-
2
-
-
84937955398
-
-
http://guidance.echa.europa.eu/guidance:en.htm.
-
-
-
-
3
-
-
0037364162
-
ADMET in silico modelling: towards prediction paradise?
-
van de Waterbeemd H., Gifford E. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2003, 2:192-204.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 192-204
-
-
van de Waterbeemd, H.1
Gifford, E.2
-
4
-
-
0025863682
-
Computer prediction of possible toxic action from chemical structure; the DEREK system
-
Sanderson D.M., Earnshaw C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum. Exp. Toxicol. 1991, 10:261-273.
-
(1991)
Hum. Exp. Toxicol.
, vol.10
, pp. 261-273
-
-
Sanderson, D.M.1
Earnshaw, C.G.2
-
5
-
-
0026778110
-
MULTICASE 1. A hierarchical computer automated structure evaluation program
-
Klopman G. MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant. Struct.-Act. Relat. 1992, 11:176-184.
-
(1992)
Quant. Struct.-Act. Relat.
, vol.11
, pp. 176-184
-
-
Klopman, G.1
-
6
-
-
0035144211
-
Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals
-
Prival M.J. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ. Mol. Mutagen. 2001, 37:55-69.
-
(2001)
Environ. Mol. Mutagen.
, vol.37
, pp. 55-69
-
-
Prival, M.J.1
-
7
-
-
1842639169
-
ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases
-
Klopman G., Chakravarti S.K., Zhu H., Ivanov J.M., Saiakhov R.D. ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J. Chem. Inf. Comput. Sci. 2004, 44:704-715.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 704-715
-
-
Klopman, G.1
Chakravarti, S.K.2
Zhu, H.3
Ivanov, J.M.4
Saiakhov, R.D.5
-
8
-
-
66449094983
-
Prediction of antibacterial compounds by machine learning approaches
-
Xue-Gang Y., Duan C., Min W., Ying X., Yu-Zong C. Prediction of antibacterial compounds by machine learning approaches. J. Comput. Chem. 2009, 30:1202-1211.
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 1202-1211
-
-
Xue-Gang, Y.1
Duan, C.2
Min, W.3
Ying, X.4
Yu-Zong, C.5
-
9
-
-
53849084171
-
Prediction of chemical toxicity with local support vector regression and activity-specific kernels
-
Maunz A., Helma C. Prediction of chemical toxicity with local support vector regression and activity-specific kernels. SAR QSAR Environ. Res. 2008, 19:413-431.
-
(2008)
SAR QSAR Environ. Res.
, vol.19
, pp. 413-431
-
-
Maunz, A.1
Helma, C.2
-
10
-
-
0042355457
-
In silico prediction of drug toxicity
-
Dearden J.C. In silico prediction of drug toxicity. J. Comput. Aided Mol. Des. 2003, 17:119-127.
-
(2003)
J. Comput. Aided Mol. Des.
, vol.17
, pp. 119-127
-
-
Dearden, J.C.1
-
12
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K.-R., Mika S., Rätsch G., Tsuda K., Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12:181-202.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, pp. 181-202
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
13
-
-
79955653069
-
Exploring nonlinear relationships in chemical data using kernel-based methods
-
Cao D.-S., Liang Y.-Z., Xu Q.-S., Hu Q.-N., Zhang L.-X., Fu G.-H. Exploring nonlinear relationships in chemical data using kernel-based methods. Chemom. Intell. Lab. Syst. 2011, 107:106-115.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, pp. 106-115
-
-
Cao, D.-S.1
Liang, Y.-Z.2
Xu, Q.-S.3
Hu, Q.-N.4
Zhang, L.-X.5
Fu, G.-H.6
-
14
-
-
84925409378
-
Kernelmethods for large-scale genomic data analysis
-
Wang X., Xing E.P., Schaid D.J. Kernelmethods for large-scale genomic data analysis. Brief. Bioinform. 2015, 16:183-192.
-
(2015)
Brief. Bioinform.
, vol.16
, pp. 183-192
-
-
Wang, X.1
Xing, E.P.2
Schaid, D.J.3
-
16
-
-
24044461725
-
A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
-
Kim K., Lee J.-M., Lee I.-B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemom. Intell. Lab. Syst. 2005, 79:22-30.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.79
, pp. 22-30
-
-
Kim, K.1
Lee, J.-M.2
Lee, I.-B.3
-
17
-
-
84894426130
-
A new kernel discriminant analysis framework for electronic nose recognition
-
Zhang L., Tian F.-C. A new kernel discriminant analysis framework for electronic nose recognition. Anal. Chim. Acta 2014, 816:8-17.
-
(2014)
Anal. Chim. Acta
, vol.816
, pp. 8-17
-
-
Zhang, L.1
Tian, F.-C.2
-
20
-
-
77952238401
-
A tutorial on support vector machine-based methods for classification problems in chemometrics
-
Luts J., Ojeda F., Van de Plas R., De Moor B., Van Huffel S., Suykens J.A.K. A tutorial on support vector machine-based methods for classification problems in chemometrics. Anal. Chim. Acta 2010, 665:129-145.
-
(2010)
Anal. Chim. Acta
, vol.665
, pp. 129-145
-
-
Luts, J.1
Ojeda, F.2
Van de Plas, R.3
De Moor, B.4
Van Huffel, S.5
Suykens, J.A.K.6
-
21
-
-
80053631131
-
A novel kernel Fisher discriminant analysis: constructing informative kernel by decision tree ensemble for metabolomics data analysis
-
Cao D.S., Zeng M.M., Yi L.Z., Wang B., Xu Q.S., Hu Q.N., Zhang L.X., Lu H.M., Liang Y.Z. A novel kernel Fisher discriminant analysis: constructing informative kernel by decision tree ensemble for metabolomics data analysis. Anal. Chim. Acta 2011, 706:97-104.
-
(2011)
Anal. Chim. Acta
, vol.706
, pp. 97-104
-
-
Cao, D.S.1
Zeng, M.M.2
Yi, L.Z.3
Wang, B.4
Xu, Q.S.5
Hu, Q.N.6
Zhang, L.X.7
Lu, H.M.8
Liang, Y.Z.9
-
22
-
-
26944486424
-
Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
-
Swamidass S.J., Chen J., Phung P., Ralaivola L., Baldi P. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics 2005, 21:I359-I368.
-
(2005)
Bioinformatics
, vol.21
, pp. I359-I368
-
-
Swamidass, S.J.1
Chen, J.2
Phung, P.3
Ralaivola, L.4
Baldi, P.5
-
23
-
-
84863116063
-
In silico toxicity prediction by support vector machine and SMILES representation-based string kernel
-
Cao D.S., Zhao J.C., Yang Y.N., Zhao C.X., Yan J., Liu S., Hu Q.N., Xu Q.S., Liang Y.Z. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel. SAR QSAR Environ. Res. 2012, 23:141-153.
-
(2012)
SAR QSAR Environ. Res.
, vol.23
, pp. 141-153
-
-
Cao, D.S.1
Zhao, J.C.2
Yang, Y.N.3
Zhao, C.X.4
Yan, J.5
Liu, S.6
Hu, Q.N.7
Xu, Q.S.8
Liang, Y.Z.9
-
24
-
-
84867333487
-
Tree-based ensemble methods and their applications in analytical chemistry
-
Cao D.-S., Huang J.-H., Liang Y.-Z., Xu Q.-S., Zhang L.-X. Tree-based ensemble methods and their applications in analytical chemistry. TrAC Trends Anal. Chem. 2012, 40:158-167.
-
(2012)
TrAC Trends Anal. Chem.
, vol.40
, pp. 158-167
-
-
Cao, D.-S.1
Huang, J.-H.2
Liang, Y.-Z.3
Xu, Q.-S.4
Zhang, L.-X.5
-
25
-
-
77954853785
-
L2-norm multiple kernel learning and its application to biomedical data fusion
-
Yu S., Falck T., Daemen A., Tranchevent L.C., Suykens J.A., De Moor B., Moreau Y. L2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinf. 2010, 11:309.
-
(2010)
BMC Bioinf.
, vol.11
, pp. 309
-
-
Yu, S.1
Falck, T.2
Daemen, A.3
Tranchevent, L.C.4
Suykens, J.A.5
De Moor, B.6
Moreau, Y.7
-
26
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998, 2:121-167.
-
(1998)
Data Min. Knowl. Disc.
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
27
-
-
34848824629
-
Applications of support vector machines in chemistry
-
Ivanciuc O. Applications of support vector machines in chemistry. Rev. Comput. Chem. 2007, 23:291-400.
-
(2007)
Rev. Comput. Chem.
, vol.23
, pp. 291-400
-
-
Ivanciuc, O.1
-
28
-
-
28844500372
-
Application of support vector machine (SVM) for prediction toxic activity of different data sets
-
Zhao C.Y., Zhang H.X., Zhang X.Y., Liu M.C., Hu Z.D., Fan B.T. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006, 217:105-119.
-
(2006)
Toxicology
, vol.217
, pp. 105-119
-
-
Zhao, C.Y.1
Zhang, H.X.2
Zhang, X.Y.3
Liu, M.C.4
Hu, Z.D.5
Fan, B.T.6
-
29
-
-
79551534528
-
Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine
-
Cao D.-S., Xu Q.-S., Liang Y.-Z., Chen X., Li H.-D. Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine. J. Chemom. 2010, 24:584-595.
-
(2010)
J. Chemom.
, vol.24
, pp. 584-595
-
-
Cao, D.-S.1
Xu, Q.-S.2
Liang, Y.-Z.3
Chen, X.4
Li, H.-D.5
-
30
-
-
79951876692
-
Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors
-
Fu G.H., Cao D.S., Xu Q.S., Li H.D., Liang Y.Z. Combination of kernel PCA and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors. J. Chemom. 2011, 25:92-99.
-
(2011)
J. Chemom.
, vol.25
, pp. 92-99
-
-
Fu, G.H.1
Cao, D.S.2
Xu, Q.S.3
Li, H.D.4
Liang, Y.Z.5
-
31
-
-
32444444605
-
About kernel latent variable approaches and SVM
-
Czekaj T., Wu W., Walczak B. About kernel latent variable approaches and SVM. J. Chemom. 2005, 19:341-354.
-
(2005)
J. Chemom.
, vol.19
, pp. 341-354
-
-
Czekaj, T.1
Wu, W.2
Walczak, B.3
-
32
-
-
80052261350
-
Support vector machines in water quality management
-
Singh K.P., Basant N., Gupta S. Support vector machines in water quality management. Anal. Chim. Acta 2011, 703:152-162.
-
(2011)
Anal. Chim. Acta
, vol.703
, pp. 152-162
-
-
Singh, K.P.1
Basant, N.2
Gupta, S.3
-
33
-
-
84870810274
-
A novel tree kernel support vector machine classifier for modeling the relationship between bioactivity and molecular descriptors
-
Huang X., Cao D.-S., Xu Q.-S., Shen L., Huang J.-H., Liang Y.-Z. A novel tree kernel support vector machine classifier for modeling the relationship between bioactivity and molecular descriptors. Chemom. Intell. Lab. Syst. 2013, 120:71-76.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.120
, pp. 71-76
-
-
Huang, X.1
Cao, D.-S.2
Xu, Q.-S.3
Shen, L.4
Huang, J.-H.5
Liang, Y.-Z.6
-
34
-
-
77955644255
-
Visualization and recovery of the (bio)chemical interesting variables in data analysis with support vector machine classification
-
Krooshof P.W.T., Uustuun B., Postma G.J., Buydens L.M.C. Visualization and recovery of the (bio)chemical interesting variables in data analysis with support vector machine classification. Anal. Chem. 2011, 82:7000-7007.
-
(2011)
Anal. Chem.
, vol.82
, pp. 7000-7007
-
-
Krooshof, P.W.T.1
Uustuun, B.2
Postma, G.J.3
Buydens, L.M.C.4
-
35
-
-
84862003752
-
Interpretation and visualization of non-linear data fusion in kernel space: study on metabolomic characterization of progression of multiple sclerosis
-
Smolinska A., Blanchet L., Coulier L., Ampt K.A., Luider T., Hintzen R.Q., Wijmenga S.S., Buydens L.M. Interpretation and visualization of non-linear data fusion in kernel space: study on metabolomic characterization of progression of multiple sclerosis. PLoS One 2012, 7:e38163.
-
(2012)
PLoS One
, vol.7
, pp. e38163
-
-
Smolinska, A.1
Blanchet, L.2
Coulier, L.3
Ampt, K.A.4
Luider, T.5
Hintzen, R.Q.6
Wijmenga, S.S.7
Buydens, L.M.8
-
36
-
-
34250882118
-
Visualisation and interpretation of Support Vector Regression models
-
Ustun B., Melssen W.J., Buydens L.M.C. Visualisation and interpretation of Support Vector Regression models. Anal. Chim. Acta 2007, 595:299-309.
-
(2007)
Anal. Chim. Acta
, vol.595
, pp. 299-309
-
-
Ustun, B.1
Melssen, W.J.2
Buydens, L.M.C.3
-
37
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
-
(2006)
Pattern Recogn. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
38
-
-
79954628072
-
In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint
-
Cao D.-S., Hu Q.-N., Xu Q.-S., Yang Y.-N., Zhao J.-C., Lu H.-M., Zhang L.-X., Liang Y.-Z. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Anal. Chim. Acta 2011, 692:50-56.
-
(2011)
Anal. Chim. Acta
, vol.692
, pp. 50-56
-
-
Cao, D.-S.1
Hu, Q.-N.2
Xu, Q.-S.3
Yang, Y.-N.4
Zhao, J.-C.5
Lu, H.-M.6
Zhang, L.-X.7
Liang, Y.-Z.8
-
39
-
-
79954494823
-
Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds
-
Cao D.-S., Liang Y.-Z., Xu Q.-S., Zhang L.-X., Hu Q.-N., Li H.-D. Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds. J. Chemom. 2011, 25:201-207.
-
(2011)
J. Chemom.
, vol.25
, pp. 201-207
-
-
Cao, D.-S.1
Liang, Y.-Z.2
Xu, Q.-S.3
Zhang, L.-X.4
Hu, Q.-N.5
Li, H.-D.6
-
40
-
-
84888593703
-
PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies
-
Cao D.S., Liang Y.Z., Yan J., Tan G.S., Xu Q.S., Liu S. PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J. Chem. Inf. Model. 2013, 53:3086-3096.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3086-3096
-
-
Cao, D.S.1
Liang, Y.Z.2
Yan, J.3
Tan, G.S.4
Xu, Q.S.5
Liu, S.6
-
41
-
-
30844443282
-
Molecular similarity and diversity in chemoinformatics: from theory to applications
-
Maldonado A., Doucet J., Petitjean M., Fan B.-T. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol. Divers. 2006, 10:39-79.
-
(2006)
Mol. Divers.
, vol.10
, pp. 39-79
-
-
Maldonado, A.1
Doucet, J.2
Petitjean, M.3
Fan, B.-T.4
-
42
-
-
33646266941
-
Toxicity-indicating structural patterns
-
von Korff M., Sander T. Toxicity-indicating structural patterns. J. Chem. Inf. Model. 2006, 46:536-544.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 536-544
-
-
von Korff, M.1
Sander, T.2
-
43
-
-
84876266543
-
ChemoPy: freely available python package for computational biology and chemoinformatics
-
Cao D.S., Xu Q.S., Hu Q.N., Liang Y.Z. ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 2013, 29:1092-1094.
-
(2013)
Bioinformatics
, vol.29
, pp. 1092-1094
-
-
Cao, D.S.1
Xu, Q.S.2
Hu, Q.N.3
Liang, Y.Z.4
-
44
-
-
2942700377
-
Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures
-
Hert J., Willett P., Wilton D.J., Acklin P., Azzaoui K., Jacoby E., Schuffenhauer A. Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J. Chem. Inf. Comput. Sci. 2004, 44:1177-1185.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1177-1185
-
-
Hert, J.1
Willett, P.2
Wilton, D.J.3
Acklin, P.4
Azzaoui, K.5
Jacoby, E.6
Schuffenhauer, A.7
-
45
-
-
84903701959
-
Protein fold recognition using geometric kernel data fusion
-
Zakeri P., Jeuris B., Vandebril R., Moreau Y. Protein fold recognition using geometric kernel data fusion. Bioinf. (Oxford, England) 2014, 30:1850-1857.
-
(2014)
Bioinf. (Oxford, England)
, vol.30
, pp. 1850-1857
-
-
Zakeri, P.1
Jeuris, B.2
Vandebril, R.3
Moreau, Y.4
-
46
-
-
84862796149
-
Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool
-
Cao D.-S., Huang J.-H., Yan J., Zhang L.-X., Hu Q.-N., Xu Q.-S., Liang Y.-Z. Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool. Chemom. Intell. Lab. Syst. 2012, 114:19-23.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.114
, pp. 19-23
-
-
Cao, D.-S.1
Huang, J.-H.2
Yan, J.3
Zhang, L.-X.4
Hu, Q.-N.5
Xu, Q.-S.6
Liang, Y.-Z.7
|