-
1
-
-
0026545981
-
Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes.
-
Carabaza A, Ciudad CJ, Baque S, Guinovart JJ. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett 1992; 296: 211-214.
-
(1992)
FEBS Lett
, vol.296
, pp. 211-214
-
-
Carabaza, A.1
Ciudad, C.J.2
Baque, S.3
Guinovart, J.J.4
-
2
-
-
2442614148
-
Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes.
-
Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 2004; 279: 15662-15669.
-
(2004)
J Biol Chem
, vol.279
, pp. 15662-15669
-
-
Stoeckman, A.K.1
Ma, L.2
Towle, H.C.3
-
3
-
-
15744376705
-
Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes.
-
Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005; 280: 12019-12027.
-
(2005)
J Biol Chem
, vol.280
, pp. 12019-12027
-
-
Ma, L.1
Tsatsos, N.G.2
Towle, H.C.3
-
4
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation.
-
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324: 1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
Hatzivassiliou, G.2
Sachdeva, U.M.3
Bui, T.V.4
Cross, J.R.5
Thompson, C.B.6
-
6
-
-
84878663936
-
-
The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav. In press.
-
Treesukosol Y, Smith KR, Spector AC. The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav. In press.
-
-
-
Treesukosol, Y.1
Smith, K.R.2
Spector, A.C.3
-
7
-
-
69549111756
-
Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
-
Wellendorph P, Johansen LD, Brauner-Osborne H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 2009; 76: 453-465.
-
(2009)
Mol Pharmacol
, vol.76
, pp. 453-465
-
-
Wellendorph, P.1
Johansen, L.D.2
Brauner-Osborne, H.3
-
8
-
-
0034001450
-
Autonomic regulation of islet hormone secretion-implications for health and disease.
-
Ahren B. Autonomic regulation of islet hormone secretion-implications for health and disease. Diabetologia 2000; 43: 393-410.
-
(2000)
Diabetologia
, vol.43
, pp. 393-410
-
-
Ahren, B.1
-
9
-
-
78650782251
-
Central control of glucose homeostasis: the brain-endocrine pancreas axis.
-
Thorens B. Central control of glucose homeostasis: the brain-endocrine pancreas axis. Diabetes Metab 2010; 36(Suppl 3): S45-S49.
-
(2010)
Diabetes Metab
, vol.36
, Issue.SUPPL. 3
-
-
Thorens, B.1
-
10
-
-
0016425352
-
Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog.
-
Kaneto A, Kajinuma H, Kosaka K. Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Endocrinology 1975; 96: 143-150.
-
(1975)
Endocrinology
, vol.96
, pp. 143-150
-
-
Kaneto, A.1
Kajinuma, H.2
Kosaka, K.3
-
11
-
-
0019303404
-
Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia.
-
Berthoud HR, Bereiter DA, Jeanrenaud B. Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia. J Auton Nerv Syst 1980; 2: 183-198.
-
(1980)
J Auton Nerv Syst
, vol.2
, pp. 183-198
-
-
Berthoud, H.R.1
Bereiter, D.A.2
Jeanrenaud, B.3
-
12
-
-
0020375715
-
Cholinergic muscarinic effects on insulin release in mice.
-
Lundquist I. Cholinergic muscarinic effects on insulin release in mice. Pharmacology 1982; 25: 338-347.
-
(1982)
Pharmacology
, vol.25
, pp. 338-347
-
-
Lundquist, I.1
-
13
-
-
0028147826
-
Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.
-
N'Guyen JM, Magnan C, Laury MC et al. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats. J Clin Invest 1994; 94: 1456-1462.
-
(1994)
J Clin Invest
, vol.94
, pp. 1456-1462
-
-
N'Guyen, J.M.1
Magnan, C.2
Laury, M.C.3
-
14
-
-
16644369515
-
Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments.
-
Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 2004; 29: e51-58.
-
(2004)
Pancreas
, vol.29
-
-
Kiba, T.1
-
15
-
-
0030051196
-
Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation.
-
Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 1996; 110: 885-893.
-
(1996)
Gastroenterology
, vol.110
, pp. 885-893
-
-
Kiba, T.1
Tanaka, K.2
Numata, K.3
Hoshino, M.4
Misugi, K.5
Inoue, S.6
-
16
-
-
78049521571
-
Beneficial metabolic effects caused by persistent activation of {beta}-cell M3 muscarinic acetylcholine receptors in transgenic mice.
-
Gautam D, de Azua IR, Li JH et al. Beneficial metabolic effects caused by persistent activation of {beta}-cell M3 muscarinic acetylcholine receptors in transgenic mice. Endocrinology 2010; 151: 5185-5194.
-
(2010)
Endocrinology
, vol.151
, pp. 5185-5194
-
-
Gautam, D.1
de Azua, I.R.2
Li, J.H.3
-
17
-
-
33744510095
-
A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.
-
Gautam D, Han SJ, Hamdan FF et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 2006; 3: 449-461.
-
(2006)
Cell Metab
, vol.3
, pp. 449-461
-
-
Gautam, D.1
Han, S.J.2
Hamdan, F.F.3
-
18
-
-
0023676354
-
The muscarinic receptor subtype in mouse pancreatic B-cells.
-
Henquin JC, Nenquin M. The muscarinic receptor subtype in mouse pancreatic B-cells. FEBS Lett 1988; 236: 89-92.
-
(1988)
FEBS Lett
, vol.236
, pp. 89-92
-
-
Henquin, J.C.1
Nenquin, M.2
-
19
-
-
0019003702
-
Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats.
-
Berthoud HR, Trimble ER, Siegel EG, Bereiter DA, Jeanrenaud B. Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats. Am J Physiol 1980; 238: E336-E340.
-
(1980)
Am J Physiol
, vol.238
-
-
Berthoud, H.R.1
Trimble, E.R.2
Siegel, E.G.3
Bereiter, D.A.4
Jeanrenaud, B.5
-
20
-
-
0019459685
-
Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization.
-
Berthoud HR, Bereiter DA, Trimble ER, Siegel EG, Jeanrenaud B. Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Diabetologia 1981; 20(Suppl): 393-401.
-
(1981)
Diabetologia
, Issue.20 SUPPL
, pp. 393-401
-
-
Berthoud, H.R.1
Bereiter, D.A.2
Trimble, E.R.3
Siegel, E.G.4
Jeanrenaud, B.5
-
21
-
-
17444435435
-
Sham feeding-induced cephalic phase insulin release in the rat.
-
Berthoud HR, Jeanrenaud B. Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol 1982; 242: E280-E285.
-
(1982)
Am J Physiol
, vol.242
-
-
Berthoud, H.R.1
Jeanrenaud, B.2
-
22
-
-
0025278729
-
Identification of vagal preganglionics that mediate cephalic phase insulin response.
-
Berthoud HR, Powley TL. Identification of vagal preganglionics that mediate cephalic phase insulin response. Am J Physiol 1990; 258: R523-R530.
-
(1990)
Am J Physiol
, vol.258
-
-
Berthoud, H.R.1
Powley, T.L.2
-
23
-
-
0035686071
-
GLUT2 in pancreatic and extra-pancreatic gluco-detection (review).
-
Thorens B. GLUT2 in pancreatic and extra-pancreatic gluco-detection (review). Mol Membr Biol 2001; 18: 265-273.
-
(2001)
Mol Membr Biol
, vol.18
, pp. 265-273
-
-
Thorens, B.1
-
24
-
-
0020335147
-
Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig.
-
Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J Physiol 1982; 332: 315-323.
-
(1982)
J Physiol
, vol.332
, pp. 315-323
-
-
Niijima, A.1
-
25
-
-
0021245114
-
The effect of d-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-d-glucose.
-
Niijima A. The effect of d-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-d-glucose. J Autonom Nerv Sys 1984; 10: 279-285.
-
(1984)
J Autonom Nerv Sys
, vol.10
, pp. 279-285
-
-
Niijima, A.1
-
26
-
-
0033696456
-
Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms.
-
Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol 2000; 279: R1449-R1454.
-
(2000)
Am J Physiol
, vol.279
-
-
Balkan, B.1
Li, X.2
-
27
-
-
11144357764
-
Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors.
-
Preitner F, Ibberson M, Franklin I et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113: 635-645.
-
(2004)
J Clin Invest
, vol.113
, pp. 635-645
-
-
Preitner, F.1
Ibberson, M.2
Franklin, I.3
-
28
-
-
2942553044
-
Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats.
-
Guillod-Maximin E, Lorsignol A, Alquier T, Penicaud L. Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J Neuroendocrinol 2004; 16: 464-471.
-
(2004)
J Neuroendocrinol
, vol.16
, pp. 464-471
-
-
Guillod-Maximin, E.1
Lorsignol, A.2
Alquier, T.3
Penicaud, L.4
-
29
-
-
0030831040
-
Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia.
-
Sainsbury A, Rohner-Jeanrenaud F, Cusin I et al. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 1997; 40: 1269-1277.
-
(1997)
Diabetologia
, vol.40
, pp. 1269-1277
-
-
Sainsbury, A.1
Rohner-Jeanrenaud, F.2
Cusin, I.3
-
30
-
-
0027362079
-
Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity.
-
Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993; 133: 1753-1758.
-
(1993)
Endocrinology
, vol.133
, pp. 1753-1758
-
-
Zarjevski, N.1
Cusin, I.2
Vettor, R.3
Rohner-Jeanrenaud, F.4
Jeanrenaud, B.5
-
31
-
-
0020728191
-
Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve.
-
Ionescu E, Rohner-Jeanrenaud F, Berthoud HR, Jeanrenaud B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 1983; 112: 904-910.
-
(1983)
Endocrinology
, vol.112
, pp. 904-910
-
-
Ionescu, E.1
Rohner-Jeanrenaud, F.2
Berthoud, H.R.3
Jeanrenaud, B.4
-
32
-
-
0028788998
-
Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response.
-
Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 1995; 270: 644-646.
-
(1995)
Science
, vol.270
, pp. 644-646
-
-
Jansen, A.S.1
Nguyen, X.V.2
Karpitskiy, V.3
Mettenleiter, T.C.4
Loewy, A.D.5
-
33
-
-
0030885584
-
CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study.
-
Jansen ASP, Hoffman JL, Loewy AD. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res 1997; 766: 29-38.
-
(1997)
Brain Res
, vol.766
, pp. 29-38
-
-
Jansen, A.S.P.1
Hoffman, J.L.2
Loewy, A.D.3
-
34
-
-
0033957338
-
Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia.
-
Hevener AL, Bergman RN, Donovan CM. Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes 2000; 49: 8-12.
-
(2000)
Diabetes
, vol.49
, pp. 8-12
-
-
Hevener, A.L.1
Bergman, R.N.2
Donovan, C.M.3
-
35
-
-
33644668567
-
Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia.
-
Fujita S, Donovan CM. Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia. Diabetes 2005; 54: 3258-3264.
-
(2005)
Diabetes
, vol.54
, pp. 3258-3264
-
-
Fujita, S.1
Donovan, C.M.2
-
36
-
-
34547106283
-
Hypoglycemic detection at the portal vein is mediated by capsaicin-sensitive primary sensory neurons.
-
Fujita S, Bohland M, Sanchez-Watts G, Watts AG, Donovan CM. Hypoglycemic detection at the portal vein is mediated by capsaicin-sensitive primary sensory neurons. Am J Physiol Endocrinol Metab 2007; 293: E96-E101.
-
(2007)
Am J Physiol Endocrinol Metab
, vol.293
-
-
Fujita, S.1
Bohland, M.2
Sanchez-Watts, G.3
Watts, A.G.4
Donovan, C.M.5
-
37
-
-
0027327113
-
Counterregulation during hypoglycemia is directed by widespread brain regions.
-
Frizzell RT, Jones EM, Davis SN et al. Counterregulation during hypoglycemia is directed by widespread brain regions. Diabetes 1993; 42: 1253-1261.
-
(1993)
Diabetes
, vol.42
, pp. 1253-1261
-
-
Frizzell, R.T.1
Jones, E.M.2
Davis, S.N.3
-
38
-
-
0028931891
-
Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release.
-
Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 1995; 44: 180-184.
-
(1995)
Diabetes
, vol.44
, pp. 180-184
-
-
Borg, W.P.1
Sherwin, R.S.2
During, M.J.3
Borg, M.A.4
Shulman, G.I.5
-
39
-
-
0031038124
-
Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats.
-
Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 1997; 99: 361-365.
-
(1997)
J Clin Invest
, vol.99
, pp. 361-365
-
-
Borg, M.A.1
Sherwin, R.S.2
Borg, W.P.3
Tamborlane, W.V.4
Shulman, G.I.5
-
40
-
-
33745208032
-
Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation.
-
Mccrimmon RJ, Song Z, Cheng H et al. Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. J Clin Invest 2006; 116: 1723-1730.
-
(2006)
J Clin Invest
, vol.116
, pp. 1723-1730
-
-
Mccrimmon, R.J.1
Song, Z.2
Cheng, H.3
-
41
-
-
33745215659
-
Mechanisms of sympathoadrenal failure and hypoglycemia in diabetes.
-
Cryer PE. Mechanisms of sympathoadrenal failure and hypoglycemia in diabetes. J Clin Invest 2006; 116: 1470-1473.
-
(2006)
J Clin Invest
, vol.116
, pp. 1470-1473
-
-
Cryer, P.E.1
-
42
-
-
77950805120
-
Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia.
-
Zhu W, Czyzyk D, Paranjape SA et al. Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. Am J Physiol Endocrinol Metab 2010; 298: E971-E977.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
-
-
Zhu, W.1
Czyzyk, D.2
Paranjape, S.A.3
-
43
-
-
77449095693
-
Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation.
-
Fioramonti X, Marsollier N, Song Z et al. Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation. Diabetes 2010; 59: 519-528.
-
(2010)
Diabetes
, vol.59
, pp. 519-528
-
-
Fioramonti, X.1
Marsollier, N.2
Song, Z.3
-
44
-
-
77957608055
-
The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia.
-
Zhou L, Podolsky N, Sang Z et al. The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia. Diabetes 2010; 59: 2646-2652.
-
(2010)
Diabetes
, vol.59
, pp. 2646-2652
-
-
Zhou, L.1
Podolsky, N.2
Sang, Z.3
-
45
-
-
0019794835
-
Glucoreceptors controlling feeding and blood glucose: location in the hindbrain.
-
Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 1981; 213: 451-453.
-
(1981)
Science
, vol.213
, pp. 451-453
-
-
Ritter, R.C.1
Slusser, P.G.2
Stone, S.3
-
46
-
-
0033976228
-
Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose.
-
Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 2000; 856: 37-47.
-
(2000)
Brain Res
, vol.856
, pp. 37-47
-
-
Ritter, S.1
Dinh, T.T.2
Zhang, Y.3
-
47
-
-
0037227401
-
Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-d-glucose-induced neuropeptide Y and agouti-gene-related protein messenger ribonucleic acid expression in the arcuate nucleus.
-
Fraley GS, Ritter S. Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-d-glucose-induced neuropeptide Y and agouti-gene-related protein messenger ribonucleic acid expression in the arcuate nucleus. Endocrinology 2003; 411: 75-83.
-
(2003)
Endocrinology
, vol.411
, pp. 75-83
-
-
Fraley, G.S.1
Ritter, S.2
-
48
-
-
0035795199
-
Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation.
-
Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001; 43: 197-216.
-
(2001)
J Comp Neurol
, vol.43
, pp. 197-216
-
-
Ritter, S.1
Bugarith, K.2
Dinh, T.T.3
-
49
-
-
34548207654
-
Brain glucose sensing, counterregulation and feeding behavior.
-
Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation and feeding behavior. Physiology (Bethesda) 2007; 22: 241-251.
-
(2007)
Physiology (Bethesda)
, vol.22
, pp. 241-251
-
-
Marty, N.1
Dallaporta, M.2
Thorens, B.3
-
50
-
-
75749146213
-
Glucose-induced inhibition: how many ionic mechanisms?
-
Burdakov D, Lesage F. Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf) 2010; 198: 295-301.
-
(2010)
Acta Physiol (Oxf)
, vol.198
, pp. 295-301
-
-
Burdakov, D.1
Lesage, F.2
-
51
-
-
5044229137
-
Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study.
-
Arluison M, Quignon M, Thorens B, Leloup C, Penicaud L. Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat 2004; 28: 137-146.
-
(2004)
J Chem Neuroanat
, vol.28
, pp. 137-146
-
-
Arluison, M.1
Quignon, M.2
Thorens, B.3
Leloup, C.4
Penicaud, L.5
-
52
-
-
5044231048
-
Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study.
-
Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J Chem Neuroanat 2004; 28: 117-136.
-
(2004)
J Chem Neuroanat
, vol.28
, pp. 117-136
-
-
Arluison, M.1
Quignon, M.2
Nguyen, P.3
Thorens, B.4
Leloup, C.5
Penicaud, L.6
-
53
-
-
1442276966
-
Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons.
-
Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004; 53: 549-559.
-
(2004)
Diabetes
, vol.53
, pp. 549-559
-
-
Kang, L.1
Routh, V.H.2
Kuzhikandathil, E.V.3
Gaspers, L.D.4
Levin, B.E.5
-
54
-
-
0028157201
-
Glucose transporter 2 (GLUT2): expression in specific brain nuclei.
-
Leloup C, Arluison M, Lepetit N et al. Glucose transporter 2 (GLUT2): expression in specific brain nuclei. Brain Res 1994; 638: 221-226.
-
(1994)
Brain Res
, vol.638
, pp. 221-226
-
-
Leloup, C.1
Arluison, M.2
Lepetit, N.3
-
55
-
-
0038582455
-
Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR.
-
Li B, Xi X, Roane DS, Ryan DH, Martin RJ. Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res 2003; 113: 139-142.
-
(2003)
Brain Res Mol Brain Res
, vol.113
, pp. 139-142
-
-
Li, B.1
Xi, X.2
Roane, D.S.3
Ryan, D.H.4
Martin, R.J.5
-
56
-
-
0042303943
-
Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing.
-
Garcia MA, Millan C, Balmaceda-Aguilera C et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 2003; 86: 709-724.
-
(2003)
J Neurochem
, vol.86
, pp. 709-724
-
-
Garcia, M.A.1
Millan, C.2
Balmaceda-Aguilera, C.3
-
57
-
-
0034463846
-
Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms.
-
Maekawa F, Toyoda Y, Torii N et al. Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms. Endocrinology 2000; 141: 375-384.
-
(2000)
Endocrinology
, vol.141
, pp. 375-384
-
-
Maekawa, F.1
Toyoda, Y.2
Torii, N.3
-
58
-
-
0032525884
-
Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion.
-
Leloup C, Orosco M, Serradas P, Nicolaidis S, Penicaud L. Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion. Brain Res Mol Brain Res 1998; 57: 275-280.
-
(1998)
Brain Res Mol Brain Res
, vol.57
, pp. 275-280
-
-
Leloup, C.1
Orosco, M.2
Serradas, P.3
Nicolaidis, S.4
Penicaud, L.5
-
59
-
-
0142067094
-
Intracerebroventricular administration of antisense oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food intake, body weight change and glucoprivic feeding response in rats.
-
Wan HZ, Hulsey MG, Martin RJ. Intracerebroventricular administration of antisense oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food intake, body weight change and glucoprivic feeding response in rats. J Nutr 1998; 128: 287-291.
-
(1998)
J Nutr
, vol.128
, pp. 287-291
-
-
Wan, H.Z.1
Hulsey, M.G.2
Martin, R.J.3
-
60
-
-
0034604731
-
Transgenic reexpression of Glut1 or Glut2 in pancreatic b cells rescues Glut2-null mice from early death and restores normal glucose-stimulated insulin secretion.
-
Thorens B, Guillam M-T, Beermann F, Burcelin R, Jaquet M. Transgenic reexpression of Glut1 or Glut2 in pancreatic b cells rescues Glut2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 2000; 275: 23751-23758.
-
(2000)
J Biol Chem
, vol.275
, pp. 23751-23758
-
-
Thorens, B.1
Guillam, M.-T.2
Beermann, F.3
Burcelin, R.4
Jaquet, M.5
-
61
-
-
31044444108
-
Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors.
-
Marty N, Dallaporta M, Foretz M et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest 2005; 115: 3545-3553.
-
(2005)
J Clin Invest
, vol.115
, pp. 3545-3553
-
-
Marty, N.1
Dallaporta, M.2
Foretz, M.3
-
62
-
-
0034115117
-
Localization of glucokinase gene expression in the rat brain.
-
Lynch RM, Tompkins LS, Brooks HL, Dunn-Meynell AA, Levin BE. Localization of glucokinase gene expression in the rat brain. Diabetes 2000; 49: 693-700.
-
(2000)
Diabetes
, vol.49
, pp. 693-700
-
-
Lynch, R.M.1
Tompkins, L.S.2
Brooks, H.L.3
Dunn-Meynell, A.A.4
Levin, B.E.5
-
63
-
-
33645893473
-
Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem.
-
Balfour RH, Hansen AM, Trapp S. Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J Physiol 2006; 570: 469-484.
-
(2006)
J Physiol
, vol.570
, pp. 469-484
-
-
Balfour, R.H.1
Hansen, A.M.2
Trapp, S.3
-
64
-
-
77956257822
-
Glial glucokinase expression in adult and post-natal development of the hypothalamic region.
-
Millan C, Martinez F, Cortes-Campos C et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010; 2: e00035.
-
(2010)
ASN Neuro
, vol.2
-
-
Millan, C.1
Martinez, F.2
Cortes-Campos, C.3
-
65
-
-
2342510308
-
Third ventricular alloxan reversibly impairs glucose counterregulatory responses.
-
Sanders NM, Dunn-Meynell AA, Levin BE. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes 2004; 53: 1230-1236.
-
(2004)
Diabetes
, vol.53
, pp. 1230-1236
-
-
Sanders, N.M.1
Dunn-Meynell, A.A.2
Levin, B.E.3
-
66
-
-
48449103821
-
Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia.
-
Levin BE, Becker TC, Eiki J, Zhang BB, Dunn-Meynell AA. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes 2008; 57: 1371-1379.
-
(2008)
Diabetes
, vol.57
, pp. 1371-1379
-
-
Levin, B.E.1
Becker, T.C.2
Eiki, J.3
Zhang, B.B.4
Dunn-Meynell, A.A.5
-
67
-
-
79952985152
-
Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats.
-
Osundiji MA, Hurst P, Moore SP et al. Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats. Metabolism 2011; 60: 550-556.
-
(2011)
Metabolism
, vol.60
, pp. 550-556
-
-
Osundiji, M.A.1
Hurst, P.2
Moore, S.P.3
-
68
-
-
0036303140
-
Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons.
-
Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 2002; 51: 2056-2065.
-
(2002)
Diabetes
, vol.51
, pp. 2056-2065
-
-
Dunn-Meynell, A.A.1
Routh, V.H.2
Kang, L.3
Gaspers, L.4
Levin, B.E.5
-
69
-
-
3242765290
-
The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides.
-
Wang R, Liu X, Hentges ST et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 2004; 53: 1959-1965.
-
(2004)
Diabetes
, vol.53
, pp. 1959-1965
-
-
Wang, R.1
Liu, X.2
Hentges, S.T.3
-
70
-
-
0032829063
-
Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms.
-
Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 1999; 48: 1763-1772.
-
(1999)
Diabetes
, vol.48
, pp. 1763-1772
-
-
Yang, X.J.1
Kow, L.M.2
Funabashi, T.3
Mobbs, C.V.4
-
71
-
-
0347360368
-
Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose.
-
Yang XJ, Kow LM, Pfaff DW, Mobbs CV. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes 2004; 53: 67-73.
-
(2004)
Diabetes
, vol.53
, pp. 67-73
-
-
Yang, X.J.1
Kow, L.M.2
Pfaff, D.W.3
Mobbs, C.V.4
-
72
-
-
0032517821
-
Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain.
-
Dunn-Meynell AA, Rawson NE, Levin BE. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 1998; 814: 41-54.
-
(1998)
Brain Res
, vol.814
, pp. 41-54
-
-
Dunn-Meynell, A.A.1
Rawson, N.E.2
Levin, B.E.3
-
73
-
-
0031026364
-
Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain.
-
Karschin C, Ecke C, Ashcroft FM, Karschin A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 1997; 401: 59-64.
-
(1997)
FEBS Lett
, vol.401
, pp. 59-64
-
-
Karschin, C.1
Ecke, C.2
Ashcroft, F.M.3
Karschin, A.4
-
74
-
-
0028933233
-
Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart.
-
Inagaki N, Tsuura Y, Namba N et al. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 1995; 270: 5691-5694.
-
(1995)
J Biol Chem
, vol.270
, pp. 5691-5694
-
-
Inagaki, N.1
Tsuura, Y.2
Namba, N.3
-
75
-
-
4644298411
-
Hypothalamic ATP-sensitive K+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses.
-
Evans ML, Mccrimmon RJ, Flanagan DE et al. Hypothalamic ATP-sensitive K+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes 2004; 53: 2542-2551.
-
(2004)
Diabetes
, vol.53
, pp. 2542-2551
-
-
Evans, M.L.1
Mccrimmon, R.J.2
Flanagan, D.E.3
-
76
-
-
0035042796
-
ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis.
-
Miki T, Liss B, Minami K et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 2001; 4: 507-512.
-
(2001)
Nat Neurosci
, vol.4
, pp. 507-512
-
-
Miki, T.1
Liss, B.2
Minami, K.3
-
77
-
-
33644696261
-
Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats.
-
Mccrimmon RJ, Evans ML, Fan X et al. Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 2005; 54: 3169-3174.
-
(2005)
Diabetes
, vol.54
, pp. 3169-3174
-
-
Mccrimmon, R.J.1
Evans, M.L.2
Fan, X.3
-
78
-
-
34548604499
-
Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity.
-
Parton LE, Ye CP, Coppari R et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007; 449: 228-232.
-
(2007)
Nature
, vol.449
, pp. 228-232
-
-
Parton, L.E.1
Ye, C.P.2
Coppari, R.3
-
79
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus.
-
Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569-574.
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
Alquier, T.2
Furukawa, N.3
-
80
-
-
0344081177
-
Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status.
-
Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003; 144: 5179-5183.
-
(2003)
Endocrinology
, vol.144
, pp. 5179-5183
-
-
Hardie, D.G.1
-
81
-
-
3142677140
-
Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase.
-
Kim MS, Park JY, Namkoong C et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004; 10: 727-733.
-
(2004)
Nat Med
, vol.10
, pp. 727-733
-
-
Kim, M.S.1
Park, J.Y.2
Namkoong, C.3
-
82
-
-
26244461692
-
Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats.
-
Han SM, Namkoong C, Jang PG et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 2005; 48: 2170-2178.
-
(2005)
Diabetologia
, vol.48
, pp. 2170-2178
-
-
Han, S.M.1
Namkoong, C.2
Jang, P.G.3
-
83
-
-
33847022735
-
Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia.
-
Alquier T, Kawashima J, Tsuji Y, Kahn BB. Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology 2007; 148: 1367-1375.
-
(2007)
Endocrinology
, vol.148
, pp. 1367-1375
-
-
Alquier, T.1
Kawashima, J.2
Tsuji, Y.3
Kahn, B.B.4
-
84
-
-
33748296106
-
Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation.
-
Mccrimmon RJ, Fan X, Cheng H et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006; 55: 1755-1760.
-
(2006)
Diabetes
, vol.55
, pp. 1755-1760
-
-
Mccrimmon, R.J.1
Fan, X.2
Cheng, H.3
-
85
-
-
3242811250
-
Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus.
-
Mccrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 2004; 53: 1953-1958.
-
(2004)
Diabetes
, vol.53
, pp. 1953-1958
-
-
Mccrimmon, R.J.1
Fan, X.2
Ding, Y.3
Zhu, W.4
Jacob, R.J.5
Sherwin, R.S.6
-
86
-
-
70349244719
-
AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons.
-
Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol 2009; 297: C750-C758.
-
(2009)
Am J Physiol Cell Physiol
, vol.297
-
-
Murphy, B.A.1
Fakira, K.A.2
Song, Z.3
Beuve, A.4
Routh, V.H.5
-
87
-
-
66149185377
-
Dorsal hindbrain 5'-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance.
-
Hayes MR, Skibicka KP, Bence KK, Grill HJ. Dorsal hindbrain 5'-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 2009; 150: 2175-2182.
-
(2009)
Endocrinology
, vol.150
, pp. 2175-2182
-
-
Hayes, M.R.1
Skibicka, K.P.2
Bence, K.K.3
Grill, H.J.4
-
88
-
-
77953502759
-
Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.
-
Mounien L, Marty N, Tarussio D et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. Faseb J 2010; 24: 1747-1758.
-
(2010)
Faseb J
, vol.24
, pp. 1747-1758
-
-
Mounien, L.1
Marty, N.2
Tarussio, D.3
-
89
-
-
34548207654
-
Brain glucose sensing, counterregulation, and energy homeostasis.
-
Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 2007; 22: 241-251.
-
(2007)
Physiology (Bethesda)
, vol.22
, pp. 241-251
-
-
Marty, N.1
Dallaporta, M.2
Thorens, B.3
-
90
-
-
33746233060
-
Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis.
-
Mobbs CV, Isoda F, Makimura H et al. Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis. Physiol Behav 2004; 19: 2-23.
-
(2004)
Physiol Behav
, vol.19
, pp. 2-23
-
-
Mobbs, C.V.1
Isoda, F.2
Makimura, H.3
-
91
-
-
57749094069
-
Glucose sensing and the pathogenesis of obesity and type 2 diabetes.
-
Thorens B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int J Obes (Lond) 2008; 32(Suppl 6): S62-S71.
-
(2008)
Int J Obes (Lond)
, vol.32
, Issue.SUPPL. 6
-
-
Thorens, B.1
|