-
1
-
-
34548207654
-
Brain glucose sensing, counterregulation, and energy homeostasis
-
Marty N., et al. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 2007, 22:241-251.
-
(2007)
Physiology
, vol.22
, pp. 241-251
-
-
Marty, N.1
-
2
-
-
79961206371
-
Brain glucose sensing and neural regulation of insulin and glucagon secretion
-
Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 2011, 13(Suppl. 1):82-88.
-
(2011)
Diabetes Obes. Metab.
, vol.13
, pp. 82-88
-
-
Thorens, B.1
-
3
-
-
84922104312
-
GLUT2, glucose sensing and glucose homeostasis
-
Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015, 58:221-232.
-
(2015)
Diabetologia
, vol.58
, pp. 221-232
-
-
Thorens, B.1
-
4
-
-
84891822239
-
Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar
-
Domingos A.I., et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2013, 2:e01462.
-
(2013)
Elife
, vol.2
, pp. e01462
-
-
Domingos, A.I.1
-
5
-
-
84898030245
-
Neural pathways that control the glucose counterregulatory response
-
Verberne A.J., et al. Neural pathways that control the glucose counterregulatory response. Front. Neurosci. 2014, 8:38.
-
(2014)
Front. Neurosci.
, vol.8
, pp. 38
-
-
Verberne, A.J.1
-
6
-
-
80054952681
-
Minireview. The value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit
-
Ritter S., et al. Minireview. The value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 2011, 152:4019-4032.
-
(2011)
Endocrinology
, vol.152
, pp. 4019-4032
-
-
Ritter, S.1
-
7
-
-
85052275753
-
Glucose sensing neurons in the ventromedial hypothalamus
-
Routh V.H. Glucose sensing neurons in the ventromedial hypothalamus. Sensors (Basel) 2010, 10:9002-9025.
-
(2010)
Sensors (Basel)
, vol.10
, pp. 9002-9025
-
-
Routh, V.H.1
-
9
-
-
84873162774
-
Hypothalamic tanycytes: potential roles in the control of feeding and energy balance
-
Bolborea M., Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013, 36:91-100.
-
(2013)
Trends Neurosci.
, vol.36
, pp. 91-100
-
-
Bolborea, M.1
Dale, N.2
-
10
-
-
84908500914
-
Neural regulation of pancreatic islet cell mass and function
-
Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 2014, 16(Suppl. 1):87-95.
-
(2014)
Diabetes Obes. Metab.
, vol.16
, pp. 87-95
-
-
Thorens, B.1
-
11
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
12
-
-
0034077279
-
New insights into sympathetic regulation of glucose and fat metabolism
-
Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000, 43:533-549.
-
(2000)
Diabetologia
, vol.43
, pp. 533-549
-
-
Nonogaki, K.1
-
13
-
-
84893428884
-
Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies
-
Geerling J.J., et al. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J. Lipid Res. 2014, 55:180-189.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 180-189
-
-
Geerling, J.J.1
-
14
-
-
0035911803
-
Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake
-
Buijs R.M., et al. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 2001, 431:405-423.
-
(2001)
J. Comp. Neurol.
, vol.431
, pp. 405-423
-
-
Buijs, R.M.1
-
15
-
-
0031843809
-
Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue
-
Bamshad M., et al. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 1998, 275:R291-R299.
-
(1998)
Am. J. Physiol.
, vol.275
, pp. R291-R299
-
-
Bamshad, M.1
-
16
-
-
0033036199
-
CNS origins of the sympathetic nervous system outflow to brown adipose tissue
-
Bamshad M., et al. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 1999, 276:R1569-R1578.
-
(1999)
Am. J. Physiol.
, vol.276
, pp. R1569-R1578
-
-
Bamshad, M.1
-
17
-
-
0030885584
-
CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study
-
Jansen A.S., et al. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 1997, 766:29-38.
-
(1997)
Brain Res.
, vol.766
, pp. 29-38
-
-
Jansen, A.S.1
-
18
-
-
84856354253
-
Sensing of glucose in the brain
-
Thorens B. Sensing of glucose in the brain. Handb. Exp. Pharmacol. 2012, 209:277-294.
-
(2012)
Handb. Exp. Pharmacol.
, vol.209
, pp. 277-294
-
-
Thorens, B.1
-
19
-
-
5044231048
-
Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain - an immunohistochemical study
-
Arluison M., et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain - an immunohistochemical study. J. Chem. Neuroanat. 2004, 28:117-136.
-
(2004)
J. Chem. Neuroanat.
, vol.28
, pp. 117-136
-
-
Arluison, M.1
-
20
-
-
0034115117
-
Localization of glucokinase gene expression in the rat brain
-
Lynch R.M., et al. Localization of glucokinase gene expression in the rat brain. Diabetes 2000, 49:693-700.
-
(2000)
Diabetes
, vol.49
, pp. 693-700
-
-
Lynch, R.M.1
-
21
-
-
0032517821
-
+ channel in rat brain
-
+ channel in rat brain. Brain Res. 1998, 814:41-54.
-
(1998)
Brain Res.
, vol.814
, pp. 41-54
-
-
Dunn-Meynell, A.A.1
-
22
-
-
10244241840
-
Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonist as an inhibitory signal for food and water intake
-
Navarro M., et al. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonist as an inhibitory signal for food and water intake. J. Neurochem. 1996, 67:1982-1991.
-
(1996)
J. Neurochem.
, vol.67
, pp. 1982-1991
-
-
Navarro, M.1
-
23
-
-
33845516690
-
Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing
-
O'Malley D., et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes 2006, 55:3381-3386.
-
(2006)
Diabetes
, vol.55
, pp. 3381-3386
-
-
O'Malley, D.1
-
24
-
-
2642641299
-
Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons
-
Silver I.A., Erecinska M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 1998, 79:1733-1745.
-
(1998)
J. Neurophysiol.
, vol.79
, pp. 1733-1745
-
-
Silver, I.A.1
Erecinska, M.2
-
25
-
-
78650887915
-
Hypothalamic nitric oxide in hypoglycemia detection and counterregulation: a two-edged sword
-
Fioramonti X., et al. Hypothalamic nitric oxide in hypoglycemia detection and counterregulation: a two-edged sword. Antioxid. Redox Signal. 2011, 14:505-517.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 505-517
-
-
Fioramonti, X.1
-
26
-
-
84895750010
-
Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion
-
Lamy C.M., et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 2014, 19:527-538.
-
(2014)
Cell Metab.
, vol.19
, pp. 527-538
-
-
Lamy, C.M.1
-
27
-
-
58149317260
-
Metabolism-independent sugar sensing in central orexin neurons
-
Gonzalez J.A., et al. Metabolism-independent sugar sensing in central orexin neurons. Diabetes 2008, 57:2569-2576.
-
(2008)
Diabetes
, vol.57
, pp. 2569-2576
-
-
Gonzalez, J.A.1
-
28
-
-
85007137392
-
Tanycytes: a gateway to the metabolic hypothalamus
-
Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. J. Neuroendocrinol. 2014, 26:753-760.
-
(2014)
J. Neuroendocrinol.
, vol.26
, pp. 753-760
-
-
Langlet, F.1
-
29
-
-
0016273156
-
Morphological aspects of the hypothalamic-hypophyseal system. V. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An enzyme-histochemical study
-
Akmayev I.G., Fidelina O.V. Morphological aspects of the hypothalamic-hypophyseal system. V. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An enzyme-histochemical study. Cell Tissue Res. 1974, 152:403-410.
-
(1974)
Cell Tissue Res.
, vol.152
, pp. 403-410
-
-
Akmayev, I.G.1
Fidelina, O.V.2
-
30
-
-
0018623195
-
Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat
-
Rodriguez E.M., et al. Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat. Cell Tissue Res. 1979, 201:377-408.
-
(1979)
Cell Tissue Res.
, vol.201
, pp. 377-408
-
-
Rodriguez, E.M.1
-
31
-
-
0034005066
-
A second look at the barriers of the medial basal hypothalamus
-
Peruzzo B., et al. A second look at the barriers of the medial basal hypothalamus. Exp. Brain Res. 2000, 132:10-26.
-
(2000)
Exp. Brain Res.
, vol.132
, pp. 10-26
-
-
Peruzzo, B.1
-
32
-
-
0343527289
-
Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats
-
Cardona-Gomez G.P., et al. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. J. Neurobiol. 2000, 43:269-281.
-
(2000)
J. Neurobiol.
, vol.43
, pp. 269-281
-
-
Cardona-Gomez, G.P.1
-
33
-
-
0017075970
-
Distribution and properties of an adenosine triphosphatase in the tanycyte ependyma of the IIIrd ventricle of the rat
-
Firth J.A., Bock R. Distribution and properties of an adenosine triphosphatase in the tanycyte ependyma of the IIIrd ventricle of the rat. Histochemistry 1976, 47:145-157.
-
(1976)
Histochemistry
, vol.47
, pp. 145-157
-
-
Firth, J.A.1
Bock, R.2
-
34
-
-
0015231014
-
Location and characterization of hydrolytic enzymes of the 3d ventricle lining in the region of the recessus infundibularis of the rat. A study on the function of the ependyma
-
Luppa H., Geustel G. Location and characterization of hydrolytic enzymes of the 3d ventricle lining in the region of the recessus infundibularis of the rat. A study on the function of the ependyma. Brain Res. 1971, 29:253-270.
-
(1971)
Brain Res.
, vol.29
, pp. 253-270
-
-
Luppa, H.1
Geustel, G.2
-
35
-
-
77956257822
-
Glial glucokinase expression in adult and post-natal development of the hypothalamic region
-
Millan C., et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010, 2:e00035.
-
(2010)
ASN Neuro
, vol.2
, pp. e00035
-
-
Millan, C.1
-
36
-
-
84893434815
-
Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
-
Balland E., et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014, 19:293-301.
-
(2014)
Cell Metab.
, vol.19
, pp. 293-301
-
-
Balland, E.1
-
37
-
-
84875883939
-
Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
-
Langlet F., et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013, 17:607-617.
-
(2013)
Cell Metab.
, vol.17
, pp. 607-617
-
-
Langlet, F.1
-
38
-
-
0042303943
-
Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing
-
Garcia Mde L., et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J. Neurochem. 2003, 86:709-724.
-
(2003)
J. Neurochem.
, vol.86
, pp. 709-724
-
-
Garcia Mde, L.1
-
39
-
-
28944432319
-
Hypothalamic tanycytes: a key component of brain-endocrine interaction
-
Rodriguez E.M., et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int. Rev. Cytol. 2005, 247:89-164.
-
(2005)
Int. Rev. Cytol.
, vol.247
, pp. 89-164
-
-
Rodriguez, E.M.1
-
40
-
-
14644395509
-
Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain
-
Thomzig A., et al. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J. Comp. Neurol. 2005, 484:313-330.
-
(2005)
J. Comp. Neurol.
, vol.484
, pp. 313-330
-
-
Thomzig, A.1
-
41
-
-
79551571718
-
MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction
-
Cortes-Campos C., et al. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE 2011, 6:e16411.
-
(2011)
PLoS ONE
, vol.6
, pp. e16411
-
-
Cortes-Campos, C.1
-
42
-
-
34547823399
-
Activity-dependent regulation of energy metabolism by astrocytes: an update
-
Pellerin L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007, 55:1251-1262.
-
(2007)
Glia
, vol.55
, pp. 1251-1262
-
-
Pellerin, L.1
-
43
-
-
79953212635
-
ATP-mediated glucosensing by hypothalamic tanycytes
-
Frayling C., et al. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. 2011, 589:2275-2286.
-
(2011)
J. Physiol.
, vol.589
, pp. 2275-2286
-
-
Frayling, C.1
-
44
-
-
81155138974
-
2+ in tanycytes via ATP released through connexin 43 hemichannels
-
2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia 2012, 60:53-68.
-
(2012)
Glia
, vol.60
, pp. 53-68
-
-
Orellana, J.A.1
-
45
-
-
84900334867
-
Central neural regulation of brown adipose tissue thermogenesis and energy expenditure
-
Morrison S.F., et al. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 2014, 19:741-756.
-
(2014)
Cell Metab.
, vol.19
, pp. 741-756
-
-
Morrison, S.F.1
-
46
-
-
0024428785
-
Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats
-
Holt S.J., York D.A. Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats. Brain Res. 1989, 500:384-388.
-
(1989)
Brain Res.
, vol.500
, pp. 384-388
-
-
Holt, S.J.1
York, D.A.2
-
47
-
-
0015525433
-
The hypothermia of hypoglycemia. Studies with 2-deoxy-D-glucose in normal human subjects and mice
-
Freinkel N., et al. The hypothermia of hypoglycemia. Studies with 2-deoxy-D-glucose in normal human subjects and mice. N. Engl. J. Med. 1972, 287:841-845.
-
(1972)
N. Engl. J. Med.
, vol.287
, pp. 841-845
-
-
Freinkel, N.1
-
48
-
-
0024853462
-
Effects of 2-deoxy-D-glucose on sympathetic nerve activity to interscapular brown adipose tissue
-
Egawa M., et al. Effects of 2-deoxy-D-glucose on sympathetic nerve activity to interscapular brown adipose tissue. Am. J. Physiol. 1989, 257:R1377-R1385.
-
(1989)
Am. J. Physiol.
, vol.257
, pp. R1377-R1385
-
-
Egawa, M.1
-
49
-
-
0037414623
-
Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure
-
Cano G., et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 2003, 460:303-326.
-
(2003)
J. Comp. Neurol.
, vol.460
, pp. 303-326
-
-
Cano, G.1
-
50
-
-
77953502759
-
Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons
-
Mounien L., et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010, 24:1747-1758.
-
(2010)
FASEB J.
, vol.24
, pp. 1747-1758
-
-
Mounien, L.1
-
51
-
-
84883475357
-
K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis
-
Tovar S., et al. K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis. Cell Metab. 2013, 18:445-455.
-
(2013)
Cell Metab.
, vol.18
, pp. 445-455
-
-
Tovar, S.1
-
52
-
-
84855323734
-
Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus
-
Madden C.J. Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302:R224-R232.
-
(2012)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.302
, pp. R224-R232
-
-
Madden, C.J.1
-
53
-
-
84908504710
-
Imaging of the islet neural network
-
Tang S.C., et al. Imaging of the islet neural network. Diabetes Obes. Metab. 2014, 16(Suppl. 1):77-86.
-
(2014)
Diabetes Obes. Metab.
, vol.16
, pp. 77-86
-
-
Tang, S.C.1
-
54
-
-
79959987811
-
Innervation patterns of autonomic axons in the human endocrine pancreas
-
Rodriguez-Diaz R., et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011, 14:45-54.
-
(2011)
Cell Metab.
, vol.14
, pp. 45-54
-
-
Rodriguez-Diaz, R.1
-
55
-
-
16644369515
-
Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments
-
Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 2004, 29:e51-e58.
-
(2004)
Pancreas
, vol.29
, pp. e51-e58
-
-
Kiba, T.1
-
56
-
-
0030051196
-
Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation
-
Kiba T., et al. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 1996, 110:885-893.
-
(1996)
Gastroenterology
, vol.110
, pp. 885-893
-
-
Kiba, T.1
-
57
-
-
0016425352
-
Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog
-
Kaneto A., et al. Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Endocrinology 1975, 96:143-150.
-
(1975)
Endocrinology
, vol.96
, pp. 143-150
-
-
Kaneto, A.1
-
58
-
-
0019303404
-
Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia
-
Berthoud H.R., et al. Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia. J. Auton. Nerv. Syst. 1980, 2:183-198.
-
(1980)
J. Auton. Nerv. Syst.
, vol.2
, pp. 183-198
-
-
Berthoud, H.R.1
-
59
-
-
0020375715
-
Cholinergic muscarinic effects on insulin release in mice
-
Lundquist I. Cholinergic muscarinic effects on insulin release in mice. Pharmacology 1982, 25:338-347.
-
(1982)
Pharmacology
, vol.25
, pp. 338-347
-
-
Lundquist, I.1
-
60
-
-
0028147826
-
Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats
-
N'Guyen J.M., et al. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats. J. Clin. Invest. 1994, 94:1456-1462.
-
(1994)
J. Clin. Invest.
, vol.94
, pp. 1456-1462
-
-
N'Guyen, J.M.1
-
61
-
-
17444435435
-
Sham feeding-induced cephalic phase insulin release in the rat
-
Berthoud H.R., Jeanrenaud B. Sham feeding-induced cephalic phase insulin release in the rat. Am. J. Physiol. 1982, 242:E280-E285.
-
(1982)
Am. J. Physiol.
, vol.242
, pp. E280-E285
-
-
Berthoud, H.R.1
Jeanrenaud, B.2
-
62
-
-
0025278729
-
Identification of vagal preganglionics that mediate cephalic phase insulin response
-
Berthoud H.R., Powley T.L. Identification of vagal preganglionics that mediate cephalic phase insulin response. Am. J. Physiol. 1990, 258:R523-R530.
-
(1990)
Am. J. Physiol.
, vol.258
, pp. R523-R530
-
-
Berthoud, H.R.1
Powley, T.L.2
-
63
-
-
2942553044
-
Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats
-
Guillod-Maximin E., et al. Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J. Neuroendocrinol. 2004, 16:464-471.
-
(2004)
J. Neuroendocrinol.
, vol.16
, pp. 464-471
-
-
Guillod-Maximin, E.1
-
64
-
-
0030831040
-
Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia
-
Sainsbury A., et al. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 1997, 40:1269-1277.
-
(1997)
Diabetologia
, vol.40
, pp. 1269-1277
-
-
Sainsbury, A.1
-
65
-
-
0027362079
-
Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity
-
Zarjevski N., et al. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993, 133:1753-1758.
-
(1993)
Endocrinology
, vol.133
, pp. 1753-1758
-
-
Zarjevski, N.1
-
66
-
-
0030885584
-
CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study
-
Jansen A.S.P., et al. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 1997, 766:29-38.
-
(1997)
Brain Res.
, vol.766
, pp. 29-38
-
-
Jansen, A.S.P.1
-
67
-
-
84892919259
-
Nervous glucose sensing regulates postnatal beta cell proliferation and glucose homeostasis
-
Tarussio D., et al. Nervous glucose sensing regulates postnatal beta cell proliferation and glucose homeostasis. J. Clin. Invest. 2014, 124:413-424.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 413-424
-
-
Tarussio, D.1
-
68
-
-
0033696456
-
Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms
-
Balkan B., Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am. J. Physiol. 2000, 279:R1449-R1454.
-
(2000)
Am. J. Physiol.
, vol.279
, pp. R1449-R1454
-
-
Balkan, B.1
Li, X.2
-
69
-
-
11144357764
-
Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors
-
Preitner F., et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 2004, 113:635-645.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 635-645
-
-
Preitner, F.1
-
70
-
-
0028865816
-
Induction of Fos protein in the rat hypothalamus elicited by insulin-induced hypoglycemia
-
Niimi M., et al. Induction of Fos protein in the rat hypothalamus elicited by insulin-induced hypoglycemia. Neurosci. Res. 1995, 23:361-364.
-
(1995)
Neurosci. Res.
, vol.23
, pp. 361-364
-
-
Niimi, M.1
-
71
-
-
31044444108
-
Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors
-
Marty N., et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J. Clin. Invest. 2005, 115:3545-3553.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 3545-3553
-
-
Marty, N.1
-
72
-
-
0036710262
-
Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia
-
Yuan P.Q., Yang H. Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia. Am. J. Physiol. Endocrinol. Metab. 2002, 283:E436-E448.
-
(2002)
Am. J. Physiol. Endocrinol. Metab.
, vol.283
, pp. E436-E448
-
-
Yuan, P.Q.1
Yang, H.2
-
73
-
-
34247616021
-
Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia
-
Tong Q., et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 2007, 5:383-393.
-
(2007)
Cell Metab.
, vol.5
, pp. 383-393
-
-
Tong, Q.1
-
74
-
-
0028931891
-
Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release
-
Borg W.P., et al. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 1995, 44:180-184.
-
(1995)
Diabetes
, vol.44
, pp. 180-184
-
-
Borg, W.P.1
-
75
-
-
0031038124
-
Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats
-
Borg M.A., et al. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest. 1997, 99:361-365.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 361-365
-
-
Borg, M.A.1
-
76
-
-
1442276966
-
Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons
-
Kang L., et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004, 53:549-559.
-
(2004)
Diabetes
, vol.53
, pp. 549-559
-
-
Kang, L.1
-
77
-
-
48449103821
-
Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia
-
Levin B.E., et al. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes 2008, 57:1371-1379.
-
(2008)
Diabetes
, vol.57
, pp. 1371-1379
-
-
Levin, B.E.1
-
78
-
-
0035042796
-
+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis
-
+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 2001, 4:507-512.
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 507-512
-
-
Miki, T.1
-
79
-
-
4644298411
-
+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses
-
+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes 2004, 53:2542-2551.
-
(2004)
Diabetes
, vol.53
, pp. 2542-2551
-
-
Evans, M.L.1
-
80
-
-
33644696261
-
+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats
-
+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 2005, 54:3169-3174.
-
(2005)
Diabetes
, vol.54
, pp. 3169-3174
-
-
McCrimmon, R.J.1
-
81
-
-
33745327159
-
Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia
-
Chan O., et al. Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 2006, 55:1080-1087.
-
(2006)
Diabetes
, vol.55
, pp. 1080-1087
-
-
Chan, O.1
-
82
-
-
84888137329
-
Influence of VMH fuel sensing on hypoglycemic responses
-
Chan O., Sherwin R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol. Metab. 2013, 24:616-624.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 616-624
-
-
Chan, O.1
Sherwin, R.2
-
83
-
-
40749132626
-
Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia
-
McCrimmon R.J., et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 2008, 57:444-450.
-
(2008)
Diabetes
, vol.57
, pp. 444-450
-
-
McCrimmon, R.J.1
-
84
-
-
33748296106
-
Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation
-
McCrimmon R.J., et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006, 55:1755-1760.
-
(2006)
Diabetes
, vol.55
, pp. 1755-1760
-
-
McCrimmon, R.J.1
-
85
-
-
84881257127
-
Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain
-
Lindberg D., et al. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J. Comp. Neurol. 2013, 521:3167-3190.
-
(2013)
J. Comp. Neurol.
, vol.521
, pp. 3167-3190
-
-
Lindberg, D.1
-
86
-
-
84885145339
-
Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia
-
Stanley S., et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab. 2013, 18:596-607.
-
(2013)
Cell Metab.
, vol.18
, pp. 596-607
-
-
Stanley, S.1
-
87
-
-
55449107738
-
A translational profiling approach for the molecular characterization of CNS cell types
-
Heiman M., et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135:738-748.
-
(2008)
Cell
, vol.135
, pp. 738-748
-
-
Heiman, M.1
-
88
-
-
77956367937
-
Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia
-
Diggs-Andrews K.A., et al. Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 2010, 59:2271-2280.
-
(2010)
Diabetes
, vol.59
, pp. 2271-2280
-
-
Diggs-Andrews, K.A.1
-
89
-
-
84919594610
-
A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia
-
Garfield A.S., et al. A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab. 2014, 20:1030-1037.
-
(2014)
Cell Metab.
, vol.20
, pp. 1030-1037
-
-
Garfield, A.S.1
-
90
-
-
84920828713
-
DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility
-
Urban D.J., Roth B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 2015, 55:399-417.
-
(2015)
Annu. Rev. Pharmacol. Toxicol.
, vol.55
, pp. 399-417
-
-
Urban, D.J.1
Roth, B.L.2
-
91
-
-
84924287177
-
Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance
-
Flak J.N., et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat. Neurosci. 2014, 17:1744-1750.
-
(2014)
Nat. Neurosci.
, vol.17
, pp. 1744-1750
-
-
Flak, J.N.1
-
92
-
-
84865714588
-
Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance
-
Grill H.J., Hayes M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012, 16:296-309.
-
(2012)
Cell Metab.
, vol.16
, pp. 296-309
-
-
Grill, H.J.1
Hayes, M.R.2
-
93
-
-
0033588532
-
Solitary tract nucleus sensitivity to moderate changes in glucose level
-
Dallaporta M., et al. Solitary tract nucleus sensitivity to moderate changes in glucose level. Neuroreport 1999, 10:2657-2660.
-
(1999)
Neuroreport
, vol.10
, pp. 2657-2660
-
-
Dallaporta, M.1
-
94
-
-
33947189587
-
Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia
-
Balfour R.H., Trapp S. Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia. J. Physiol. 2007, 579:691-702.
-
(2007)
J. Physiol.
, vol.579
, pp. 691-702
-
-
Balfour, R.H.1
Trapp, S.2
-
95
-
-
33645893473
-
Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem
-
Balfour R.H., et al. Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J. Physiol. 2006, 570:469-484.
-
(2006)
J. Physiol.
, vol.570
, pp. 469-484
-
-
Balfour, R.H.1
-
96
-
-
78650784216
-
Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex
-
Babic T., et al. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300:G21-G32.
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.300
, pp. G21-G32
-
-
Babic, T.1
-
97
-
-
84855500856
-
Metabolic and hedonic drives in the neural control of appetite: who is the boss?
-
Berthoud H.R. Metabolic and hedonic drives in the neural control of appetite: who is the boss?. Curr. Opin. Neurobiol. 2011, 21:888-896.
-
(2011)
Curr. Opin. Neurobiol.
, vol.21
, pp. 888-896
-
-
Berthoud, H.R.1
-
98
-
-
78650752631
-
Reward, dopamine and the control of food intake: implications for obesity
-
Volkow N.D., et al. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci. 2011, 15:37-46.
-
(2011)
Trends Cogn. Sci.
, vol.15
, pp. 37-46
-
-
Volkow, N.D.1
-
99
-
-
84868631248
-
The mysterious motivational functions of mesolimbic dopamine
-
Salamone J.D., Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron 2012, 76:470-485.
-
(2012)
Neuron
, vol.76
, pp. 470-485
-
-
Salamone, J.D.1
Correa, M.2
-
100
-
-
33748540764
-
Leptin receptor signaling in midbrain dopamine neurons regulates feeding
-
Hommel J.D., et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006, 51:801-810.
-
(2006)
Neuron
, vol.51
, pp. 801-810
-
-
Hommel, J.D.1
-
101
-
-
84864816408
-
Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake
-
Mebel D.M., et al. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur. J. Neurosci. 2012, 36:2336-2346.
-
(2012)
Eur. J. Neurosci.
, vol.36
, pp. 2336-2346
-
-
Mebel, D.M.1
-
102
-
-
84875906445
-
Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids
-
Labouebe G., et al. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat. Neurosci. 2013, 16:300-308.
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 300-308
-
-
Labouebe, G.1
-
103
-
-
84856102513
-
GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake
-
Alhadeff A.L., et al. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012, 153:647-658.
-
(2012)
Endocrinology
, vol.153
, pp. 647-658
-
-
Alhadeff, A.L.1
-
104
-
-
33748560432
-
Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite
-
Abizaid A., et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 2006, 116:3229-3239.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 3229-3239
-
-
Abizaid, A.1
-
105
-
-
79953198914
-
Ghrelin directly targets the ventral tegmental area to increase food motivation
-
Skibicka K.P., et al. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 2011, 180:129-137.
-
(2011)
Neuroscience
, vol.180
, pp. 129-137
-
-
Skibicka, K.P.1
-
106
-
-
70349145473
-
Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers
-
Borgland S.L., et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 2009, 29:11215-11225.
-
(2009)
J. Neurosci.
, vol.29
, pp. 11215-11225
-
-
Borgland, S.L.1
-
107
-
-
84869073828
-
Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell
-
Patyal R., et al. Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Front. Behav. Neurosci. 2012, 6:82.
-
(2012)
Front. Behav. Neurosci.
, vol.6
, pp. 82
-
-
Patyal, R.1
-
108
-
-
67749130801
-
Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine
-
Sorensen G., et al. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine. Neuroreport 2009, 20:1023-1026.
-
(2009)
Neuroreport
, vol.20
, pp. 1023-1026
-
-
Sorensen, G.1
-
109
-
-
0346455760
-
Oral sucrose stimulation increases accumbens dopamine in the rat
-
Hajnal A., et al. Oral sucrose stimulation increases accumbens dopamine in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286:R31-R37.
-
(2004)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.286
, pp. R31-R37
-
-
Hajnal, A.1
-
110
-
-
0033406776
-
Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state
-
Bassareo V., Di Chiara G. Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur. J. Neurosci. 1999, 11:4389-4397.
-
(1999)
Eur. J. Neurosci.
, vol.11
, pp. 4389-4397
-
-
Bassareo, V.1
Di Chiara, G.2
-
111
-
-
84883183253
-
Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements
-
Swithers S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24:431-441.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 431-441
-
-
Swithers, S.E.1
-
112
-
-
33751084573
-
The receptors and cells for mammalian taste
-
Chandrashekar J., et al. The receptors and cells for mammalian taste. Nature 2006, 444:288-294.
-
(2006)
Nature
, vol.444
, pp. 288-294
-
-
Chandrashekar, J.1
-
113
-
-
0037423367
-
Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways
-
Zhang Y., et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003, 112:293-301.
-
(2003)
Cell
, vol.112
, pp. 293-301
-
-
Zhang, Y.1
-
114
-
-
84865818300
-
Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei
-
Li C.S., et al. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J. Neurophysiol. 2012, 108:1288-1298.
-
(2012)
J. Neurophysiol.
, vol.108
, pp. 1288-1298
-
-
Li, C.S.1
-
115
-
-
77954385728
-
Coding in the mammalian gustatory system
-
Carleton A., et al. Coding in the mammalian gustatory system. Trends Neurosci. 2010, 33:326-334.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 326-334
-
-
Carleton, A.1
-
116
-
-
77953495960
-
Nutrient selection in the absence of taste receptor signaling
-
Ren X., et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 2010, 30:8012-8023.
-
(2010)
J. Neurosci.
, vol.30
, pp. 8012-8023
-
-
Ren, X.1
-
117
-
-
84860441219
-
The gut-brain dopamine axis: a regulatory system for caloric intake
-
de Araujo I.E., et al. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol. Behav. 2012, 106:394-399.
-
(2012)
Physiol. Behav.
, vol.106
, pp. 394-399
-
-
de Araujo, I.E.1
-
118
-
-
40849083517
-
Food reward in the absence of taste receptor signaling
-
de Araujo I.E., et al. Food reward in the absence of taste receptor signaling. Neuron 2008, 57:930-941.
-
(2008)
Neuron
, vol.57
, pp. 930-941
-
-
de Araujo, I.E.1
-
119
-
-
84884918776
-
Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs
-
Zukerman S., et al. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305:R840-R853.
-
(2013)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.305
, pp. R840-R853
-
-
Zukerman, S.1
-
120
-
-
80054025896
-
Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl
-
Otsubo H., et al. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl. Neuroscience 2011, 196:97-103.
-
(2011)
Neuroscience
, vol.196
, pp. 97-103
-
-
Otsubo, H.1
-
121
-
-
84887824523
-
Portal glucose influences the sensory, cortical and reward systems in rats
-
Delaere F., et al. Portal glucose influences the sensory, cortical and reward systems in rats. Eur. J. Neurosci. 2013, 38:3476-3486.
-
(2013)
Eur. J. Neurosci.
, vol.38
, pp. 3476-3486
-
-
Delaere, F.1
-
122
-
-
80053198182
-
Intravascular food reward
-
Oliveira-Maia A.J., et al. Intravascular food reward. PLoS ONE 2011, 6:e24992.
-
(2011)
PLoS ONE
, vol.6
, pp. e24992
-
-
Oliveira-Maia, A.J.1
-
123
-
-
74249110599
-
Post-oral infusion sites that support glucose-conditioned flavor preferences in rats
-
Ackroff K., et al. Post-oral infusion sites that support glucose-conditioned flavor preferences in rats. Physiol. Behav. 2010, 99:402-411.
-
(2010)
Physiol. Behav.
, vol.99
, pp. 402-411
-
-
Ackroff, K.1
-
124
-
-
0033810262
-
Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice
-
Burcelin R., et al. Glucose sensing by the hepatoportal sensor is GLUT2-dependent. In vivo analysis in GLUT2-null mice. Diabetes 2000, 49:1643-1648.
-
(2000)
Diabetes
, vol.49
, pp. 1643-1648
-
-
Burcelin, R.1
-
125
-
-
31044450630
-
The hepatoportal glucose sensor. Mechanisms of glucose sensing and signal transduction
-
Karger, F.M. Matschinski, M.A. Magnuson (Eds.)
-
Thorens B. The hepatoportal glucose sensor. Mechanisms of glucose sensing and signal transduction. Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics 2004, 327-338. Karger. F.M. Matschinski, M.A. Magnuson (Eds.).
-
(2004)
Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics
, pp. 327-338
-
-
Thorens, B.1
-
126
-
-
84876107265
-
The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing
-
Delaere F., et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2012, 2:47-53.
-
(2012)
Mol. Metab.
, vol.2
, pp. 47-53
-
-
Delaere, F.1
-
127
-
-
0141705347
-
A glucose sensor hiding in a family of transporters
-
Diez-Sampedro A., et al. A glucose sensor hiding in a family of transporters. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:11753-11758.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 11753-11758
-
-
Diez-Sampedro, A.1
-
128
-
-
0017643110
-
A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets
-
Zawalich W.S., et al. A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets. J. Biol. Chem. 1977, 252:8519-8523.
-
(1977)
J. Biol. Chem.
, vol.252
, pp. 8519-8523
-
-
Zawalich, W.S.1
-
129
-
-
0018460451
-
Insulin secretion by isolated perfused rat and mouse pancreas
-
Lenzen S. Insulin secretion by isolated perfused rat and mouse pancreas. Am. J. Physiol. 1979, 236:E391-E400.
-
(1979)
Am. J. Physiol.
, vol.236
, pp. E391-E400
-
-
Lenzen, S.1
-
130
-
-
78049433920
-
Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis
-
Kong D., et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010, 12:545-552.
-
(2010)
Cell Metab.
, vol.12
, pp. 545-552
-
-
Kong, D.1
-
131
-
-
84925859543
-
Decoding neural circuits that control compulsive sucrose seeking
-
Nieh E.H., et al. Decoding neural circuits that control compulsive sucrose seeking. Cell 2015, 160:528-541.
-
(2015)
Cell
, vol.160
, pp. 528-541
-
-
Nieh, E.H.1
-
132
-
-
84887615088
-
Glucose utilization rates regulate intake levels of artificial sweeteners
-
Tellez L.A., et al. Glucose utilization rates regulate intake levels of artificial sweeteners. J. Physiol. 2013, 591:5727-5744.
-
(2013)
J. Physiol.
, vol.591
, pp. 5727-5744
-
-
Tellez, L.A.1
-
133
-
-
79959873914
-
The development and application of optogenetics
-
Fenno L., et al. The development and application of optogenetics. Annu. Rev. Neurosci. 2011, 34:389-412.
-
(2011)
Annu. Rev. Neurosci.
, vol.34
, pp. 389-412
-
-
Fenno, L.1
-
134
-
-
33847159648
-
Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons
-
Wickersham I.R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 2007, 53:639-647.
-
(2007)
Neuron
, vol.53
, pp. 639-647
-
-
Wickersham, I.R.1
-
135
-
-
33845924630
-
Retrograde neuronal tracing with a deletion-mutant rabies virus
-
Wickersham I.R., et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 2007, 4:47-49.
-
(2007)
Nat. Methods
, vol.4
, pp. 47-49
-
-
Wickersham, I.R.1
-
136
-
-
79958239275
-
Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits
-
Betley J.N., Sternson S.M. Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. Hum. Gene Ther. 2011, 22:669-677.
-
(2011)
Hum. Gene Ther.
, vol.22
, pp. 669-677
-
-
Betley, J.N.1
Sternson, S.M.2
-
137
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347:1138-1142.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
-
138
-
-
21344437030
-
Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study
-
Laukkanen O., et al. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 2005, 54:2256-2260.
-
(2005)
Diabetes
, vol.54
, pp. 2256-2260
-
-
Laukkanen, O.1
-
139
-
-
76749113896
-
Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels
-
Igl W., et al. Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels. PLoS Genet. 2010, 6:e1000798.
-
(2010)
PLoS Genet.
, vol.6
, pp. e1000798
-
-
Igl, W.1
-
140
-
-
84869769880
-
Genetic variant SLC2A2 is associated with risk of cardiovascular disease - assessing the individual and cumulative effect of 46 type 2 diabetes related genetic variants
-
Borglykke A., et al. Genetic variant SLC2A2 is associated with risk of cardiovascular disease - assessing the individual and cumulative effect of 46 type 2 diabetes related genetic variants. PLoS ONE 2012, 7:e50418.
-
(2012)
PLoS ONE
, vol.7
, pp. e50418
-
-
Borglykke, A.1
-
141
-
-
45549102127
-
Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations
-
Eny K.M., et al. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol. Genomics 2008, 33:355-360.
-
(2008)
Physiol. Genomics
, vol.33
, pp. 355-360
-
-
Eny, K.M.1
|