메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

Automated interpretation of 3D laserscanned point clouds for plant organ segmentation

Author keywords

3D laserscanning; Automatic segmentation; Clustering; High throughput; Plant phenotyping

Indexed keywords

AUTOMATION; CLUSTERING ALGORITHMS; GEOMETRY; PROGRAM PROCESSORS; THROUGHPUT;

EID: 84938581760     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0665-2     Document Type: Article
Times cited : (79)

References (40)
  • 2
    • 84899904146 scopus 로고    scopus 로고
    • Advanced imaging techniques for the study of plant growth and development
    • Sozzani R, Busch W, Spalding EP, Benfey PN. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci. 2014; 19(5):304-10.
    • (2014) Trends Plant Sci , vol.19 , Issue.5 , pp. 304-310
    • Sozzani, R.1    Busch, W.2    Spalding, E.P.3    Benfey, P.N.4
  • 4
    • 84904429218 scopus 로고    scopus 로고
    • Fusion of sensor data for the detection and differentiation of plant diseases in cucumber
    • Berdugo CA, Zito R, Paulus S, Mahlein AK. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 2014; 63(6):1344-56.
    • (2014) Plant Pathol , vol.63 , Issue.6 , pp. 1344-1356
    • Berdugo, C.A.1    Zito, R.2    Paulus, S.3    Mahlein, A.K.4
  • 5
    • 83055180602 scopus 로고    scopus 로고
    • Phenomics-technologies to relieve the phenotyping bottleneck
    • Furbank RT, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011; 16(12):635-44. ISSN 1878-4372.
    • (2011) Trends Plant Sci , vol.16 , Issue.12 , pp. 635-644
    • Furbank, R.T.1    Tester, M.2
  • 6
    • 84921900726 scopus 로고    scopus 로고
    • Metro maps of plant disease dynamics: Automated mining of differences using hyperspectral images
    • Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K. Metro maps of plant disease dynamics: Automated mining of differences using hyperspectral images. PLoS ONE. 2015; 10(1):e0116902. doi: 10.1371/journal.pone.0116902 .
    • (2015) PLoS ONE , vol.10 , Issue.1 , pp. e0116902
    • Wahabzada, M.1    Mahlein, A.K.2    Bauckhage, C.3    Steiner, U.4    Oerke, E.C.5    Kersting, K.6
  • 7
    • 84928600188 scopus 로고    scopus 로고
    • Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions
    • Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, et al. Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods. 2015; 11(1):28. ISSN 1746-4811, doi10.1186/s13007-015-0073-7, http://www.plantmethods.com/content/11/1/28 .
    • (2015) Plant Methods , vol.11 , Issue.1 , pp. 28
    • Kuska, M.1    Wahabzada, M.2    Leucker, M.3    Dehne, H.W.4    Kersting, K.5    Oerke, E.C.6
  • 8
    • 84880913691 scopus 로고    scopus 로고
    • Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping
    • Paulus S, Dupuis J, Mahlein AK, Kuhlmann H. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 2013; 14(1):238.
    • (2013) BMC Bioinf , vol.14 , Issue.1 , pp. 238
    • Paulus, S.1    Dupuis, J.2    Mahlein, A.K.3    Kuhlmann, H.4
  • 9
    • 76749103308 scopus 로고    scopus 로고
    • Three-dimensional digital model of a maize plant
    • Frasson RPdM, Krajewski WF. Three-dimensional digital model of a maize plant. Agric Forest Meteorology. 2010; 150(3):478-88.
    • (2010) Agric Forest Meteorology , vol.150 , Issue.3 , pp. 478-488
    • Frasson, R.P.M.1    Krajewski, W.F.2
  • 10
    • 84896892983 scopus 로고    scopus 로고
    • A high precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants
    • Paulus S, Schumann H, Leon J, Kuhlmann H. A high precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosystems Engineering. 2014; 121:1-11.
    • (2014) Biosystems Engineering , vol.121 , pp. 1-11
    • Paulus, S.1    Schumann, H.2    Leon, J.3    Kuhlmann, H.4
  • 11
  • 13
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • New York: Wiley; 1998
    • Vapnik NV. Statistical Learning Theory. New York: Wiley; 1998. ISBN 0471030031-, http://www.zentralblatt-math.org/zmath/en/search/?an=0935.62007 .
    • (1998)
    • Vapnik, N.V.1
  • 14
    • 0001218562 scopus 로고
    • The statistical analysis of compositional data
    • Aitchison J. The statistical analysis of compositional data. J R Stat Soc. 1982; 44(2):139-77.
    • (1982) J R Stat Soc , vol.44 , Issue.2 , pp. 139-177
    • Aitchison, J.1
  • 15
    • 0026459054 scopus 로고
    • On criteria for measures of compositional difference
    • Aitchison J. On criteria for measures of compositional difference. Math Geol. 1992; 24(4):365-79.
    • (1992) Math Geol , vol.24 , Issue.4 , pp. 365-379
    • Aitchison, J.1
  • 18
    • 80053924421 scopus 로고    scopus 로고
    • Convex non-negative matrix factorization for massive datasets
    • Thurau C, Kersting K, Wahabzada M, Bauckhage C. Convex non-negative matrix factorization for massive datasets. Knowledge Inf Syst. 2011; 29(2):457-78.
    • (2011) Knowledge Inf Syst , vol.29 , Issue.2 , pp. 457-478
    • Thurau, C.1    Kersting, K.2    Wahabzada, M.3    Bauckhage, C.4
  • 19
    • 84856594021 scopus 로고    scopus 로고
    • Descriptive matrix factorization for sustainability: Adopting the principle of opposites
    • Thurau C, Kersting K, Wahabzada M, Bauckhage C. Descriptive matrix factorization for sustainability: Adopting the principle of opposites. J Data Min Knowledge Discovery. 2012; 24(2):325-54.
    • (2012) J Data Min Knowledge Discovery , vol.24 , Issue.2 , pp. 325-354
    • Thurau, C.1    Kersting, K.2    Wahabzada, M.3    Bauckhage, C.4
  • 21
    • 70350657266 scopus 로고    scopus 로고
    • Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
    • Paris, France. Paris, France
    • Yan D, Huang L, Jordan MI. Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris, France. Paris, France: 2009. p. 907-16.
    • (2009) , pp. 907-916
    • Yan, D.1    Huang, L.2    Jordan, M.I.3
  • 24
    • 84899144716 scopus 로고    scopus 로고
    • A multi-resolution approach for an automated fusion of different low-cost 3D sensors
    • Dupuis J, Paulus S, Behmann J, Plümer L, Kuhlmann H. A multi-resolution approach for an automated fusion of different low-cost 3D sensors. Sensors. 2014; 14:7563-79.
    • (2014) Sensors , vol.14 , pp. 7563-7579
    • Dupuis, J.1    Paulus, S.2    Behmann, J.3    Plümer, L.4    Kuhlmann, H.5
  • 25
    • 84904437920 scopus 로고    scopus 로고
    • Automated analysis of barley organs using 3D laser scanning - an approach for high throughput phenotyping
    • Paulus S, Dupuis J, Riedel S, Kuhlmann H. Automated analysis of barley organs using 3D laser scanning - an approach for high throughput phenotyping. Sensors. 2014; 14(7):12670-86. doi:10.3390/s140712670.
    • (2014) Sensors , vol.14 , Issue.7 , pp. 12670-12686
    • Paulus, S.1    Dupuis, J.2    Riedel, S.3    Kuhlmann, H.4
  • 27
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • New York: Springer
    • Bishop CM. Pattern Recognition and Machine Learning. New York: Springer; 2006. ISBN 0387310738.
    • (2006)
    • Bishop, C.M.1
  • 31
    • 77952578798 scopus 로고    scopus 로고
    • On metric divergences of probability measures
    • Vajda I. On metric divergences of probability measures. Kibernetika. 2009; 45(6):885-900.
    • (2009) Kibernetika , vol.45 , Issue.6 , pp. 885-900
    • Vajda, I.1
  • 33
    • 0742267880 scopus 로고    scopus 로고
    • Dealing with zeros and missing values in compositional data sets using nonparametric imputation
    • Martín-Ferníndez JA, Barceló-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol. 2003; 35(3):253-78. ISSN 0882-8121, doi: http://dx.doi.org/10.1023/A:1023866030544 .
    • (2003) Math Geol , vol.35 , Issue.3 , pp. 253-278
    • Martín-Ferníndez, J.A.1    Barceló-Vidal, C.2    Pawlowsky-Glahn, V.3
  • 34
    • 57049122948 scopus 로고    scopus 로고
    • Random projection trees and low dimensional manifolds
    • Ladner RE, Dwork C, editors, Victoria, British Columbia, Canada: May 17-20
    • Dasgupta S, Freund Y. Random projection trees and low dimensional manifolds In: Ladner RE, Dwork C, editors. Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), Victoria, British Columbia, Canada: May 17-20 2008. p. 537-46.
    • (2008) Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC) , pp. 537-546
    • Dasgupta, S.1    Freund, Y.2
  • 35
    • 84995216908 scopus 로고
    • Growth stages of the grapevine: Phenological growth stages of the grapevine (vitis vinifera l. ssp. vinifera)-codes and descriptions according to the extended bbch scale
    • Lorenz DH, Eichhorn KW, Bleihilder H, Klose R, Meier U, Weber E. Growth stages of the grapevine: Phenological growth stages of the grapevine (vitis vinifera l. ssp. vinifera)-codes and descriptions according to the extended bbch scale. Aust J Grape and Wine Res. 1995; 1(2):100-3.
    • (1995) Aust J Grape and Wine Res , vol.1 , Issue.2 , pp. 100-103
    • Lorenz, D.H.1    Eichhorn, K.W.2    Bleihilder, H.3    Klose, R.4    Meier, U.5    Weber, E.6
  • 36
    • 34548080780 scopus 로고    scopus 로고
    • Introduction to Information Retrieval
    • New York, NY, USA: Cambridge University Press
    • Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press; 2009.
    • (2009)
    • Manning, C.D.1    Raghavan, P.2    Schütze, H.3
  • 37
    • 67650932694 scopus 로고    scopus 로고
    • A comparison of extrinsic clustering evaluation metrics based on formal constraints
    • Amigó E, Gonzalo J, Artiles J, Verdejo F. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retrieval. 2009; 12(4):461-86.
    • (2009) Inf Retrieval , vol.12 , Issue.4 , pp. 461-486
    • Amigó, E.1    Gonzalo, J.2    Artiles, J.3    Verdejo, F.4
  • 38
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning. 2004; 55(3):311-31. ISSN 0885-6125.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 40
    • 84953637096 scopus 로고    scopus 로고
    • A comprehensive performance evaluation of 3D local feature descriptors
    • Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM. A comprehensive performance evaluation of 3D local feature descriptors. Int J Comput Vision. 2015:1-24. ISSN 0920-5691, doi: http://dx.doi.org/10.1007/s11263-015-0824-y .
    • (2015) Int J Comput Vision , pp. 1-24
    • Guo, Y.1    Bennamoun, M.2    Sohel, F.3    Lu, M.4    Wan, J.5    Kwok, N.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.