-
1
-
-
0036194517
-
Different patterns of renal damage in type 2 diabetes mellitus: A multicentric study on 393 biopsies
-
Mazzucco G, Bertani T, Fortunato M et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis 2002; 39: 713-720
-
(2002)
Am J Kidney Dis
, vol.39
, pp. 713-720
-
-
Mazzucco, G.1
Bertani, T.2
Fortunato, M.3
-
3
-
-
84859836382
-
Validity of biomarkers predicting onset or progression of nephropathy in patients with Type 2 diabetes: A systematic review
-
Hellemons ME, Kerschbaum J, Bakker SJ et al. Validity of biomarkers predicting onset or progression of nephropathy in patients with Type 2 diabetes: a systematic review. Diabet Med 2012; 29: 567-577
-
(2012)
Diabet Med
, vol.29
, pp. 567-577
-
-
Hellemons, M.E.1
Kerschbaum, J.2
Bakker, S.J.3
-
4
-
-
82355190219
-
Cellular and molecular mechanisms of renal fibrosis
-
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011; 7: 684-696
-
(2011)
Nat Rev Nephrol
, vol.7
, pp. 684-696
-
-
Liu, Y.1
-
5
-
-
79953886254
-
Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease
-
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant 2011; 26: 1132-1137
-
(2011)
Nephrol Dial Transplant
, vol.26
, pp. 1132-1137
-
-
Mayer, G.1
-
6
-
-
84863337741
-
Genomic biomarkers for chronic kidney disease
-
Ju W, Smith S, Kretzler M. Genomic biomarkers for chronic kidney disease. Transl Res 2012; 159: 290-302
-
(2012)
Transl Res
, vol.159
, pp. 290-302
-
-
Ju, W.1
Smith, S.2
Kretzler, M.3
-
7
-
-
33745487869
-
Gene expression profiling analysis in nephrology: Towards molecular definition of renal disease
-
Yasuda Y, Cohen CD, Henger A, The European Renal cDNA Bank (ERCB) Consortium. Gene expression profiling analysis in nephrology: towards molecular definition of renal disease. Clin Exp Nephrol 2006; 10: 91-98
-
(2006)
Clin Exp Nephrol
, vol.10
, pp. 91-98
-
-
Yasuda, Y.1
Cohen, C.D.2
Henger, A.3
-
8
-
-
0036149243
-
Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue
-
Cohen CD, Gröne H-J, Grone EF et al. Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int 2002; 61: 125-132
-
(2002)
Kidney Int
, vol.61
, pp. 125-132
-
-
Cohen, C.D.1
Gröne, H.-J.2
Grone, E.F.3
-
9
-
-
77957365801
-
A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue
-
Hodgin JB, Borczuk AC, Nasr SH et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am J Pathol 2010; 177: 1674-1686
-
(2010)
Am J Pathol
, vol.177
, pp. 1674-1686
-
-
Hodgin, J.B.1
Borczuk, A.C.2
Nasr, S.H.3
-
10
-
-
33846867674
-
Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies
-
Rudnicki M, Eder S, Perco P et al. Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int 2006; 71: 325-335
-
(2006)
Kidney Int
, vol.71
, pp. 325-335
-
-
Rudnicki, M.1
Eder, S.2
Perco, P.3
-
11
-
-
61349193079
-
Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease
-
Rudnicki M, Perco P, Enrich J et al. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab Invest 2009; 89: 337-346
-
(2009)
Lab Invest
, vol.89
, pp. 337-346
-
-
Rudnicki, M.1
Perco, P.2
Enrich, J.3
-
12
-
-
3042844142
-
Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli
-
Peterson KS, Huang J-F, Zhu J et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 2004; 113: 1722-1733
-
(2004)
J Clin Invest
, vol.113
, pp. 1722-1733
-
-
Peterson, K.S.1
Huang, J.-F.2
Zhu, J.3
-
13
-
-
1642422898
-
Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy
-
Baelde HJ, Eikmans M, Doran PP et al. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis 2004; 43: 636-650
-
(2004)
Am J Kidney Dis
, vol.43
, pp. 636-650
-
-
Baelde, H.J.1
Eikmans, M.2
Doran, P.P.3
-
14
-
-
33845526226
-
Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy
-
Schmid H, Boucherot A, Yasuda Y et al. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006; 55: 2993-3003
-
(2006)
Diabetes
, vol.55
, pp. 2993-3003
-
-
Schmid, H.1
Boucherot, A.2
Yasuda, Y.3
-
15
-
-
34249901258
-
Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy
-
Lindenmeyer MT, Kretzler M, Boucherot A et al. Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol 2007; 18: 1765-1776
-
(2007)
J Am Soc Nephrol
, vol.18
, pp. 1765-1776
-
-
Lindenmeyer, M.T.1
Kretzler, M.2
Boucherot, A.3
-
16
-
-
55749105700
-
Proteinuria and hyperglycemia induce endoplasmic reticulum stress
-
Lindenmeyer MT, Rastaldi MP, Ikehata M et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 2008; 19: 2225-2236
-
(2008)
J Am Soc Nephrol
, vol.19
, pp. 2225-2236
-
-
Lindenmeyer, M.T.1
Rastaldi, M.P.2
Ikehata, M.3
-
17
-
-
80052875303
-
Transcriptome analysis of human diabetic kidney disease
-
Woroniecka KI, Park ASD, Mohtat D et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011; 60: 2354-2369
-
(2011)
Diabetes
, vol.60
, pp. 2354-2369
-
-
Woroniecka, K.I.1
Park, A.S.D.2
Mohtat, D.3
-
18
-
-
84872047522
-
Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli
-
Hodgin JB, Nair V, Zhang H et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 2013; 62: 299-308
-
(2013)
Diabetes
, vol.62
, pp. 299-308
-
-
Hodgin, J.B.1
Nair, V.2
Zhang, H.3
-
19
-
-
0032712434
-
Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes
-
Cooper ME, Vranes D, Youssef S et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999; 48: 2229-2239
-
(1999)
Diabetes
, vol.48
, pp. 2229-2239
-
-
Cooper, M.E.1
Vranes, D.2
Youssef, S.3
-
20
-
-
0033007062
-
Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195
-
Tsuchida K, Makita Z, Yamagishi S et al. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195. Diabetologia 1999; 42: 579-588
-
(1999)
Diabetologia
, vol.42
, pp. 579-588
-
-
Tsuchida, K.1
Makita, Z.2
Yamagishi, S.3
-
21
-
-
31644437497
-
Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy
-
Cohen MP, Chen S, Ziyadeh FN et al. Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney Int 2005; 68: 1554-1561
-
(2005)
Kidney Int
, vol.68
, pp. 1554-1561
-
-
Cohen, M.P.1
Chen, S.2
Ziyadeh, F.N.3
-
22
-
-
21444439235
-
Vascular endothelial growth factor and diabetic retinopathy: Role of oxidative stress
-
Caldwell R, Bartoli M, Behzadian M et al. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 2005; 6: 511-524
-
(2005)
Curr Drug Targets
, vol.6
, pp. 511-524
-
-
Caldwell, R.1
Bartoli, M.2
Behzadian, M.3
-
24
-
-
74849111621
-
Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders
-
Glinskii AB, Ma J, Ma S et al. Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders. Cell Cycle 2014; 8: 3925-3942
-
(2014)
Cell Cycle
, vol.8
, pp. 3925-3942
-
-
Glinskii, A.B.1
Ma, J.2
Ma, S.3
-
25
-
-
80052978224
-
Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
-
Cabili MN, Trapnell C, Goff L et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915-1927
-
(2011)
Genes Dev
, vol.25
, pp. 1915-1927
-
-
Cabili, M.N.1
Trapnell, C.2
Goff, L.3
-
26
-
-
33847698971
-
The relationship between non-proteincoding DNA and eukaryotic complexity
-
Taft RJ, Pheasant M, Mattick JS. The relationship between non-proteincoding DNA and eukaryotic complexity. BioEssays 2007; 29: 288-299
-
(2007)
BioEssays
, vol.29
, pp. 288-299
-
-
Taft, R.J.1
Pheasant, M.2
Mattick, J.S.3
-
27
-
-
84879758121
-
A meta-analysis of the genomic and transcriptomic composition of complex life
-
Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013; 12: 2061-2072
-
(2013)
Cell Cycle
, vol.12
, pp. 2061-2072
-
-
Liu, G.1
Mattick, J.S.2
Taft, R.J.3
-
28
-
-
84891757415
-
Multiple knockout mouse models reveal lincRNAs are required for life and brain development
-
Sauvageau M, Goff LA, Lodato S et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2013; 2: e01749
-
(2013)
eLife
, vol.2
-
-
Sauvageau, M.1
Goff, L.A.2
Lodato, S.3
-
29
-
-
80053045739
-
Molecular mechanisms of long noncoding RNAs
-
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Molecular Cell 2011; 43: 904-914
-
(2011)
Molecular Cell
, vol.43
, pp. 904-914
-
-
Wang, K.C.1
Chang, H.Y.2
-
30
-
-
34250729138
-
Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
-
Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311-1323
-
(2007)
Cell
, vol.129
, pp. 1311-1323
-
-
Rinn, J.L.1
Kertesz, M.2
Wang, J.K.3
-
31
-
-
79953748673
-
A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
-
Wang KC, Yang YW, Liu B et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120-124
-
(2011)
Nature
, vol.472
, pp. 120-124
-
-
Wang, K.C.1
Yang, Y.W.2
Liu, B.3
-
32
-
-
84874368349
-
Activating RNAs associate with Mediator to enhance chromatin architecture and transcription
-
Lai F, Orom UA, Cesaroni M et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 2013; 494: 497-501
-
(2013)
Nature
, vol.494
, pp. 497-501
-
-
Lai, F.1
Orom, U.A.2
Cesaroni, M.3
-
33
-
-
54549108798
-
MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation
-
Tay Y, Zhang J, Thomson AM et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455: 1124-1128
-
(2008)
Nature
, vol.455
, pp. 1124-1128
-
-
Tay, Y.1
Zhang, J.2
Thomson, A.M.3
-
34
-
-
34547441263
-
Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5″ UTR as in the 3″ UTR
-
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5″ UTR as in the 3″ UTR. Proc Natl Acad Sci 2007; 104: 9667-9672
-
(2007)
Proc Natl Acad Sci
, vol.104
, pp. 9667-9672
-
-
Lytle, J.R.1
Yario, T.A.2
Steitz, J.A.3
-
35
-
-
33644499134
-
Cell-type-specific signatures of microRNAs on target mRNA expression
-
Sood P, Krek A, Zavolan M et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 2006; 103: 2746-2751
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 2746-2751
-
-
Sood, P.1
Krek, A.2
Zavolan, M.3
-
36
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman RC, Farh KK-H, Burge CB et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92-105
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.-H.2
Burge, C.B.3
-
37
-
-
58149179989
-
miR2Disease: A manually curated database for microRNA deregulation in human disease
-
Jiang Q, Wang Y, Hao Y et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009; 37: D98-D104
-
(2009)
Nucleic Acids Res
, vol.37
, pp. D98-D104
-
-
Jiang, Q.1
Wang, Y.2
Hao, Y.3
-
38
-
-
84905122848
-
MicroRNAs in cancer: Biomarkers, functions and therapy
-
Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20: 460-469
-
(2014)
Trends Mol Med
, vol.20
, pp. 460-469
-
-
Hayes, J.1
Peruzzi, P.P.2
Lawler, S.3
-
39
-
-
84910080839
-
The emerging role of microRNAs in cardiovascular disease
-
Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med 2014; 276: 633-644
-
(2014)
J Intern Med
, vol.276
, pp. 633-644
-
-
Maegdefessel, L.1
-
40
-
-
75649139134
-
Physiological and pathological roles for microRNAs in the immune system
-
OConnell RM, Rao DS, Chaudhuri AA et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111-122
-
(2010)
Nat Rev Immunol
, vol.10
, pp. 111-122
-
-
OConnell, R.M.1
Rao, D.S.2
Chaudhuri, A.A.3
-
41
-
-
34548746977
-
MicroRNA signatures in human ovarian cancer
-
Iorio MV, Visone R, Di Leva G et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67: 8699-8707
-
(2007)
Cancer Res
, vol.67
, pp. 8699-8707
-
-
Iorio, M.V.1
Visone, R.2
Di Leva, G.3
-
42
-
-
75149130928
-
Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection
-
Patnaik SK, Kannisto E, Knudsen S et al. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010; 70: 36-45
-
(2010)
Cancer Res
, vol.70
, pp. 36-45
-
-
Patnaik, S.K.1
Kannisto, E.2
Knudsen, S.3
-
43
-
-
63149121152
-
Circulating microRNAs, potential biomarkers for drug-induced liver injury
-
Wang K, Zhang S, Marzolf B et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 2009; 106: 4402-4407
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 4402-4407
-
-
Wang, K.1
Zhang, S.2
Marzolf, B.3
-
44
-
-
20444460289
-
MicroRNA expression profiles classify human cancers
-
Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-838
-
(2005)
Nature
, vol.435
, pp. 834-838
-
-
Lu, J.1
Getz, G.2
Miska, E.A.3
-
45
-
-
84864884853
-
Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation
-
Hall JS, Taylor J, Valentine HR et al. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br J Cancer 2012; 107: 684-694
-
(2012)
Br J Cancer
, vol.107
, pp. 684-694
-
-
Hall, J.S.1
Taylor, J.2
Valentine, H.R.3
-
46
-
-
77952962186
-
Robust microRNA stability in degraded RNA preparations from human tissue and cell samples
-
Jung M, Schaefer A, Steiner I et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem 2010; 56: 998-1006
-
(2010)
Clin Chem
, vol.56
, pp. 998-1006
-
-
Jung, M.1
Schaefer, A.2
Steiner, I.3
-
47
-
-
67650457804
-
(micro)Genomic medicine: MicroRNAs as therapeutics and biomarkers
-
Saunders MA, Lim LP. (micro)Genomic medicine: microRNAs as therapeutics and biomarkers. RNA Biol 2009; 6: 324-328
-
(2009)
RNA Biol
, vol.6
, pp. 324-328
-
-
Saunders, M.A.1
Lim, L.P.2
-
48
-
-
84905241949
-
Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study
-
Mestdagh P, Hartmann N, Baeriswyl L et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 2014; 11: 809-815
-
(2014)
Nat Methods
, vol.11
, pp. 809-815
-
-
Mestdagh, P.1
Hartmann, N.2
Baeriswyl, L.3
-
49
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15-20
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
50
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495-500
-
(2005)
Nat Genet
, vol.37
, pp. 495-500
-
-
Krek, A.1
Grün, D.2
Poy, M.N.3
-
53
-
-
33644873722
-
miRNAMap: Genomic maps of microRNA genes and their target genes in mammalian genomes
-
Hsu PWC, Huang H-D, Hsu S-D et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 2006; 34: D135-D139
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D135-D139
-
-
Hsu, P.W.C.1
Huang, H.-D.2
Hsu, S.-D.3
-
54
-
-
44149083586
-
miRDB: A microRNA target prediction and functional annotation database with a wiki interface
-
Wang X. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA (New York, N.Y.) 2008; 14: 1012-1017
-
(2008)
RNA (New York, N.Y.)
, vol.14
, pp. 1012-1017
-
-
Wang, X.1
-
55
-
-
67650747402
-
DIANA-microT web server: Elucidating microRNA functions through target prediction
-
Maragkakis M, Reczko M, Simossis VA et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009; 37: W273-W276
-
(2009)
Nucleic Acids Res
, vol.37
, pp. W273-W276
-
-
Maragkakis, M.1
Reczko, M.2
Simossis, V.A.3
-
56
-
-
2442672918
-
A combined computational-experimental approach predicts human microRNA targets
-
Kiriakidou M, Nelson PT, Kouranov A et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004; 18: 1165-1178
-
(2004)
Genes Dev
, vol.18
, pp. 1165-1178
-
-
Kiriakidou, M.1
Nelson, P.T.2
Kouranov, A.3
-
58
-
-
84893025641
-
Identifying miRNAs, targets and functions
-
Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014; 15: 1-19
-
(2014)
Brief Bioinform
, vol.15
, pp. 1-19
-
-
Liu, B.1
Li, J.2
Cairns, M.J.3
-
59
-
-
80455124067
-
The microRNA body map: Dissecting microRNA function through integrative genomics
-
Mestdagh P, Lefever S, Pattyn F et al. The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res 2011; 39: e136
-
(2011)
Nucleic Acids Res
, vol.39
, pp. e136
-
-
Mestdagh, P.1
Lefever, S.2
Pattyn, F.3
-
61
-
-
38549092089
-
miRGator: An integrated system for functional annotation of microRNAs
-
Nam S, Kim B, Shin S et al. miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res 2007; 36: D159-D164
-
(2007)
Nucleic Acids Res
, vol.36
, pp. D159-D164
-
-
Nam, S.1
Kim, B.2
Shin, S.3
-
62
-
-
78651330434
-
miRGator v2.0: An integrated system for functional investigation of microRNAs
-
Cho S, Jun Y, Lee S et al. miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res 2011; 39: D158-D162
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D158-D162
-
-
Cho, S.1
Jun, Y.2
Lee, S.3
-
63
-
-
77954276691
-
MAGIA, a web-based tool for miRNA and Genes Integrated Analysis
-
Sales G, Coppe A, Bisognin A et al. MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res 2010; 38: W352-W359
-
(2010)
Nucleic Acids Res
, vol.38
, pp. W352-W359
-
-
Sales, G.1
Coppe, A.2
Bisognin, A.3
-
64
-
-
77956117850
-
Towards computational prediction of microRNA function and activity
-
Ulitsky I, Laurent LC, Shamir R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res 2010; 38: e160
-
(2010)
Nucleic Acids Res
, vol.38
, pp. e160
-
-
Ulitsky, I.1
Laurent, L.C.2
Shamir, R.3
-
65
-
-
84906939393
-
Diabetic nephropathy - Emerging epigenetic mechanisms
-
Kato M, Natarajan R. Diabetic nephropathy - emerging epigenetic mechanisms. Nat Rev Nephrol 2014; 10: 517-530
-
(2014)
Nat Rev Nephrol
, vol.10
, pp. 517-530
-
-
Kato, M.1
Natarajan, R.2
-
67
-
-
16344383409
-
Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs
-
Sun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32: e188
-
(2004)
Nucleic Acids Res
, vol.32
, pp. e188
-
-
Sun, Y.1
Koo, S.2
White, N.3
-
68
-
-
84857979740
-
Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy
-
Putta S, Lanting L, Sun G et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 2012; 23: 458-469
-
(2012)
J Am Soc Nephrol
, vol.23
, pp. 458-469
-
-
Putta, S.1
Lanting, L.2
Sun, G.3
-
69
-
-
80052248898
-
A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells
-
Kato M, Arce L, Wang M et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 2011; 80: 358-368
-
(2011)
Kidney Int
, vol.80
, pp. 358-368
-
-
Kato, M.1
Arce, L.2
Wang, M.3
-
70
-
-
77949892330
-
Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy
-
Krupa A, Jenkins R, Luo DD et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010; 21: 438-447
-
(2010)
J Am Soc Nephrol
, vol.21
, pp. 438-447
-
-
Krupa, A.1
Jenkins, R.2
Luo, D.D.3
-
71
-
-
77954274715
-
E-cadherin expression is regulated by miR- 192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
-
Wang B, Herman-Edelstein M, Koh P et al. E-cadherin expression is regulated by miR- 192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010; 59: 1794-1802
-
(2010)
Diabetes
, vol.59
, pp. 1794-1802
-
-
Wang, B.1
Herman-Edelstein, M.2
Koh, P.3
-
72
-
-
84884793994
-
Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy
-
Deshpande SD, Putta S, Wang M et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 2013; 62: 3151-3162
-
(2013)
Diabetes
, vol.62
, pp. 3151-3162
-
-
Deshpande, S.D.1
Putta, S.2
Wang, M.3
-
73
-
-
84863115180
-
Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis
-
Wang B, Komers R, Carew R et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 2012; 23: 252-265
-
(2012)
J Am Soc Nephrol
, vol.23
, pp. 252-265
-
-
Wang, B.1
Komers, R.2
Carew, R.3
-
74
-
-
84895900338
-
Transforminggrowthfactor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b
-
Wang B, Jha JC, Hagiwara S et al. Transforminggrowthfactor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int 2014; 85: 352-361
-
(2014)
Kidney Int
, vol.85
, pp. 352-361
-
-
Wang, B.1
Jha, J.C.2
Hagiwara, S.3
-
75
-
-
84890516925
-
Regulation of TIMP3 in diabetic nephropathy: A role for microRNAs
-
Fiorentino L, Cavalera M, Mavilio M et al. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 2013; 50: 965-969
-
(2013)
Acta Diabetol
, vol.50
, pp. 965-969
-
-
Fiorentino, L.1
Cavalera, M.2
Mavilio, M.3
-
76
-
-
84868369462
-
Loss of TIMP3 selectively exacerbates diabetic nephropathy
-
Basu R, Lee J, Wang Z et al. Loss of TIMP3 selectively exacerbates diabetic nephropathy. Am J Physiol Renal Physiol 2012; 303: F1341-F1352
-
(2012)
Am J Physiol Renal Physiol
, vol.303
, pp. F1341-F1352
-
-
Basu, R.1
Lee, J.2
Wang, Z.3
-
77
-
-
84902528910
-
miR-21 overexpression enhances TGFβ1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy
-
Wang JY, Gao YB, Zhang N et al. miR-21 overexpression enhances TGFβ1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 2014; 392: 163-172
-
(2014)
Mol Cell Endocrinol
, vol.392
, pp. 163-172
-
-
Wang, J.Y.1
Gao, Y.B.2
Zhang, N.3
-
78
-
-
84878269299
-
miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes
-
Zhong X, Chung AC, Chen HY et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013; 56: 663-674
-
(2013)
Diabetologia
, vol.56
, pp. 663-674
-
-
Zhong, X.1
Chung, A.C.2
Chen, H.Y.3
-
80
-
-
78149352664
-
Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
-
Fu Y, Zhang Y, Wang Z et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol 2010; 32: 581-589
-
(2010)
Am J Nephrol
, vol.32
, pp. 581-589
-
-
Fu, Y.1
Zhang, Y.2
Wang, Z.3
-
81
-
-
77954941124
-
Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions
-
Long J, Wang Y, Wang W et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 2010; 285: 23457-23465
-
(2010)
J Biol Chem
, vol.285
, pp. 23457-23465
-
-
Long, J.1
Wang, Y.2
Wang, W.3
-
82
-
-
84872860732
-
Urinary microRNA profiling in the nephropathy of type 1 diabetes
-
Argyropoulos C, Wang K, McClarty S et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One 2013; 8: e54662
-
(2013)
PLoS One
, vol.8
-
-
Argyropoulos, C.1
Wang, K.2
McClarty, S.3
|