-
1
-
-
64349123664
-
Functional brown adipose tissue in healthy adults
-
Virtanen KA, Lidell ME, Orava J, et al., Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-1525.
-
(2009)
N Engl J Med
, vol.360
, pp. 1518-1525
-
-
Virtanen, K.A.1
Lidell, M.E.2
Orava, J.3
-
2
-
-
77952623888
-
The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation
-
Barbatelli G, Murano I, Madsen L, et al., The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298: E1244-E1253.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E1244-E1253
-
-
Barbatelli, G.1
Murano, I.2
Madsen, L.3
-
3
-
-
84908241953
-
Thermogenic adipocytes: From cells to physiology and medicine
-
Diaz MB, Herzig S, Vegiopoulos A., Thermogenic adipocytes: from cells to physiology and medicine. Metabolism 2014; 63: 1238-1249.
-
(2014)
Metabolism
, vol.63
, pp. 1238-1249
-
-
Diaz, M.B.1
Herzig, S.2
Vegiopoulos, A.3
-
4
-
-
84908563423
-
Adipocyte transdifferentiation and its molecular targets
-
Rajan S, Gupta A, Beg M, et al., Adipocyte transdifferentiation and its molecular targets. Differentiation. 2014; 87: 183-192.
-
(2014)
Differentiation
, vol.87
, pp. 183-192
-
-
Rajan, S.1
Gupta, A.2
Beg, M.3
-
5
-
-
84935113434
-
Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue
-
Fu J, Li Z, Zhang H, et al., Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue. Diabetes Metab Res Rev. 2015; 31: 433-452.
-
(2015)
Diabetes Metab Res Rev
, vol.31
, pp. 433-452
-
-
Fu, J.1
Li, Z.2
Zhang, H.3
-
6
-
-
84892702771
-
Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
-
Cohen P, Levy JD, Zhang Y, et al., Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156: 304-316.
-
(2014)
Cell
, vol.156
, pp. 304-316
-
-
Cohen, P.1
Levy, J.D.2
Zhang, Y.3
-
7
-
-
85027909934
-
Adipose tissue browning and metabolic health
-
Bartelt A, Heeren J., Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014; 10: 24-36.
-
(2014)
Nat Rev Endocrinol
, vol.10
, pp. 24-36
-
-
Bartelt, A.1
Heeren, J.2
-
8
-
-
84901821975
-
FGF21-based pharmacotherapy - Potential utility for metabolic disorders
-
Gimeno RE, Moller DE., FGF21-based pharmacotherapy-potential utility for metabolic disorders. Trends Endocrinol Metab 2014; 25: 303-311.
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 303-311
-
-
Gimeno, R.E.1
Moller, D.E.2
-
10
-
-
70350455732
-
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models - Association with liver and adipose tissue effects
-
Xu J, Stanislaus S, Chinookoswong N, et al., Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009; 297: E1105-E1114.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. E1105-E1114
-
-
Xu, J.1
Stanislaus, S.2
Chinookoswong, N.3
-
11
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, Chien JY, Fu H, et al., The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18: 333-340.
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
-
12
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, et al., FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26: 271-281.
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
-
13
-
-
84893452569
-
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
-
Lee P, Linderman JD, Smith S, et al., Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014; 19: 302-309.
-
(2014)
Cell Metab
, vol.19
, pp. 302-309
-
-
Lee, P.1
Linderman, J.D.2
Smith, S.3
-
14
-
-
84892162004
-
Stressed liver and muscle call on adipocytes with FGF21
-
Luo Y, McKeehan WL., Stressed liver and muscle call on adipocytes with FGF21. Front Endocrinol (Lausanne) 2013; 4: 194.
-
(2013)
Front Endocrinol (Lausanne)
, vol.4
, pp. 194
-
-
Luo, Y.1
McKeehan, W.L.2
-
15
-
-
84865741904
-
BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X, Boney-Montoya J, Owen BM, et al., betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 2012; 16: 387-393.
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
-
16
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams AC, Yang C, Coskun T, et al., The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012; 2: 31-37.
-
(2012)
Mol Metab
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
-
17
-
-
84883615750
-
Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21
-
Muise ES, Souza S, Chi A, et al., Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21. PLoS One 2013; 8: e73011.
-
(2013)
PLoS One
, vol.8
, pp. e73011
-
-
Muise, E.S.1
Souza, S.2
Chi, A.3
-
18
-
-
84863011453
-
FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents
-
Mu J, Pinkstaff J, Li Z, et al., FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 2012; 61: 505-512.
-
(2012)
Diabetes
, vol.61
, pp. 505-512
-
-
Mu, J.1
Pinkstaff, J.2
Li, Z.3
-
19
-
-
84874410516
-
Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients
-
Qatanani M, Tan Y, Dobrin R, et al., Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients. Diabetes 2013; 62: 855-863.
-
(2013)
Diabetes
, vol.62
, pp. 855-863
-
-
Qatanani, M.1
Tan, Y.2
Dobrin, R.3
-
20
-
-
84908018672
-
Fgf21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen BM, Ding X, Morgan DA, et al., Fgf21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014; 20: 670-67.
-
(2014)
Cell Metab
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
-
21
-
-
84911917697
-
Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
Markan KR, Naber MC, Ameka MK, et al., Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014; 63: 4057-4063.
-
(2014)
Diabetes
, vol.63
, pp. 4057-4063
-
-
Markan, K.R.1
Naber, M.C.2
Ameka, M.K.3
-
22
-
-
78650666774
-
Phosphoprotein enriched in diabetes gene product (Ped/pea-15) is increased in omental adipose tissue of women with the polycystic ovary syndrome: Ex vivo regulation of ped/pea-15 by glucose, insulin and metformin
-
Tan BK, Chen J, Adya R, Randeva HS,. Phosphoprotein enriched in diabetes gene product (Ped/pea-15) is increased in omental adipose tissue of women with the polycystic ovary syndrome: ex vivo regulation of ped/pea-15 by glucose, insulin and metformin. Diabetes Obes Metab 2011; 13: 181-184.
-
(2011)
Diabetes Obes Metab
, vol.13
, pp. 181-184
-
-
Tan, B.K.1
Chen, J.2
Adya, R.3
Randeva, H.S.4
-
23
-
-
0032527747
-
PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus
-
Condorelli G, Vigliotta G, Iavarone C, et al., PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO J 1998; 17: 3858-3866.
-
(1998)
EMBO J
, vol.17
, pp. 3858-3866
-
-
Condorelli, G.1
Vigliotta, G.2
Iavarone, C.3
-
24
-
-
84876013844
-
Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15
-
Cassese A, Raciti GA, Fiory F, et al., Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15. PLoS One 2013; 8: e60555.
-
(2013)
PLoS One
, vol.8
, pp. e60555
-
-
Cassese, A.1
Raciti, G.A.2
Fiory, F.3
-
25
-
-
0042357130
-
Acquirement of brown fat cell features by human white adipocytes
-
Tiraby C, Tavernier G, Lefort C, et al., Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370-33376.
-
(2003)
J Biol Chem
, vol.278
, pp. 33370-33376
-
-
Tiraby, C.1
Tavernier, G.2
Lefort, C.3
-
26
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J, Oström P, Sparks LM, et al., Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366-376.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
Oström, P.2
Sparks, L.M.3
-
27
-
-
84878525220
-
Bi-directional interconversion of brite and white adipocytes
-
Rosenwald M, Perdikari A, Rülicke T, Wolfrum C,. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 2013; 15: 659-667.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 659-667
-
-
Rosenwald, M.1
Perdikari, A.2
Rülicke, T.3
Wolfrum, C.4
-
28
-
-
34347326271
-
Transcriptional control of brown fat determination by PRDM16
-
Seale P, Kajimura S, Yang W, et al., Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6: 38-54.
-
(2007)
Cell Metab
, vol.6
, pp. 38-54
-
-
Seale, P.1
Kajimura, S.2
Yang, W.3
-
29
-
-
84900554165
-
Brown and white adipose tissues: Intrinsic differences in gene expression and response to cold exposure in mice
-
Rosell M, Kaforou M, Frontini A, et al., Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 2014; 306: E945-E964.
-
(2014)
Am J Physiol Endocrinol Metab
, vol.306
, pp. E945-E964
-
-
Rosell, M.1
Kaforou, M.2
Frontini, A.3
-
30
-
-
84859204479
-
Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects
-
Soronen J, Laurila PP, Naukkarinen J, et al., Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med Genomics 2012; 5: 9.
-
(2012)
BMC Med Genomics
, vol.5
, pp. 9
-
-
Soronen, J.1
Laurila, P.P.2
Naukkarinen, J.3
-
31
-
-
84925507991
-
Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
-
Fang S, Suh JM, Reilly SM, et al., Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015; 21: 159-65.
-
(2015)
Nat Med
, vol.21
, pp. 159-165
-
-
Fang, S.1
Suh, J.M.2
Reilly, S.M.3
-
32
-
-
84911934883
-
Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance
-
Liu P-S, Lin YW, Lee B, McCrady-Spitzer SK, Levine JA, Wei LN,. Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance. Diabetes 2014; 63: 4021-4031.
-
(2014)
Diabetes
, vol.63
, pp. 4021-4031
-
-
Liu, P.-S.1
Lin, Y.W.2
Lee, B.3
McCrady-Spitzer, S.K.4
Levine, J.A.5
Wei, L.N.6
-
33
-
-
69049103284
-
Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism
-
Fiory F, Formisano P, Perruolo G, Beguinot F,. Frontiers: PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism. Am J Physiol Endocrinol Metab 2009; 297: E592-E601.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. E592-E601
-
-
Fiory, F.1
Formisano, P.2
Perruolo, G.3
Beguinot, F.4
-
34
-
-
76649113404
-
Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis
-
Kim J, Choi YS, Lim S, et al., Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis. Proteomics 2010; 10: 394-405.
-
(2010)
Proteomics
, vol.10
, pp. 394-405
-
-
Kim, J.1
Choi, Y.S.2
Lim, S.3
-
35
-
-
84856071074
-
Identification and validation of novel adipokines released from primary human adipocytes
-
M111.010504
-
Lehr S, Hartwig S, Lamers D, et al., Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 2012; 11: M111.010504.
-
(2012)
Mol Cell Proteomics
, vol.11
-
-
Lehr, S.1
Hartwig, S.2
Lamers, D.3
|