메뉴 건너뛰기




Volumn 13, Issue SUPPL. 1, 2011, Pages 82-88

Brain glucose sensing and neural regulation of insulin and glucagon secretion

Author keywords

Autonomic nervous system; Brainstem; Counterregulation; Glucagon; Glucose; Glucose sensing; Hypoglycemia; Hypothalamus; Insulin; cells; cells

Indexed keywords

ADENOSINE TRIPHOSPHATASE (POTASSIUM); GLUCAGON; GLUCOKINASE; GLUCOSE TRANSPORTER 2; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INSULIN;

EID: 79961206371     PISSN: 14628902     EISSN: 14631326     Source Type: Journal    
DOI: 10.1111/j.1463-1326.2011.01453.x     Document Type: Review
Times cited : (158)

References (91)
  • 1
    • 0026545981 scopus 로고
    • Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes.
    • Carabaza A, Ciudad CJ, Baque S, Guinovart JJ. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett 1992; 296: 211-214.
    • (1992) FEBS Lett , vol.296 , pp. 211-214
    • Carabaza, A.1    Ciudad, C.J.2    Baque, S.3    Guinovart, J.J.4
  • 2
    • 2442614148 scopus 로고    scopus 로고
    • Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes.
    • Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 2004; 279: 15662-15669.
    • (2004) J Biol Chem , vol.279 , pp. 15662-15669
    • Stoeckman, A.K.1    Ma, L.2    Towle, H.C.3
  • 3
    • 15744376705 scopus 로고    scopus 로고
    • Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes.
    • Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005; 280: 12019-12027.
    • (2005) J Biol Chem , vol.280 , pp. 12019-12027
    • Ma, L.1    Tsatsos, N.G.2    Towle, H.C.3
  • 6
    • 84878663936 scopus 로고    scopus 로고
    • The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav. In press.
    • Treesukosol Y, Smith KR, Spector AC. The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav. In press.
    • Treesukosol, Y.1    Smith, K.R.2    Spector, A.C.3
  • 7
    • 69549111756 scopus 로고    scopus 로고
    • Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
    • Wellendorph P, Johansen LD, Brauner-Osborne H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 2009; 76: 453-465.
    • (2009) Mol Pharmacol , vol.76 , pp. 453-465
    • Wellendorph, P.1    Johansen, L.D.2    Brauner-Osborne, H.3
  • 8
    • 0034001450 scopus 로고    scopus 로고
    • Autonomic regulation of islet hormone secretion-implications for health and disease.
    • Ahren B. Autonomic regulation of islet hormone secretion-implications for health and disease. Diabetologia 2000; 43: 393-410.
    • (2000) Diabetologia , vol.43 , pp. 393-410
    • Ahren, B.1
  • 9
    • 78650782251 scopus 로고    scopus 로고
    • Central control of glucose homeostasis: the brain-endocrine pancreas axis.
    • Thorens B. Central control of glucose homeostasis: the brain-endocrine pancreas axis. Diabetes Metab 2010; 36(Suppl 3): S45-S49.
    • (2010) Diabetes Metab , vol.36 , Issue.SUPPL. 3
    • Thorens, B.1
  • 10
    • 0016425352 scopus 로고
    • Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog.
    • Kaneto A, Kajinuma H, Kosaka K. Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Endocrinology 1975; 96: 143-150.
    • (1975) Endocrinology , vol.96 , pp. 143-150
    • Kaneto, A.1    Kajinuma, H.2    Kosaka, K.3
  • 11
    • 0019303404 scopus 로고
    • Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia.
    • Berthoud HR, Bereiter DA, Jeanrenaud B. Role of the autonomic nervous system in the mediation of LHA electrical stimulation-induced effects on insulinemia and glycemia. J Auton Nerv Syst 1980; 2: 183-198.
    • (1980) J Auton Nerv Syst , vol.2 , pp. 183-198
    • Berthoud, H.R.1    Bereiter, D.A.2    Jeanrenaud, B.3
  • 12
    • 0020375715 scopus 로고
    • Cholinergic muscarinic effects on insulin release in mice.
    • Lundquist I. Cholinergic muscarinic effects on insulin release in mice. Pharmacology 1982; 25: 338-347.
    • (1982) Pharmacology , vol.25 , pp. 338-347
    • Lundquist, I.1
  • 13
    • 0028147826 scopus 로고
    • Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.
    • N'Guyen JM, Magnan C, Laury MC et al. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats. J Clin Invest 1994; 94: 1456-1462.
    • (1994) J Clin Invest , vol.94 , pp. 1456-1462
    • N'Guyen, J.M.1    Magnan, C.2    Laury, M.C.3
  • 14
    • 16644369515 scopus 로고    scopus 로고
    • Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments.
    • Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 2004; 29: e51-58.
    • (2004) Pancreas , vol.29
    • Kiba, T.1
  • 15
    • 0030051196 scopus 로고    scopus 로고
    • Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation.
    • Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 1996; 110: 885-893.
    • (1996) Gastroenterology , vol.110 , pp. 885-893
    • Kiba, T.1    Tanaka, K.2    Numata, K.3    Hoshino, M.4    Misugi, K.5    Inoue, S.6
  • 16
    • 78049521571 scopus 로고    scopus 로고
    • Beneficial metabolic effects caused by persistent activation of {beta}-cell M3 muscarinic acetylcholine receptors in transgenic mice.
    • Gautam D, de Azua IR, Li JH et al. Beneficial metabolic effects caused by persistent activation of {beta}-cell M3 muscarinic acetylcholine receptors in transgenic mice. Endocrinology 2010; 151: 5185-5194.
    • (2010) Endocrinology , vol.151 , pp. 5185-5194
    • Gautam, D.1    de Azua, I.R.2    Li, J.H.3
  • 17
    • 33744510095 scopus 로고    scopus 로고
    • A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.
    • Gautam D, Han SJ, Hamdan FF et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 2006; 3: 449-461.
    • (2006) Cell Metab , vol.3 , pp. 449-461
    • Gautam, D.1    Han, S.J.2    Hamdan, F.F.3
  • 18
    • 0023676354 scopus 로고
    • The muscarinic receptor subtype in mouse pancreatic B-cells.
    • Henquin JC, Nenquin M. The muscarinic receptor subtype in mouse pancreatic B-cells. FEBS Lett 1988; 236: 89-92.
    • (1988) FEBS Lett , vol.236 , pp. 89-92
    • Henquin, J.C.1    Nenquin, M.2
  • 20
    • 0019459685 scopus 로고
    • Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization.
    • Berthoud HR, Bereiter DA, Trimble ER, Siegel EG, Jeanrenaud B. Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Diabetologia 1981; 20(Suppl): 393-401.
    • (1981) Diabetologia , Issue.20 SUPPL , pp. 393-401
    • Berthoud, H.R.1    Bereiter, D.A.2    Trimble, E.R.3    Siegel, E.G.4    Jeanrenaud, B.5
  • 21
    • 17444435435 scopus 로고
    • Sham feeding-induced cephalic phase insulin release in the rat.
    • Berthoud HR, Jeanrenaud B. Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol 1982; 242: E280-E285.
    • (1982) Am J Physiol , vol.242
    • Berthoud, H.R.1    Jeanrenaud, B.2
  • 22
    • 0025278729 scopus 로고
    • Identification of vagal preganglionics that mediate cephalic phase insulin response.
    • Berthoud HR, Powley TL. Identification of vagal preganglionics that mediate cephalic phase insulin response. Am J Physiol 1990; 258: R523-R530.
    • (1990) Am J Physiol , vol.258
    • Berthoud, H.R.1    Powley, T.L.2
  • 23
    • 0035686071 scopus 로고    scopus 로고
    • GLUT2 in pancreatic and extra-pancreatic gluco-detection (review).
    • Thorens B. GLUT2 in pancreatic and extra-pancreatic gluco-detection (review). Mol Membr Biol 2001; 18: 265-273.
    • (2001) Mol Membr Biol , vol.18 , pp. 265-273
    • Thorens, B.1
  • 24
    • 0020335147 scopus 로고
    • Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig.
    • Niijima A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J Physiol 1982; 332: 315-323.
    • (1982) J Physiol , vol.332 , pp. 315-323
    • Niijima, A.1
  • 25
    • 0021245114 scopus 로고
    • The effect of d-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-d-glucose.
    • Niijima A. The effect of d-glucose on the firing rate of glucose-sensitive vagal afferents in the liver in comparison with the effect of 2-deoxy-d-glucose. J Autonom Nerv Sys 1984; 10: 279-285.
    • (1984) J Autonom Nerv Sys , vol.10 , pp. 279-285
    • Niijima, A.1
  • 26
    • 0033696456 scopus 로고    scopus 로고
    • Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms.
    • Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol 2000; 279: R1449-R1454.
    • (2000) Am J Physiol , vol.279
    • Balkan, B.1    Li, X.2
  • 27
    • 11144357764 scopus 로고    scopus 로고
    • Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors.
    • Preitner F, Ibberson M, Franklin I et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113: 635-645.
    • (2004) J Clin Invest , vol.113 , pp. 635-645
    • Preitner, F.1    Ibberson, M.2    Franklin, I.3
  • 28
    • 2942553044 scopus 로고    scopus 로고
    • Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats.
    • Guillod-Maximin E, Lorsignol A, Alquier T, Penicaud L. Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J Neuroendocrinol 2004; 16: 464-471.
    • (2004) J Neuroendocrinol , vol.16 , pp. 464-471
    • Guillod-Maximin, E.1    Lorsignol, A.2    Alquier, T.3    Penicaud, L.4
  • 29
    • 0030831040 scopus 로고    scopus 로고
    • Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia.
    • Sainsbury A, Rohner-Jeanrenaud F, Cusin I et al. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 1997; 40: 1269-1277.
    • (1997) Diabetologia , vol.40 , pp. 1269-1277
    • Sainsbury, A.1    Rohner-Jeanrenaud, F.2    Cusin, I.3
  • 30
    • 0027362079 scopus 로고
    • Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity.
    • Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993; 133: 1753-1758.
    • (1993) Endocrinology , vol.133 , pp. 1753-1758
    • Zarjevski, N.1    Cusin, I.2    Vettor, R.3    Rohner-Jeanrenaud, F.4    Jeanrenaud, B.5
  • 31
    • 0020728191 scopus 로고
    • Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve.
    • Ionescu E, Rohner-Jeanrenaud F, Berthoud HR, Jeanrenaud B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 1983; 112: 904-910.
    • (1983) Endocrinology , vol.112 , pp. 904-910
    • Ionescu, E.1    Rohner-Jeanrenaud, F.2    Berthoud, H.R.3    Jeanrenaud, B.4
  • 32
    • 0028788998 scopus 로고
    • Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response.
    • Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 1995; 270: 644-646.
    • (1995) Science , vol.270 , pp. 644-646
    • Jansen, A.S.1    Nguyen, X.V.2    Karpitskiy, V.3    Mettenleiter, T.C.4    Loewy, A.D.5
  • 33
    • 0030885584 scopus 로고    scopus 로고
    • CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study.
    • Jansen ASP, Hoffman JL, Loewy AD. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res 1997; 766: 29-38.
    • (1997) Brain Res , vol.766 , pp. 29-38
    • Jansen, A.S.P.1    Hoffman, J.L.2    Loewy, A.D.3
  • 34
    • 0033957338 scopus 로고    scopus 로고
    • Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia.
    • Hevener AL, Bergman RN, Donovan CM. Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes 2000; 49: 8-12.
    • (2000) Diabetes , vol.49 , pp. 8-12
    • Hevener, A.L.1    Bergman, R.N.2    Donovan, C.M.3
  • 35
    • 33644668567 scopus 로고    scopus 로고
    • Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia.
    • Fujita S, Donovan CM. Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia. Diabetes 2005; 54: 3258-3264.
    • (2005) Diabetes , vol.54 , pp. 3258-3264
    • Fujita, S.1    Donovan, C.M.2
  • 37
    • 0027327113 scopus 로고
    • Counterregulation during hypoglycemia is directed by widespread brain regions.
    • Frizzell RT, Jones EM, Davis SN et al. Counterregulation during hypoglycemia is directed by widespread brain regions. Diabetes 1993; 42: 1253-1261.
    • (1993) Diabetes , vol.42 , pp. 1253-1261
    • Frizzell, R.T.1    Jones, E.M.2    Davis, S.N.3
  • 38
    • 0028931891 scopus 로고
    • Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release.
    • Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 1995; 44: 180-184.
    • (1995) Diabetes , vol.44 , pp. 180-184
    • Borg, W.P.1    Sherwin, R.S.2    During, M.J.3    Borg, M.A.4    Shulman, G.I.5
  • 39
    • 0031038124 scopus 로고    scopus 로고
    • Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats.
    • Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 1997; 99: 361-365.
    • (1997) J Clin Invest , vol.99 , pp. 361-365
    • Borg, M.A.1    Sherwin, R.S.2    Borg, W.P.3    Tamborlane, W.V.4    Shulman, G.I.5
  • 40
    • 33745208032 scopus 로고    scopus 로고
    • Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation.
    • Mccrimmon RJ, Song Z, Cheng H et al. Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. J Clin Invest 2006; 116: 1723-1730.
    • (2006) J Clin Invest , vol.116 , pp. 1723-1730
    • Mccrimmon, R.J.1    Song, Z.2    Cheng, H.3
  • 41
    • 33745215659 scopus 로고    scopus 로고
    • Mechanisms of sympathoadrenal failure and hypoglycemia in diabetes.
    • Cryer PE. Mechanisms of sympathoadrenal failure and hypoglycemia in diabetes. J Clin Invest 2006; 116: 1470-1473.
    • (2006) J Clin Invest , vol.116 , pp. 1470-1473
    • Cryer, P.E.1
  • 42
    • 77950805120 scopus 로고    scopus 로고
    • Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia.
    • Zhu W, Czyzyk D, Paranjape SA et al. Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. Am J Physiol Endocrinol Metab 2010; 298: E971-E977.
    • (2010) Am J Physiol Endocrinol Metab , vol.298
    • Zhu, W.1    Czyzyk, D.2    Paranjape, S.A.3
  • 43
    • 77449095693 scopus 로고    scopus 로고
    • Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation.
    • Fioramonti X, Marsollier N, Song Z et al. Ventromedial hypothalamic nitric oxide production is necessary for hypoglycemia detection and counterregulation. Diabetes 2010; 59: 519-528.
    • (2010) Diabetes , vol.59 , pp. 519-528
    • Fioramonti, X.1    Marsollier, N.2    Song, Z.3
  • 44
    • 77957608055 scopus 로고    scopus 로고
    • The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia.
    • Zhou L, Podolsky N, Sang Z et al. The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia. Diabetes 2010; 59: 2646-2652.
    • (2010) Diabetes , vol.59 , pp. 2646-2652
    • Zhou, L.1    Podolsky, N.2    Sang, Z.3
  • 45
    • 0019794835 scopus 로고
    • Glucoreceptors controlling feeding and blood glucose: location in the hindbrain.
    • Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 1981; 213: 451-453.
    • (1981) Science , vol.213 , pp. 451-453
    • Ritter, R.C.1    Slusser, P.G.2    Stone, S.3
  • 46
    • 0033976228 scopus 로고    scopus 로고
    • Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose.
    • Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 2000; 856: 37-47.
    • (2000) Brain Res , vol.856 , pp. 37-47
    • Ritter, S.1    Dinh, T.T.2    Zhang, Y.3
  • 47
    • 0037227401 scopus 로고    scopus 로고
    • Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-d-glucose-induced neuropeptide Y and agouti-gene-related protein messenger ribonucleic acid expression in the arcuate nucleus.
    • Fraley GS, Ritter S. Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-d-glucose-induced neuropeptide Y and agouti-gene-related protein messenger ribonucleic acid expression in the arcuate nucleus. Endocrinology 2003; 411: 75-83.
    • (2003) Endocrinology , vol.411 , pp. 75-83
    • Fraley, G.S.1    Ritter, S.2
  • 48
    • 0035795199 scopus 로고    scopus 로고
    • Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation.
    • Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001; 43: 197-216.
    • (2001) J Comp Neurol , vol.43 , pp. 197-216
    • Ritter, S.1    Bugarith, K.2    Dinh, T.T.3
  • 49
    • 34548207654 scopus 로고    scopus 로고
    • Brain glucose sensing, counterregulation and feeding behavior.
    • Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation and feeding behavior. Physiology (Bethesda) 2007; 22: 241-251.
    • (2007) Physiology (Bethesda) , vol.22 , pp. 241-251
    • Marty, N.1    Dallaporta, M.2    Thorens, B.3
  • 50
    • 75749146213 scopus 로고    scopus 로고
    • Glucose-induced inhibition: how many ionic mechanisms?
    • Burdakov D, Lesage F. Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf) 2010; 198: 295-301.
    • (2010) Acta Physiol (Oxf) , vol.198 , pp. 295-301
    • Burdakov, D.1    Lesage, F.2
  • 51
    • 5044229137 scopus 로고    scopus 로고
    • Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study.
    • Arluison M, Quignon M, Thorens B, Leloup C, Penicaud L. Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat 2004; 28: 137-146.
    • (2004) J Chem Neuroanat , vol.28 , pp. 137-146
    • Arluison, M.1    Quignon, M.2    Thorens, B.3    Leloup, C.4    Penicaud, L.5
  • 52
    • 5044231048 scopus 로고    scopus 로고
    • Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study.
    • Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J Chem Neuroanat 2004; 28: 117-136.
    • (2004) J Chem Neuroanat , vol.28 , pp. 117-136
    • Arluison, M.1    Quignon, M.2    Nguyen, P.3    Thorens, B.4    Leloup, C.5    Penicaud, L.6
  • 53
    • 1442276966 scopus 로고    scopus 로고
    • Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons.
    • Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004; 53: 549-559.
    • (2004) Diabetes , vol.53 , pp. 549-559
    • Kang, L.1    Routh, V.H.2    Kuzhikandathil, E.V.3    Gaspers, L.D.4    Levin, B.E.5
  • 54
    • 0028157201 scopus 로고
    • Glucose transporter 2 (GLUT2): expression in specific brain nuclei.
    • Leloup C, Arluison M, Lepetit N et al. Glucose transporter 2 (GLUT2): expression in specific brain nuclei. Brain Res 1994; 638: 221-226.
    • (1994) Brain Res , vol.638 , pp. 221-226
    • Leloup, C.1    Arluison, M.2    Lepetit, N.3
  • 55
    • 0038582455 scopus 로고    scopus 로고
    • Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR.
    • Li B, Xi X, Roane DS, Ryan DH, Martin RJ. Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res 2003; 113: 139-142.
    • (2003) Brain Res Mol Brain Res , vol.113 , pp. 139-142
    • Li, B.1    Xi, X.2    Roane, D.S.3    Ryan, D.H.4    Martin, R.J.5
  • 56
    • 0042303943 scopus 로고    scopus 로고
    • Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing.
    • Garcia MA, Millan C, Balmaceda-Aguilera C et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 2003; 86: 709-724.
    • (2003) J Neurochem , vol.86 , pp. 709-724
    • Garcia, M.A.1    Millan, C.2    Balmaceda-Aguilera, C.3
  • 57
    • 0034463846 scopus 로고    scopus 로고
    • Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms.
    • Maekawa F, Toyoda Y, Torii N et al. Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms. Endocrinology 2000; 141: 375-384.
    • (2000) Endocrinology , vol.141 , pp. 375-384
    • Maekawa, F.1    Toyoda, Y.2    Torii, N.3
  • 58
    • 0032525884 scopus 로고    scopus 로고
    • Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion.
    • Leloup C, Orosco M, Serradas P, Nicolaidis S, Penicaud L. Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion. Brain Res Mol Brain Res 1998; 57: 275-280.
    • (1998) Brain Res Mol Brain Res , vol.57 , pp. 275-280
    • Leloup, C.1    Orosco, M.2    Serradas, P.3    Nicolaidis, S.4    Penicaud, L.5
  • 59
    • 0142067094 scopus 로고    scopus 로고
    • Intracerebroventricular administration of antisense oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food intake, body weight change and glucoprivic feeding response in rats.
    • Wan HZ, Hulsey MG, Martin RJ. Intracerebroventricular administration of antisense oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food intake, body weight change and glucoprivic feeding response in rats. J Nutr 1998; 128: 287-291.
    • (1998) J Nutr , vol.128 , pp. 287-291
    • Wan, H.Z.1    Hulsey, M.G.2    Martin, R.J.3
  • 60
    • 0034604731 scopus 로고    scopus 로고
    • Transgenic reexpression of Glut1 or Glut2 in pancreatic b cells rescues Glut2-null mice from early death and restores normal glucose-stimulated insulin secretion.
    • Thorens B, Guillam M-T, Beermann F, Burcelin R, Jaquet M. Transgenic reexpression of Glut1 or Glut2 in pancreatic b cells rescues Glut2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 2000; 275: 23751-23758.
    • (2000) J Biol Chem , vol.275 , pp. 23751-23758
    • Thorens, B.1    Guillam, M.-T.2    Beermann, F.3    Burcelin, R.4    Jaquet, M.5
  • 61
    • 31044444108 scopus 로고    scopus 로고
    • Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors.
    • Marty N, Dallaporta M, Foretz M et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest 2005; 115: 3545-3553.
    • (2005) J Clin Invest , vol.115 , pp. 3545-3553
    • Marty, N.1    Dallaporta, M.2    Foretz, M.3
  • 63
    • 33645893473 scopus 로고    scopus 로고
    • Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem.
    • Balfour RH, Hansen AM, Trapp S. Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J Physiol 2006; 570: 469-484.
    • (2006) J Physiol , vol.570 , pp. 469-484
    • Balfour, R.H.1    Hansen, A.M.2    Trapp, S.3
  • 64
    • 77956257822 scopus 로고    scopus 로고
    • Glial glucokinase expression in adult and post-natal development of the hypothalamic region.
    • Millan C, Martinez F, Cortes-Campos C et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010; 2: e00035.
    • (2010) ASN Neuro , vol.2
    • Millan, C.1    Martinez, F.2    Cortes-Campos, C.3
  • 65
    • 2342510308 scopus 로고    scopus 로고
    • Third ventricular alloxan reversibly impairs glucose counterregulatory responses.
    • Sanders NM, Dunn-Meynell AA, Levin BE. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes 2004; 53: 1230-1236.
    • (2004) Diabetes , vol.53 , pp. 1230-1236
    • Sanders, N.M.1    Dunn-Meynell, A.A.2    Levin, B.E.3
  • 66
    • 48449103821 scopus 로고    scopus 로고
    • Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia.
    • Levin BE, Becker TC, Eiki J, Zhang BB, Dunn-Meynell AA. Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes 2008; 57: 1371-1379.
    • (2008) Diabetes , vol.57 , pp. 1371-1379
    • Levin, B.E.1    Becker, T.C.2    Eiki, J.3    Zhang, B.B.4    Dunn-Meynell, A.A.5
  • 67
    • 79952985152 scopus 로고    scopus 로고
    • Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats.
    • Osundiji MA, Hurst P, Moore SP et al. Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats. Metabolism 2011; 60: 550-556.
    • (2011) Metabolism , vol.60 , pp. 550-556
    • Osundiji, M.A.1    Hurst, P.2    Moore, S.P.3
  • 68
    • 0036303140 scopus 로고    scopus 로고
    • Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons.
    • Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 2002; 51: 2056-2065.
    • (2002) Diabetes , vol.51 , pp. 2056-2065
    • Dunn-Meynell, A.A.1    Routh, V.H.2    Kang, L.3    Gaspers, L.4    Levin, B.E.5
  • 69
    • 3242765290 scopus 로고    scopus 로고
    • The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides.
    • Wang R, Liu X, Hentges ST et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 2004; 53: 1959-1965.
    • (2004) Diabetes , vol.53 , pp. 1959-1965
    • Wang, R.1    Liu, X.2    Hentges, S.T.3
  • 70
    • 0032829063 scopus 로고    scopus 로고
    • Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms.
    • Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 1999; 48: 1763-1772.
    • (1999) Diabetes , vol.48 , pp. 1763-1772
    • Yang, X.J.1    Kow, L.M.2    Funabashi, T.3    Mobbs, C.V.4
  • 71
    • 0347360368 scopus 로고    scopus 로고
    • Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose.
    • Yang XJ, Kow LM, Pfaff DW, Mobbs CV. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes 2004; 53: 67-73.
    • (2004) Diabetes , vol.53 , pp. 67-73
    • Yang, X.J.1    Kow, L.M.2    Pfaff, D.W.3    Mobbs, C.V.4
  • 72
    • 0032517821 scopus 로고    scopus 로고
    • Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain.
    • Dunn-Meynell AA, Rawson NE, Levin BE. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 1998; 814: 41-54.
    • (1998) Brain Res , vol.814 , pp. 41-54
    • Dunn-Meynell, A.A.1    Rawson, N.E.2    Levin, B.E.3
  • 73
    • 0031026364 scopus 로고    scopus 로고
    • Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain.
    • Karschin C, Ecke C, Ashcroft FM, Karschin A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 1997; 401: 59-64.
    • (1997) FEBS Lett , vol.401 , pp. 59-64
    • Karschin, C.1    Ecke, C.2    Ashcroft, F.M.3    Karschin, A.4
  • 74
    • 0028933233 scopus 로고
    • Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart.
    • Inagaki N, Tsuura Y, Namba N et al. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 1995; 270: 5691-5694.
    • (1995) J Biol Chem , vol.270 , pp. 5691-5694
    • Inagaki, N.1    Tsuura, Y.2    Namba, N.3
  • 75
    • 4644298411 scopus 로고    scopus 로고
    • Hypothalamic ATP-sensitive K+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses.
    • Evans ML, Mccrimmon RJ, Flanagan DE et al. Hypothalamic ATP-sensitive K+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes 2004; 53: 2542-2551.
    • (2004) Diabetes , vol.53 , pp. 2542-2551
    • Evans, M.L.1    Mccrimmon, R.J.2    Flanagan, D.E.3
  • 76
    • 0035042796 scopus 로고    scopus 로고
    • ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis.
    • Miki T, Liss B, Minami K et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 2001; 4: 507-512.
    • (2001) Nat Neurosci , vol.4 , pp. 507-512
    • Miki, T.1    Liss, B.2    Minami, K.3
  • 77
    • 33644696261 scopus 로고    scopus 로고
    • Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats.
    • Mccrimmon RJ, Evans ML, Fan X et al. Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 2005; 54: 3169-3174.
    • (2005) Diabetes , vol.54 , pp. 3169-3174
    • Mccrimmon, R.J.1    Evans, M.L.2    Fan, X.3
  • 78
    • 34548604499 scopus 로고    scopus 로고
    • Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity.
    • Parton LE, Ye CP, Coppari R et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007; 449: 228-232.
    • (2007) Nature , vol.449 , pp. 228-232
    • Parton, L.E.1    Ye, C.P.2    Coppari, R.3
  • 79
    • 1842484296 scopus 로고    scopus 로고
    • AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus.
    • Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569-574.
    • (2004) Nature , vol.428 , pp. 569-574
    • Minokoshi, Y.1    Alquier, T.2    Furukawa, N.3
  • 80
    • 0344081177 scopus 로고    scopus 로고
    • Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status.
    • Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003; 144: 5179-5183.
    • (2003) Endocrinology , vol.144 , pp. 5179-5183
    • Hardie, D.G.1
  • 81
    • 3142677140 scopus 로고    scopus 로고
    • Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase.
    • Kim MS, Park JY, Namkoong C et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004; 10: 727-733.
    • (2004) Nat Med , vol.10 , pp. 727-733
    • Kim, M.S.1    Park, J.Y.2    Namkoong, C.3
  • 82
    • 26244461692 scopus 로고    scopus 로고
    • Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats.
    • Han SM, Namkoong C, Jang PG et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 2005; 48: 2170-2178.
    • (2005) Diabetologia , vol.48 , pp. 2170-2178
    • Han, S.M.1    Namkoong, C.2    Jang, P.G.3
  • 83
    • 33847022735 scopus 로고    scopus 로고
    • Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia.
    • Alquier T, Kawashima J, Tsuji Y, Kahn BB. Role of hypothalamic adenosine 5'-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology 2007; 148: 1367-1375.
    • (2007) Endocrinology , vol.148 , pp. 1367-1375
    • Alquier, T.1    Kawashima, J.2    Tsuji, Y.3    Kahn, B.B.4
  • 84
    • 33748296106 scopus 로고    scopus 로고
    • Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation.
    • Mccrimmon RJ, Fan X, Cheng H et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006; 55: 1755-1760.
    • (2006) Diabetes , vol.55 , pp. 1755-1760
    • Mccrimmon, R.J.1    Fan, X.2    Cheng, H.3
  • 85
    • 3242811250 scopus 로고    scopus 로고
    • Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus.
    • Mccrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 2004; 53: 1953-1958.
    • (2004) Diabetes , vol.53 , pp. 1953-1958
    • Mccrimmon, R.J.1    Fan, X.2    Ding, Y.3    Zhu, W.4    Jacob, R.J.5    Sherwin, R.S.6
  • 86
    • 70349244719 scopus 로고    scopus 로고
    • AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons.
    • Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol 2009; 297: C750-C758.
    • (2009) Am J Physiol Cell Physiol , vol.297
    • Murphy, B.A.1    Fakira, K.A.2    Song, Z.3    Beuve, A.4    Routh, V.H.5
  • 87
    • 66149185377 scopus 로고    scopus 로고
    • Dorsal hindbrain 5'-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance.
    • Hayes MR, Skibicka KP, Bence KK, Grill HJ. Dorsal hindbrain 5'-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 2009; 150: 2175-2182.
    • (2009) Endocrinology , vol.150 , pp. 2175-2182
    • Hayes, M.R.1    Skibicka, K.P.2    Bence, K.K.3    Grill, H.J.4
  • 88
    • 77953502759 scopus 로고    scopus 로고
    • Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.
    • Mounien L, Marty N, Tarussio D et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. Faseb J 2010; 24: 1747-1758.
    • (2010) Faseb J , vol.24 , pp. 1747-1758
    • Mounien, L.1    Marty, N.2    Tarussio, D.3
  • 89
    • 34548207654 scopus 로고    scopus 로고
    • Brain glucose sensing, counterregulation, and energy homeostasis.
    • Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 2007; 22: 241-251.
    • (2007) Physiology (Bethesda) , vol.22 , pp. 241-251
    • Marty, N.1    Dallaporta, M.2    Thorens, B.3
  • 90
    • 33746233060 scopus 로고    scopus 로고
    • Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis.
    • Mobbs CV, Isoda F, Makimura H et al. Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis. Physiol Behav 2004; 19: 2-23.
    • (2004) Physiol Behav , vol.19 , pp. 2-23
    • Mobbs, C.V.1    Isoda, F.2    Makimura, H.3
  • 91
    • 57749094069 scopus 로고    scopus 로고
    • Glucose sensing and the pathogenesis of obesity and type 2 diabetes.
    • Thorens B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int J Obes (Lond) 2008; 32(Suppl 6): S62-S71.
    • (2008) Int J Obes (Lond) , vol.32 , Issue.SUPPL. 6
    • Thorens, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.