메뉴 건너뛰기




Volumn 24, Issue 2, 2012, Pages 325-354

Descriptive matrix factorization for sustainability Adopting the principle of opposites

Author keywords

Convex combinations; Distance geometry; Large scale data analysis; Matrix factorization

Indexed keywords

BASIS VECTOR; CONVEX COMBINATIONS; DATA ANALYSIS METHODS; DATA MATRICES; DATA POINTS; DATA SETS; DISTANCE GEOMETRY; EFFICIENCY GAIN; FACTORIZATION METHODS; GLOBAL ENERGY; HUMAN COGNITION; INFLUENTIAL FACTORS; LINEAR-TIME ALGORITHMS; MATRIX FACTORIZATIONS; OVER-COMPLETE; PUBLIC DEBATE; PUBLIC INTEREST;

EID: 84856594021     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-011-0216-z     Document Type: Article
Times cited : (62)

References (27)
  • 1
    • 34247228045 scopus 로고    scopus 로고
    • Fast computation of low-rank matrix approximations
    • 2295993
    • D Achlioptas F McSherry 2007 Fast computation of low-rank matrix approximations J ACM 54 9 1 19 2295993
    • (2007) J ACM , vol.54 , Issue.9 , pp. 1-19
    • Achlioptas, D.1    McSherry, F.2
  • 2
    • 0007213733 scopus 로고    scopus 로고
    • Bayesian inference on latent structure in time series
    • J. Bernardo J. Bergen A. Dawid A. Smith (eds). Oxford University Press Oxford
    • Aguilar O, Huerta G, Prado R, West M (1998) Bayesian inference on latent structure in time series. In: Bernardo J, Bergen J, Dawid A, Smith A (eds) Bayesian statistics. Oxford University Press, Oxford
    • (1998) Bayesian Statistics
    • Aguilar, O.1    Huerta, G.2    Prado, R.3    West, M.4
  • 5
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • 10.1109/TGRS.2006.881803
    • CI Chang CC Wu WM Liu YC Ouyang 2006 A new growing method for simplex-based endmember extraction algorithm IEEE T Geosci Remote 44 10 2804 2819 10.1109/TGRS.2006.881803
    • (2006) IEEE T Geosci Remote , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.I.1    Wu, C.C.2    Liu, W.M.3    Ouyang, Y.C.4
  • 7
    • 0028532769 scopus 로고
    • Archetypal analysis
    • 10.2307/1269949 0804.62002 1304898
    • A Cutler L Breiman 1994 Archetypal analysis Technometrics 36 4 338 347 10.2307/1269949 0804.62002 1304898
    • (1994) Technometrics , vol.36 , Issue.4 , pp. 338-347
    • Cutler, A.1    Breiman, L.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • 10.1145/1327452.1327492
    • J Dean S Ghemawat 2008 Mapreduce: simplified data processing on large clusters Commun ACM 51 1 107 113 10.1145/1327452.1327492
    • (2008) Commun ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • 10.1109/TPAMI.2008.277
    • C Ding T Li M Jordan 2010 Convex and semi-nonnegative matrix factorizations IEEE T Pattern Anal 32 1 45 55 10.1109/TPAMI.2008.277
    • (2010) IEEE T Pattern Anal , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 10
    • 33751097630 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
    • DOI 10.1137/S0097539704442702
    • P Drineas R Kannan M Mahoney 2006 Fast Monte Carlo algorithms III: computing a compressed approixmate matrix decomposition SIAM J Comput 36 1 184 206 10.1137/S0097539704442702 1111.68149 2231645 (Pubitemid 46374023)
    • (2006) SIAM Journal on Computing , vol.36 , Issue.1 , pp. 184-206
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 12
    • 8344266790 scopus 로고    scopus 로고
    • Information limits on neural identification of colored surfaces in natural scenes
    • DOI 10.1017/S0952523804043330
    • D Foster S Nascimento K Amano 2004 Information limits on neural identification of coloured surfaces in natural scenes Visual Neurosci 21 331 336 10.1017/S0952523804213335 (Pubitemid 39481976)
    • (2004) Visual Neuroscience , vol.21 , Issue.3 , pp. 331-336
    • Foster, D.H.1    Nascimento, S.M.C.2    Amano, K.3
  • 14
    • 0037790752 scopus 로고    scopus 로고
    • The maximum-volume concept in approximation by low-rank matrices
    • 1850400
    • SA Goreinov EE Tyrtyshnikov 2001 The maximum-volume concept in approximation by low-rank matrices Contemp Math 280 47 51 1850400
    • (2001) Contemp Math , vol.280 , pp. 47-51
    • Goreinov, S.A.1    Tyrtyshnikov, E.E.2
  • 15
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • 10.1037/h0070888
    • H Hotelling 1933 Analysis of a complex of statistical variables into principal components J Educ Psychol 24 7 498 520 10.1037/h0070888
    • (1933) J Educ Psychol , vol.24 , Issue.7 , pp. 498-520
    • Hotelling, H.1
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • DOI 10.1038/44565
    • DD Lee HS Seung 1999 Learning the parts of objects by non-negative matrix factorization Nature 401 6755 788 799 10.1038/44565 (Pubitemid 29512513)
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 0347063585 scopus 로고    scopus 로고
    • Tail behaviour of credit loss distributions for general latent factor models
    • DOI 10.1080/1350486032000160786
    • A Lucas P Klaassen P Spreij S Straetmans 2003 Tail behaviour of credit loss distributions for general latent factor models Appl Math Finance 10 4 337 357 10.1080/1350486032000160786 1070.91032 (Pubitemid 38061504)
    • (2003) Applied Mathematical Finance , vol.10 , Issue.4 , pp. 337-357
    • Lucas, A.1    Klaassen, P.2    Spreij, P.3    Straetmans, S.4
  • 20
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L Miao H Qi 2007 Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization IEEE T Geosci Remote 45 3 765 777 10.1109/TGRS.2006.888466 (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 21
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • JMP Nascimento JMB Dias 2005 Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE T Geosci Remote 43 4 898 910 10.1109/TGRS.2005.844293 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 22
    • 24344449655 scopus 로고    scopus 로고
    • On FastMap and the convex hull of multivariate data: Toward fast and robust dimension reduction
    • DOI 10.1109/TPAMI.2005.164
    • G Ostrouchov N Samatova 2005 On fastmap and the convex hull of multivariate data: toward fast and robust dimension reduction IEEE T Pattern Anal 27 8 1340 1434 10.1109/TPAMI.2005.164 (Pubitemid 41245063)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1340-1343
    • Ostrouchov, G.1    Samatova, N.F.2
  • 23
    • 0022704535 scopus 로고
    • Cayley-Menger coordinates
    • 10.1073/pnas.83.8.2283 0587.51013
    • M Sippl H Sheraga 1986 Cayley-Menger coordinates Proc Natl Acad Sci 83 8 2283 2287 10.1073/pnas.83.8.2283 0587.51013
    • (1986) Proc Natl Acad Sci , vol.83 , Issue.8 , pp. 2283-2287
    • Sippl, M.1    Sheraga, H.2
  • 24
    • 0000600340 scopus 로고
    • General intelligence objectively determined and measured
    • 10.2307/1412107
    • C Spearman 1904 General intelligence objectively determined and measured Am J Psychol 15 201 293 10.2307/1412107
    • (1904) Am J Psychol , vol.15 , pp. 201-293
    • Spearman, C.1
  • 26
    • 80053924421 scopus 로고    scopus 로고
    • Convex non-negative matrix factorization for massive datasets
    • doi: 10.1007/s10115-010-0352-6
    • Thurau C, Kersting K, Wahabzada M, Bauckhage C (2010) Convex non-negative matrix factorization for massive datasets. Knowl Inf Syst (KAIS). doi: 10.1007/s10115-010-0352-6
    • (2010) Knowl Inf Syst (KAIS)
    • Thurau, C.1    Kersting, K.2    Wahabzada, M.3    Bauckhage, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.