메뉴 건너뛰기




Volumn , Issue , 2009, Pages 907-915

Fast approximate spectral clustering

Author keywords

Data quantization; Spectral clustering; Unsupervised learning

Indexed keywords

CLUSTERING ACCURACY; CLUSTERING PROCEDURE; CLUSTERING RATES; CLUSTERINGS; DATA QUANTIZATION; DATA SETS; HIGH QUALITY; K-MEANS; K-MEANS CLUSTERING; LARGE-SCALE PROBLEM; LOCAL DISTORTION; LOCAL TRANSFORMATIONS; M METHOD; MEMORY FOOTPRINT; NUMBER OF DATUM; RANDOM PROJECTIONS; SINGLE MACHINES; SMALL DATA SET; SPECTRAL CLUSTERING; STATISTICAL CHARACTERIZATION;

EID: 70350657266     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557118     Document Type: Conference Paper
Times cited : (460)

References (38)
  • 2
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching
    • S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate nearest neighbor searching. Journal of the ACM, 45:891-923, 1998.
    • (1998) Journal of the ACM , vol.45 , pp. 891-923
    • Arya, S.1    Mount, D.2    Netanyahu, N.3    Silverman, R.4    Wu, A.5
  • 3
    • 70350651132 scopus 로고    scopus 로고
    • A. Asuncion and D. Newman. UCI Machine Learning Repository, Department of Information and Computer Science. http://www.ics.uci.edu/ mlearn/MLRepository. html, 2007.
    • A. Asuncion and D. Newman. UCI Machine Learning Repository, Department of Information and Computer Science. http://www.ics.uci.edu/ mlearn/MLRepository. html, 2007.
  • 4
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • F. R. Bach and M. I. Jordan. Learning spectral clustering, with application to speech separation. Journal of Machine Learning Research, 7:1963-2001, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 34548748711 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors: A multilevel approach
    • I. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions on PAMI, 29(11):1944-1957, 2007.
    • (2007) IEEE Transactions on PAMI , vol.29 , Issue.11 , pp. 1944-1957
    • Dhillon, I.1    Guan, Y.2    Kulis, B.3
  • 10
    • 26944440870 scopus 로고    scopus 로고
    • On the Nyström method for approximating a Gram matrix for improved kernel-based learning
    • P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. In Proceedings of COLT, pages 323-337, 2005.
    • (2005) Proceedings of COLT , pp. 323-337
    • Drineas, P.1    Mahoney, M.W.2
  • 11
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 16
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics, 28(1):100-108, 1979.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 20
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. Journal of the ACM, 51(3):497-515, 2004.
    • (2004) Journal of the ACM , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 22
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20:359-392, 1999.
    • (1999) SIAM Journal on Scientific Computing , vol.20 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 24
    • 39949083377 scopus 로고    scopus 로고
    • Hierarchical initialization approach for k-means clustering
    • J. F. Lu, J. B. Tang, Z. M. Tang, and J. Y. Yang. Hierarchical initialization approach for k-means clustering. Pattern Recognition Letters, 29:787-795, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 787-795
    • Lu, J.F.1    Tang, J.B.2    Tang, Z.M.3    Yang, J.Y.4
  • 29
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • J. M. Pena, J. A. Lozano, and P. Larranaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 14(1):1027-1040, 1999.
    • (1999) Pattern Recognition Letters , vol.14 , Issue.1 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 30
    • 33947106382 scopus 로고    scopus 로고
    • A method for initialising the k-means clustering algorithm using kd-trees
    • S. J. Redmond and C. Heneghen. A method for initialising the k-means clustering algorithm using kd-trees. Pattern Recognition Letters, 28:965-973, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 965-973
    • Redmond, S.J.1    Heneghen, C.2
  • 36
    • 70350675100 scopus 로고    scopus 로고
    • Fast approximate spectral clustering
    • Technical report, Department of Statistics, UC Berkeley
    • D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering. Technical report, Department of Statistics, UC Berkeley, 2009.
    • (2009)
    • Yan, D.1    Huang, L.2    Jordan, M.I.3
  • 38
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • P. L. Zador. Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Transactions of Information Theory, 28:139-148, 1982.
    • (1982) IEEE Transactions of Information Theory , vol.28 , pp. 139-148
    • Zador, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.