
    • Silver I.A., Erecinska M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 1998, 79:1733-1745.
    • (1998) J. Neurophysiol. , vol.79 , pp. 1733-1745
    • Silver, I.A.1    Erecinska, M.2
  • 25
    • 78650887915 scopus 로고    scopus 로고
    • Hypothalamic nitric oxide in hypoglycemia detection and counterregulation: a two-edged sword
    • Fioramonti X., et al. Hypothalamic nitric oxide in hypoglycemia detection and counterregulation: a two-edged sword. Antioxid. Redox Signal. 2011, 14:505-517.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 505-517
    • Fioramonti, X.1
  • 26
    • 84895750010 scopus 로고    scopus 로고
    • Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion
    • Lamy C.M., et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 2014, 19:527-538.
    • (2014) Cell Metab. , vol.19 , pp. 527-538
    • Lamy, C.M.1
  • 27
    • 58149317260 scopus 로고    scopus 로고
    • Metabolism-independent sugar sensing in central orexin neurons
    • Gonzalez J.A., et al. Metabolism-independent sugar sensing in central orexin neurons. Diabetes 2008, 57:2569-2576.
    • (2008) Diabetes , vol.57 , pp. 2569-2576
    • Gonzalez, J.A.1
  • 28
    • 85007137392 scopus 로고    scopus 로고
    • Tanycytes: a gateway to the metabolic hypothalamus
    • Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. J. Neuroendocrinol. 2014, 26:753-760.
    • (2014) J. Neuroendocrinol. , vol.26 , pp. 753-760
    • Langlet, F.1
  • 29
    • 0016273156 scopus 로고
    • Morphological aspects of the hypothalamic-hypophyseal system. V. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An enzyme-histochemical study
    • Akmayev I.G., Fidelina O.V. Morphological aspects of the hypothalamic-hypophyseal system. V. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An enzyme-histochemical study. Cell Tissue Res. 1974, 152:403-410.
    • (1974) Cell Tissue Res. , vol.152 , pp. 403-410
    • Akmayev, I.G.1    Fidelina, O.V.2
  • 30
    • 0018623195 scopus 로고
    • Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat
    • Rodriguez E.M., et al. Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat. Cell Tissue Res. 1979, 201:377-408.
    • (1979) Cell Tissue Res. , vol.201 , pp. 377-408
    • Rodriguez, E.M.1
  • 31
    • 0034005066 scopus 로고    scopus 로고
    • A second look at the barriers of the medial basal hypothalamus
    • Peruzzo B., et al. A second look at the barriers of the medial basal hypothalamus. Exp. Brain Res. 2000, 132:10-26.
    • (2000) Exp. Brain Res. , vol.132 , pp. 10-26
    • Peruzzo, B.1
  • 32
    • 0343527289 scopus 로고    scopus 로고
    • Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats
    • Cardona-Gomez G.P., et al. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. J. Neurobiol. 2000, 43:269-281.
    • (2000) J. Neurobiol. , vol.43 , pp. 269-281
    • Cardona-Gomez, G.P.1
  • 33
    • 0017075970 scopus 로고
    • Distribution and properties of an adenosine triphosphatase in the tanycyte ependyma of the IIIrd ventricle of the rat
    • Firth J.A., Bock R. Distribution and properties of an adenosine triphosphatase in the tanycyte ependyma of the IIIrd ventricle of the rat. Histochemistry 1976, 47:145-157.
    • (1976) Histochemistry , vol.47 , pp. 145-157
    • Firth, J.A.1    Bock, R.2
  • 34
    • 0015231014 scopus 로고
    • Location and characterization of hydrolytic enzymes of the 3d ventricle lining in the region of the recessus infundibularis of the rat. A study on the function of the ependyma
    • Luppa H., Geustel G. Location and characterization of hydrolytic enzymes of the 3d ventricle lining in the region of the recessus infundibularis of the rat. A study on the function of the ependyma. Brain Res. 1971, 29:253-270.
    • (1971) Brain Res. , vol.29 , pp. 253-270
    • Luppa, H.1    Geustel, G.2
  • 35
    • 77956257822 scopus 로고    scopus 로고
    • Glial glucokinase expression in adult and post-natal development of the hypothalamic region
    • Millan C., et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010, 2:e00035.
    • (2010) ASN Neuro , vol.2 , pp. e00035
    • Millan, C.1
  • 36
    • 84893434815 scopus 로고    scopus 로고
    • Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
    • Balland E., et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014, 19:293-301.
    • (2014) Cell Metab. , vol.19 , pp. 293-301
    • Balland, E.1
  • 37
    • 84875883939 scopus 로고    scopus 로고
    • Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
    • Langlet F., et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013, 17:607-617.
    • (2013) Cell Metab. , vol.17 , pp. 607-617
    • Langlet, F.1
  • 38
    • 0042303943 scopus 로고    scopus 로고
    • Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing
    • Garcia Mde L., et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J. Neurochem. 2003, 86:709-724.
    • (2003) J. Neurochem. , vol.86 , pp. 709-724
    • Garcia Mde, L.1
  • 39
    • 28944432319 scopus 로고    scopus 로고
    • Hypothalamic tanycytes: a key component of brain-endocrine interaction
    • Rodriguez E.M., et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int. Rev. Cytol. 2005, 247:89-164.
    • (2005) Int. Rev. Cytol. , vol.247 , pp. 89-164
    • Rodriguez, E.M.1
  • 40
    • 14644395509 scopus 로고    scopus 로고
    • Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain
    • Thomzig A., et al. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J. Comp. Neurol. 2005, 484:313-330.
    • (2005) J. Comp. Neurol. , vol.484 , pp. 313-330
    • Thomzig, A.1
  • 41
    • 79551571718 scopus 로고    scopus 로고
    • MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction
    • Cortes-Campos C., et al. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE 2011, 6:e16411.
    • (2011) PLoS ONE , vol.6 , pp. e16411
    • Cortes-Campos, C.1
  • 42
    • 34547823399 scopus 로고    scopus 로고
    • Activity-dependent regulation of energy metabolism by astrocytes: an update
    • Pellerin L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007, 55:1251-1262.
    • (2007) Glia , vol.55 , pp. 1251-1262
    • Pellerin, L.1
  • 43
    • 79953212635 scopus 로고    scopus 로고
    • ATP-mediated glucosensing by hypothalamic tanycytes
    • Frayling C., et al. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. 2011, 589:2275-2286.
    • (2011) J. Physiol. , vol.589 , pp. 2275-2286
    • Frayling, C.1
  • 44
    • 81155138974 scopus 로고    scopus 로고
    • 2+ in tanycytes via ATP released through connexin 43 hemichannels
    • 2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia 2012, 60:53-68.
    • (2012) Glia , vol.60 , pp. 53-68
    • Orellana, J.A.1
  • 45
    • 84900334867 scopus 로고    scopus 로고
    • Central neural regulation of brown adipose tissue thermogenesis and energy expenditure
    • Morrison S.F., et al. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 2014, 19:741-756.
    • (2014) Cell Metab. , vol.19 , pp. 741-756
    • Morrison, S.F.1
  • 46
    • 0024428785 scopus 로고
    • Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats
    • Holt S.J., York D.A. Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats. Brain Res. 1989, 500:384-388.
    • (1989) Brain Res. , vol.500 , pp. 384-388
    • Holt, S.J.1    York, D.A.2
  • 47
    • 0015525433 scopus 로고
    • The hypothermia of hypoglycemia. Studies with 2-deoxy-D-glucose in normal human subjects and mice
    • Freinkel N., et al. The hypothermia of hypoglycemia. Studies with 2-deoxy-D-glucose in normal human subjects and mice. N. Engl. J. Med. 1972, 287:841-845.
    • (1972) N. Engl. J. Med. , vol.287 , pp. 841-845
    • Freinkel, N.1
  • 48
    • 0024853462 scopus 로고
    • Effects of 2-deoxy-D-glucose on sympathetic nerve activity to interscapular brown adipose tissue
    • Egawa M., et al. Effects of 2-deoxy-D-glucose on sympathetic nerve activity to interscapular brown adipose tissue. Am. J. Physiol. 1989, 257:R1377-R1385.
    • (1989) Am. J. Physiol. , vol.257 , pp. R1377-R1385
    • Egawa, M.1
  • 49
    • 0037414623 scopus 로고    scopus 로고
    • Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure
    • Cano G., et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 2003, 460:303-326.
    • (2003) J. Comp. Neurol. , vol.460 , pp. 303-326
    • Cano, G.1
  • 50
    • 77953502759 scopus 로고    scopus 로고
    • Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons
    • Mounien L., et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010, 24:1747-1758.
    • (2010) FASEB J. , vol.24 , pp. 1747-1758
    • Mounien, L.1
  • 51
    • 84883475357 scopus 로고    scopus 로고
    • K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis
    • Tovar S., et al. K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis. Cell Metab. 2013, 18:445-455.
    • (2013) Cell Metab. , vol.18 , pp. 445-455
    • Tovar, S.1
  • 52
    • 84855323734 scopus 로고    scopus 로고
    • Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus
    • Madden C.J. Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302:R224-R232.
    • (2012) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.302 , pp. R224-R232
    • Madden, C.J.1
  • 53
    • 84908504710 scopus 로고    scopus 로고
    • Imaging of the islet neural network
    • Tang S.C., et al. Imaging of the islet neural network. Diabetes Obes. Metab. 2014, 16(Suppl. 1):77-86.
    • (2014) Diabetes Obes. Metab. , vol.16 , pp. 77-86
    • Tang, S.C.1
  • 54
    • 79959987811 scopus 로고    scopus 로고
    • Innervation patterns of autonomic axons in the human endocrine pancreas
    • Rodriguez-Diaz R., et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011, 14:45-54.
    • (2011) Cell Metab. , vol.14 , pp. 45-54
    • Rodriguez-Diaz, R.1
  • 55
    • 16644369515 scopus 로고    scopus 로고
    • Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments
    • Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 2004, 29:e51-e58.
    • (2004) Pancreas , vol.29 , pp. e51-e58
    • Kiba, T.1
  • 56
    • 0030051196 scopus 로고    scopus 로고
    • Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation
    • Kiba T., et al. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 1996, 110:885-893.
    • (1996) Gastroenterology , vol.110 , pp. 885-893
    • Kiba, T.1
  • 57
    • 0016425352 scopus 로고
    • Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog
    • Kaneto A., et al. Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Endocrinology 1975, 96:143-150.
    • (1975) Endocrinology , vol.96 , pp. 143-150
    • Kaneto, A.1
  • 58
    • 0019303404 scopus 로고
    • Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia
    • Berthoud H.R., et al. Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia. J. Auton. Nerv. Syst. 1980, 2:183-198.
    • (1980) J. Auton. Nerv. Syst. , vol.2 , pp. 183-198
    • Berthoud, H.R.1
  • 59
    • 0020375715 scopus 로고
    • Cholinergic muscarinic effects on insulin release in mice
    • Lundquist I. Cholinergic muscarinic effects on insulin release in mice. Pharmacology 1982, 25:338-347.
    • (1982) Pharmacology , vol.25 , pp. 338-347
    • Lundquist, I.1
  • 60
    • 0028147826 scopus 로고
    • Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats
    • N'Guyen J.M., et al. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats. J. Clin. Invest. 1994, 94:1456-1462.
    • (1994) J. Clin. Invest. , vol.94 , pp. 1456-1462
    • N'Guyen, J.M.1
  • 61
    • 17444435435 scopus 로고
    • Sham feeding-induced cephalic phase insulin release in the rat
    • Berthoud H.R., Jeanrenaud B. Sham feeding-induced cephalic phase insulin release in the rat. Am. J. Physiol. 1982, 242:E280-E285.
    • (1982) Am. J. Physiol. , vol.242 , pp. E280-E285
    • Berthoud, H.R.1    Jeanrenaud, B.2
  • 62
    • 0025278729 scopus 로고
    • Identification of vagal preganglionics that mediate cephalic phase insulin response
    • Berthoud H.R., Powley T.L. Identification of vagal preganglionics that mediate cephalic phase insulin response. Am. J. Physiol. 1990, 258:R523-R530.
    • (1990) Am. J. Physiol. , vol.258 , pp. R523-R530
    • Berthoud, H.R.1    Powley, T.L.2
  • 63
    • 2942553044 scopus 로고    scopus 로고
    • Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats
    • Guillod-Maximin E., et al. Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J. Neuroendocrinol. 2004, 16:464-471.
    • (2004) J. Neuroendocrinol. , vol.16 , pp. 464-471
    • Guillod-Maximin, E.1
  • 64
    • 0030831040 scopus 로고    scopus 로고
    • Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia
    • Sainsbury A., et al. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 1997, 40:1269-1277.
    • (1997) Diabetologia , vol.40 , pp. 1269-1277
    • Sainsbury, A.1
  • 65
    • 0027362079 scopus 로고
    • Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity
    • Zarjevski N., et al. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993, 133:1753-1758.
    • (1993) Endocrinology , vol.133 , pp. 1753-1758
    • Zarjevski, N.1
  • 66
    • 0030885584 scopus 로고    scopus 로고
    • CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study
    • Jansen A.S.P., et al. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 1997, 766:29-38.
    • (1997) Brain Res. , vol.766 , pp. 29-38
    • Jansen, A.S.P.1
  • 67
    • 84892919259 scopus 로고    scopus 로고
    • Nervous glucose sensing regulates postnatal beta cell proliferation and glucose homeostasis
    • Tarussio D., et al. Nervous glucose sensing regulates postnatal beta cell proliferation and glucose homeostasis. J. Clin. Invest. 2014, 124:413-424.
    • (2014) J. Clin. Invest. , vol.124 , pp. 413-424
    • Tarussio, D.1
  • 68
    • 0033696456 scopus 로고    scopus 로고
    • Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms
    • Balkan B., Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am. J. Physiol. 2000, 279:R1449-R1454.
    • (2000) Am. J. Physiol. , vol.279 , pp. R1449-R1454
    • Balkan, B.1    Li, X.2
  • 69
    • 11144357764 scopus 로고    scopus 로고
    • Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors
    • Preitner F., et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 2004, 113:635-645.
    • (2004) J. Clin. Invest. , vol.113 , pp. 635-645
    • Preitner, F.1
  • 70
    • 0028865816 scopus 로고
    • Induction of Fos protein in the rat hypothalamus elicited by insulin-induced hypoglycemia
    • Niimi M., et al. Induction of Fos protein in the rat hypothalamus elicited by insulin-induced hypoglycemia. Neurosci. Res. 1995, 23:361-364.
    • (1995) Neurosci. Res. , vol.23 , pp. 361-364
    • Niimi, M.1
  • 71
    • 31044444108 scopus 로고    scopus 로고
    • Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors
    • Marty N., et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J. Clin. Invest. 2005, 115:3545-3553.
    • (2005) J. Clin. Invest. , vol.115 , pp. 3545-3553
    • Marty, N.1
  • 72
    • 0036710262 scopus 로고    scopus 로고
    • Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia
    • Yuan P.Q., Yang H. Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia. Am. J. Physiol. Endocrinol. Metab. 2002, 283:E436-E448.
    • (2002) Am. J. Physiol. Endocrinol. Metab. , vol.283 , pp. E436-E448
    • Yuan, P.Q.1    Yang, H.2
  • 73
    • 34247616021 scopus 로고    scopus 로고
    • Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia
    • Tong Q., et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 2007, 5:383-393.
    • (2007) Cell Metab. , vol.5 , pp. 383-393
    • Tong, Q.1
  • 74
    • 0028931891 scopus 로고
    • Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release
    • Borg W.P., et al. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 1995, 44:180-184.
    • (1995) Diabetes , vol.44 , pp. 180-184
    • Borg, W.P.1
  • 75
    • 0031038124 scopus 로고    scopus 로고
    • Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats
    • Borg M.A., et al. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest. 1997, 99:361-365.
    • (1997) J. Clin. Invest. , vol.99 , pp. 361-365
    • Borg, M.A.1
  • 76
    • 1442276966 scopus 로고    scopus 로고
    • Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons
    • Kang L., et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004, 53:549-559.
    • (2004) Diabetes , vol.53 , pp. 549-559
    • Kang, L.1
  • 77
    • 48449103821 scopus 로고    scopus 로고
    • Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia
    • Levin B.E., et al. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes 2008, 57:1371-1379.
    • (2008) Diabetes , vol.57 , pp. 1371-1379
    • Levin, B.E.1
  • 78
    • 0035042796 scopus 로고    scopus 로고
    • + channels in the hypothalamus are essential for the maintenance of glucose homeostasis
    • + channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 2001, 4:507-512.
    • (2001) Nat. Neurosci. , vol.4 , pp. 507-512
    • Miki, T.1
  • 79
    • 4644298411 scopus 로고    scopus 로고
    • + channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses
    • + channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes 2004, 53:2542-2551.
    • (2004) Diabetes , vol.53 , pp. 2542-2551
    • Evans, M.L.1
  • 80
    • 33644696261 scopus 로고    scopus 로고
    • + channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats
    • + channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 2005, 54:3169-3174.
    • (2005) Diabetes , vol.54 , pp. 3169-3174
    • McCrimmon, R.J.1
  • 81
    • 33745327159 scopus 로고    scopus 로고
    • Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia
    • Chan O., et al. Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 2006, 55:1080-1087.
    • (2006) Diabetes , vol.55 , pp. 1080-1087
    • Chan, O.1
  • 82
    • 84888137329 scopus 로고    scopus 로고
    • Influence of VMH fuel sensing on hypoglycemic responses
    • Chan O., Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol. Metab. 2013, 24:616-624.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 616-624
    • Chan, O.1    Sherwin, R.2
  • 83
    • 40749132626 scopus 로고    scopus 로고
    • Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia
    • McCrimmon R.J., et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 2008, 57:444-450.
    • (2008) Diabetes , vol.57 , pp. 444-450
    • McCrimmon, R.J.1
  • 84
    • 33748296106 scopus 로고    scopus 로고
    • Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation
    • McCrimmon R.J., et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006, 55:1755-1760.
    • (2006) Diabetes , vol.55 , pp. 1755-1760
    • McCrimmon, R.J.1
  • 85
    • 84881257127 scopus 로고    scopus 로고
    • Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain
    • Lindberg D., et al. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J. Comp. Neurol. 2013, 521:3167-3190.
    • (2013) J. Comp. Neurol. , vol.521 , pp. 3167-3190
    • Lindberg, D.1
  • 86
    • 84885145339 scopus 로고    scopus 로고
    • Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia
    • Stanley S., et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab. 2013, 18:596-607.
    • (2013) Cell Metab. , vol.18 , pp. 596-607
    • Stanley, S.1
  • 87
    • 55449107738 scopus 로고    scopus 로고
    • A translational profiling approach for the molecular characterization of CNS cell types
    • Heiman M., et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135:738-748.
    • (2008) Cell , vol.135 , pp. 738-748
    • Heiman, M.1
  • 88
    • 77956367937 scopus 로고    scopus 로고
    • Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia
    • Diggs-Andrews K.A., et al. Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 2010, 59:2271-2280.
    • (2010) Diabetes , vol.59 , pp. 2271-2280
    • Diggs-Andrews, K.A.1
  • 89
    • 84919594610 scopus 로고    scopus 로고
    • A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia
    • Garfield A.S., et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 2014, 20:1030-1037.
    • (2014) Cell Metab. , vol.20 , pp. 1030-1037
    • Garfield, A.S.1
  • 90
    • 84920828713 scopus 로고    scopus 로고
    • DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility
    • Urban D.J., Roth B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 2015, 55:399-417.
    • (2015) Annu. Rev. Pharmacol. Toxicol. , vol.55 , pp. 399-417
    • Urban, D.J.1    Roth, B.L.2
  • 91
    • 84924287177 scopus 로고    scopus 로고
    • Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance
    • Flak J.N., et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat. Neurosci. 2014, 17:1744-1750.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1744-1750
    • Flak, J.N.1
  • 92
    • 84865714588 scopus 로고    scopus 로고
    • Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance
    • Grill H.J., Hayes M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012, 16:296-309.
    • (2012) Cell Metab. , vol.16 , pp. 296-309
    • Grill, H.J.1    Hayes, M.R.2
  • 93
    • 0033588532 scopus 로고    scopus 로고
    • Solitary tract nucleus sensitivity to moderate changes in glucose level
    • Dallaporta M., et al. Solitary tract nucleus sensitivity to moderate changes in glucose level. Neuroreport 1999, 10:2657-2660.
    • (1999) Neuroreport , vol.10 , pp. 2657-2660
    • Dallaporta, M.1
  • 94
    • 33947189587 scopus 로고    scopus 로고
    • Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia
    • Balfour R.H., Trapp S. Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia. J. Physiol. 2007, 579:691-702.
    • (2007) J. Physiol. , vol.579 , pp. 691-702
    • Balfour, R.H.1    Trapp, S.2
  • 95
    • 33645893473 scopus 로고    scopus 로고
    • Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem
    • Balfour R.H., et al. Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J. Physiol. 2006, 570:469-484.
    • (2006) J. Physiol. , vol.570 , pp. 469-484
    • Balfour, R.H.1
  • 96
    • 78650784216 scopus 로고    scopus 로고
    • Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex
    • Babic T., et al. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300:G21-G32.
    • (2011) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.300 , pp. G21-G32
    • Babic, T.1
  • 97
    • 84855500856 scopus 로고    scopus 로고
    • Metabolic and hedonic drives in the neural control of appetite: who is the boss?
    • Berthoud H.R. Metabolic and hedonic drives in the neural control of appetite: who is the boss?. Curr. Opin. Neurobiol. 2011, 21:888-896.
    • (2011) Curr. Opin. Neurobiol. , vol.21 , pp. 888-896
    • Berthoud, H.R.1
  • 98
    • 78650752631 scopus 로고    scopus 로고
    • Reward, dopamine and the control of food intake: implications for obesity
    • Volkow N.D., et al. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci. 2011, 15:37-46.
    • (2011) Trends Cogn. Sci. , vol.15 , pp. 37-46
    • Volkow, N.D.1
  • 99
    • 84868631248 scopus 로고    scopus 로고
    • The mysterious motivational functions of mesolimbic dopamine
    • Salamone J.D., Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron 2012, 76:470-485.
    • (2012) Neuron , vol.76 , pp. 470-485
    • Salamone, J.D.1    Correa, M.2
  • 100
    • 33748540764 scopus 로고    scopus 로고
    • Leptin receptor signaling in midbrain dopamine neurons regulates feeding
    • Hommel J.D., et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006, 51:801-810.
    • (2006) Neuron , vol.51 , pp. 801-810
    • Hommel, J.D.1
  • 101
    • 84864816408 scopus 로고    scopus 로고
    • Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake
    • Mebel D.M., et al. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 2012, 36:2336-2346.
    • (2012) Eur. J. Neurosci. , vol.36 , pp. 2336-2346
    • Mebel, D.M.1
  • 102
    • 84875906445 scopus 로고    scopus 로고
    • Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids
    • Labouebe G., et al. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat. Neurosci. 2013, 16:300-308.
    • (2013) Nat. Neurosci. , vol.16 , pp. 300-308
    • Labouebe, G.1
  • 103
    • 84856102513 scopus 로고    scopus 로고
    • GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake
    • Alhadeff A.L., et al. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012, 153:647-658.
    • (2012) Endocrinology , vol.153 , pp. 647-658
    • Alhadeff, A.L.1
  • 104
    • 33748560432 scopus 로고    scopus 로고
    • Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite
    • Abizaid A., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 2006, 116:3229-3239.
    • (2006) J. Clin. Invest. , vol.116 , pp. 3229-3239
    • Abizaid, A.1
  • 105
    • 79953198914 scopus 로고    scopus 로고
    • Ghrelin directly targets the ventral tegmental area to increase food motivation
    • Skibicka K.P., et al. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 2011, 180:129-137.
    • (2011) Neuroscience , vol.180 , pp. 129-137
    • Skibicka, K.P.1
  • 106
    • 70349145473 scopus 로고    scopus 로고
    • Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers
    • Borgland S.L., et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 2009, 29:11215-11225.
    • (2009) J. Neurosci. , vol.29 , pp. 11215-11225
    • Borgland, S.L.1
  • 107
    • 84869073828 scopus 로고    scopus 로고
    • Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell
    • Patyal R., et al. Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Front. Behav. Neurosci. 2012, 6:82.
    • (2012) Front. Behav. Neurosci. , vol.6 , pp. 82
    • Patyal, R.1
  • 108
    • 67749130801 scopus 로고    scopus 로고
    • Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine
    • Sorensen G., et al. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine. Neuroreport 2009, 20:1023-1026.
    • (2009) Neuroreport , vol.20 , pp. 1023-1026
    • Sorensen, G.1
  • 109
    • 0346455760 scopus 로고    scopus 로고
    • Oral sucrose stimulation increases accumbens dopamine in the rat
    • Hajnal A., et al. Oral sucrose stimulation increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286:R31-R37.
    • (2004) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.286 , pp. R31-R37
    • Hajnal, A.1
  • 110
    • 0033406776 scopus 로고    scopus 로고
    • Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state
    • Bassareo V., Di Chiara G. Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur. J. Neurosci. 1999, 11:4389-4397.
    • (1999) Eur. J. Neurosci. , vol.11 , pp. 4389-4397
    • Bassareo, V.1    Di Chiara, G.2
  • 111
    • 84883183253 scopus 로고    scopus 로고
    • Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements
    • Swithers S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24:431-441.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 431-441
    • Swithers, S.E.1
  • 112
    • 33751084573 scopus 로고    scopus 로고
    • The receptors and cells for mammalian taste
    • Chandrashekar J., et al. The receptors and cells for mammalian taste. Nature 2006, 444:288-294.
    • (2006) Nature , vol.444 , pp. 288-294
    • Chandrashekar, J.1
  • 113
    • 0037423367 scopus 로고    scopus 로고
    • Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways
    • Zhang Y., et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003, 112:293-301.
    • (2003) Cell , vol.112 , pp. 293-301
    • Zhang, Y.1
  • 114
    • 84865818300 scopus 로고    scopus 로고
    • Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei
    • Li C.S., et al. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J. Neurophysiol. 2012, 108:1288-1298.
    • (2012) J. Neurophysiol. , vol.108 , pp. 1288-1298
    • Li, C.S.1
  • 115
    • 77954385728 scopus 로고    scopus 로고
    • Coding in the mammalian gustatory system
    • Carleton A., et al. Coding in the mammalian gustatory system. Trends Neurosci. 2010, 33:326-334.
    • (2010) Trends Neurosci. , vol.33 , pp. 326-334
    • Carleton, A.1
  • 116
    • 77953495960 scopus 로고    scopus 로고
    • Nutrient selection in the absence of taste receptor signaling
    • Ren X., et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 2010, 30:8012-8023.
    • (2010) J. Neurosci. , vol.30 , pp. 8012-8023
    • Ren, X.1
  • 117
    • 84860441219 scopus 로고    scopus 로고
    • The gut-brain dopamine axis: a regulatory system for caloric intake
    • de Araujo I.E., et al. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol. Behav. 2012, 106:394-399.
    • (2012) Physiol. Behav. , vol.106 , pp. 394-399
    • de Araujo, I.E.1
  • 118
    • 40849083517 scopus 로고    scopus 로고
    • Food reward in the absence of taste receptor signaling
    • de Araujo I.E., et al. Food reward in the absence of taste receptor signaling. Neuron 2008, 57:930-941.
    • (2008) Neuron , vol.57 , pp. 930-941
    • de Araujo, I.E.1
  • 119
    • 84884918776 scopus 로고    scopus 로고
    • Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs
    • Zukerman S., et al. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305:R840-R853.
    • (2013) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.305 , pp. R840-R853
    • Zukerman, S.1
  • 120
    • 80054025896 scopus 로고    scopus 로고
    • Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl
    • Otsubo H., et al. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl. Neuroscience 2011, 196:97-103.
    • (2011) Neuroscience , vol.196 , pp. 97-103
    • Otsubo, H.1
  • 121
    • 84887824523 scopus 로고    scopus 로고
    • Portal glucose influences the sensory, cortical and reward systems in rats
    • Delaere F., et al. Portal glucose influences the sensory, cortical and reward systems in rats. Eur. J. Neurosci. 2013, 38:3476-3486.
    • (2013) Eur. J. Neurosci. , vol.38 , pp. 3476-3486
    • Delaere, F.1
  • 122
    • 80053198182 scopus 로고    scopus 로고
    • Intravascular food reward
    • Oliveira-Maia A.J., et al. Intravascular food reward. PLoS ONE 2011, 6:e24992.
    • (2011) PLoS ONE , vol.6 , pp. e24992
    • Oliveira-Maia, A.J.1
  • 123
    • 74249110599 scopus 로고    scopus 로고
    • Post-oral infusion sites that support glucose-conditioned flavor preferences in rats
    • Ackroff K., et al. Post-oral infusion sites that support glucose-conditioned flavor preferences in rats. Physiol. Behav. 2010, 99:402-411.
    • (2010) Physiol. Behav. , vol.99 , pp. 402-411
    • Ackroff, K.1
  • 124
    • 0033810262 scopus 로고    scopus 로고
    • Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice
    • Burcelin R., et al. Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice. Diabetes 2000, 49:1643-1648.
    • (2000) Diabetes , vol.49 , pp. 1643-1648
    • Burcelin, R.1
  • 125
    • 31044450630 scopus 로고    scopus 로고
    • The hepatoportal glucose sensor. Mechanisms of glucose sensing and signal transduction
    • Karger, F.M. Matschinski, M.A. Magnuson (Eds.)
    • Thorens B. The hepatoportal glucose sensor. Mechanisms of glucose sensing and signal transduction. Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics 2004, 327-338. Karger. F.M. Matschinski, M.A. Magnuson (Eds.).
    • (2004) Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics , pp. 327-338
    • Thorens, B.1
  • 126
    • 84876107265 scopus 로고    scopus 로고
    • The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing
    • Delaere F., et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2012, 2:47-53.
    • (2012) Mol. Metab. , vol.2 , pp. 47-53
    • Delaere, F.1
  • 127
    • 0141705347 scopus 로고    scopus 로고
    • A glucose sensor hiding in a family of transporters
    • Diez-Sampedro A., et al. A glucose sensor hiding in a family of transporters. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:11753-11758.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 11753-11758
    • Diez-Sampedro, A.1
  • 128
    • 0017643110 scopus 로고
    • A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets
    • Zawalich W.S., et al. A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets. J. Biol. Chem. 1977, 252:8519-8523.
    • (1977) J. Biol. Chem. , vol.252 , pp. 8519-8523
    • Zawalich, W.S.1
  • 129
    • 0018460451 scopus 로고
    • Insulin secretion by isolated perfused rat and mouse pancreas
    • Lenzen S. Insulin secretion by isolated perfused rat and mouse pancreas. Am. J. Physiol. 1979, 236:E391-E400.
    • (1979) Am. J. Physiol. , vol.236 , pp. E391-E400
    • Lenzen, S.1
  • 130
    • 78049433920 scopus 로고    scopus 로고
    • Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis
    • Kong D., et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010, 12:545-552.
    • (2010) Cell Metab. , vol.12 , pp. 545-552
    • Kong, D.1
  • 131
    • 84925859543 scopus 로고    scopus 로고
    • Decoding neural circuits that control compulsive sucrose seeking
    • Nieh E.H., et al. Decoding neural circuits that control compulsive sucrose seeking. Cell 2015, 160:528-541.
    • (2015) Cell , vol.160 , pp. 528-541
    • Nieh, E.H.1
  • 132
    • 84887615088 scopus 로고    scopus 로고
    • Glucose utilization rates regulate intake levels of artificial sweeteners
    • Tellez L.A., et al. Glucose utilization rates regulate intake levels of artificial sweeteners. J. Physiol. 2013, 591:5727-5744.
    • (2013) J. Physiol. , vol.591 , pp. 5727-5744
    • Tellez, L.A.1
  • 133
    • 79959873914 scopus 로고    scopus 로고
    • The development and application of optogenetics
    • Fenno L., et al. The development and application of optogenetics. Annu. Rev. Neurosci. 2011, 34:389-412.
    • (2011) Annu. Rev. Neurosci. , vol.34 , pp. 389-412
    • Fenno, L.1
  • 134
    • 33847159648 scopus 로고    scopus 로고
    • Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons
    • Wickersham I.R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 2007, 53:639-647.
    • (2007) Neuron , vol.53 , pp. 639-647
    • Wickersham, I.R.1
  • 135
    • 33845924630 scopus 로고    scopus 로고
    • Retrograde neuronal tracing with a deletion-mutant rabies virus
    • Wickersham I.R., et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 2007, 4:47-49.
    • (2007) Nat. Methods , vol.4 , pp. 47-49
    • Wickersham, I.R.1
  • 136
    • 79958239275 scopus 로고    scopus 로고
    • Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits
    • Betley J.N., Sternson S.M. Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. Hum. Gene Ther. 2011, 22:669-677.
    • (2011) Hum. Gene Ther. , vol.22 , pp. 669-677
    • Betley, J.N.1    Sternson, S.M.2
  • 137
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347:1138-1142.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 138
    • 21344437030 scopus 로고    scopus 로고
    • Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study
    • Laukkanen O., et al. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 2005, 54:2256-2260.
    • (2005) Diabetes , vol.54 , pp. 2256-2260
    • Laukkanen, O.1
  • 139
    • 76749113896 scopus 로고    scopus 로고
    • Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels
    • Igl W., et al. Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels. PLoS Genet. 2010, 6:e1000798.
    • (2010) PLoS Genet. , vol.6 , pp. e1000798
    • Igl, W.1
  • 140
    • 84869769880 scopus 로고    scopus 로고
    • Genetic variant SLC2A2 is associated with risk of cardiovascular disease - assessing the individual and cumulative effect of 46 type 2 diabetes related genetic variants
    • Borglykke A., et al. Genetic variant SLC2A2 is associated with risk of cardiovascular disease - assessing the individual and cumulative effect of 46 type 2 diabetes related genetic variants. PLoS ONE 2012, 7:e50418.
    • (2012) PLoS ONE , vol.7 , pp. e50418
    • Borglykke, A.1
  • 141
    • 45549102127 scopus 로고    scopus 로고
    • Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations
    • Eny K.M., et al. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol. Genomics 2008, 33:355-360.
    • (2008) Physiol. Genomics , vol.33 , pp. 355-360
    • Eny, K.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.