메뉴 건너뛰기




Volumn 19, Issue 5-7, 2005, Pages 341-354

About kernel latent variable approaches and SVM

Author keywords

Genomics; Kernel PCR; Kernel PLS; Kernel Ridge Regression; Medical diagnostics; SVMs

Indexed keywords

DIAGNOSIS; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 32444444605     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.937     Document Type: Article
Times cited : (49)

References (69)
  • 3
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik VN, Chervonenkis AY. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probability Appl. 1971; 16: 264-280.
    • (1971) Theory Probability Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 4
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • Vapnik VN, Chervonenkis AY. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognit. Image Anal. 1991; 1: 283-305.
    • (1991) Pattern Recognit. Image Anal. , vol.1 , pp. 283-305
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 10
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank IE, Friedman JH. A statistical view of some chemometrics regression tools. Technometrics 1993; 35: 109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 11
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970; 12: 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 13
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • Morozov VA. On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 1966; 7: 414-417.
    • (1966) Soviet Math. Dokl. , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 14
    • 84915425007 scopus 로고
    • Some comments on CP
    • Mallows CL. Some comments on CP. Technometrics 1973; 15: 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 15
    • 0000570697 scopus 로고
    • Analysis of discrete ill-posed problems by means of the L-curve
    • Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. Soc. Ind. Appl. Math. Rev. 1992; 34: 561-580.
    • (1992) Soc. Ind. Appl. Math. Rev. , vol.34 , pp. 561-580
    • Hansen, P.C.1
  • 16
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979; 21: 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 17
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T, Pontil M, Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 2000; 13: 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 18
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F, Jones M, Poggio T. Regularization theory and neural networks architectures. Neural Comput. 1995; 7: 219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 19
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi F. An equivalence between sparse approximation and support vector machines. Neural Comput. 1998; 10: 1455-1480.
    • (1998) Neural Comput. , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 20
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A, Scholkopf B, Muller K-R. The connection between regularization operators and support vector kernels. Neural Netw. 1998; 11: 637-649.
    • (1998) Neural Netw. , vol.11 , pp. 637-649
    • Smola, A.1    Scholkopf, B.2    Muller, K.-R.3
  • 21
  • 23
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discov. 1998; 2: 121-167.
    • (1998) Data Mining Knowledge Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 24
    • 0003401675 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Regression
    • Royal Holloway College, University of London, UK
    • Smola A, Scholkopf B. A Tutorial on Support Vector Regression. NeuroCOLT Technical Report NC-RR-98-030, Royal Holloway College, University of London, UK, 1998.
    • (1998) NeuroCOLT Technical Report NC-RR-98-030
    • Smola, A.1    Scholkopf, B.2
  • 25
    • 84899013173 scopus 로고    scopus 로고
    • Support vector regression machines
    • Mozer M, Jordan M, Petsche T (eds). NIPS: Denver, USA, The MIT Press: Cambridge, MA, USA
    • Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik VN. Support vector regression machines. In Advances in Neural Information Processing Systems. Vol. 9, Mozer M, Jordan M, Petsche T (eds). NIPS: Denver, USA, 1996 [The MIT Press: Cambridge, MA, USA, 1997; 155-161].
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.C.2    Kaufman, L.3    Smola, A.4    Vapnik, V.N.5
  • 26
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: A new support vector regression algorithm
    • Kearns MS, Solla SA, Cohn DA (eds). NIPS: Denver, USA, The MIT Press: Cambridge, MA, USA
    • Schoelkopf B, Bartlett P, Smola AJ, Williamson R. Shrinking the tube: a new support vector regression algorithm. In Advances in Neural Information Processing Systems. Vol. 11, Kearns MS, Solla SA, Cohn DA (eds). NIPS: Denver, USA, 1998 [The MIT Press: Cambridge, MA, USA, 1999; 330-336].
    • (1998) Advances in Neural Information Processing Systems , vol.11 , pp. 330-336
    • Schoelkopf, B.1    Bartlett, P.2    Smola, A.J.3    Williamson, R.4
  • 27
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Mozer M, Jordan M, Petsche T (eds). NIPS: Denver, USA, The MIT Press: Cambridge, Massachusetts, USA
    • Vapnik VN, Golowich SE, Smola A. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems. Vol. 9, Mozer M, Jordan M, Petsche T (eds). NIPS: Denver, USA, 1996 [The MIT Press: Cambridge, Massachusetts, USA, 1997; 281-287].
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.E.2    Smola, A.3
  • 28
    • 0027530250 scopus 로고
    • SIMPLS: An alternative approach to partial least squares regression
    • de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemometrics Intelligent Lab. Syst. 1993; 18: 251-263.
    • (1993) Chemometrics Intelligent Lab. Syst. , vol.18 , pp. 251-263
    • De Jong, S.1
  • 29
    • 0036825821 scopus 로고    scopus 로고
    • Kernel methods: A survey of current techniques
    • Campbell C. Kernel methods: a survey of current techniques. Neurocomputing 2002; 48: 63-84.
    • (2002) Neurocomputing , vol.48 , pp. 63-84
    • Campbell, C.1
  • 30
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950; 68: 337-404.
    • (1950) Trans. Am. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 31
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomised GACV
    • Scholkopf B, Burges CJC, Smola AJ (eds). The MIT Press: Cambridge, MA, USA
    • Wahba G. Support vector machines, reproducing kernel Hilbert spaces and the randomised GACV. In Advances in Kernel Methods - Support Vector Learning. Scholkopf B, Burges CJC, Smola AJ (eds). The MIT Press: Cambridge, MA, USA, 1999; 69-88.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 32
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • Poggio T. On optimal nonlinear associative recall. Biol. Cybern. 1975; 19: 201-209.
    • (1975) Biol. Cybern. , vol.19 , pp. 201-209
    • Poggio, T.1
  • 33
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. 1909; A 209: 415-446.
    • (1909) Philos. Trans. R. Soc. Lond. , vol.209 A , pp. 415-446
    • Mercer, J.1
  • 35
    • 32444443388 scopus 로고    scopus 로고
    • PhD thesis, Massachusetts Institute of Technology. The MIT Press: Cambridge, MA, USA
    • Evgeniou T. Learning with Kernel Machine Architectures, PhD thesis, Massachusetts Institute of Technology. The MIT Press: Cambridge, MA, USA, 2000, available at: http: //cbcl.mit.edu/projects/cbcl/publications/theses/thesis- evgeniou.pdf [29 March 2005].
    • (2000) Learning with Kernel Machine Architectures
    • Evgeniou, T.1
  • 36
    • 0030607269 scopus 로고    scopus 로고
    • The radial basis functions - Partial least squares approach as a flexible non-linear regression techniques
    • Walczak B, Massart DL. The radial basis functions - partial least squares approach as a flexible non-linear regression techniques. Anal. Chim. Acta 1996; 331: 177-185.
    • (1996) Anal. Chim. Acta , vol.331 , pp. 177-185
    • Walczak, B.1    Massart, D.L.2
  • 37
    • 0030607273 scopus 로고    scopus 로고
    • Application of radial basis functions - Partial least squares to non-linear pattern recognition problems: Diagnosis of process faults
    • Walczak B, Massart DL. Application of radial basis functions - partial least squares to non-linear pattern recognition problems: diagnosis of process faults. Anal. Chim. Acta 1996; 331: 187-193.
    • (1996) Anal. Chim. Acta , vol.331 , pp. 187-193
    • Walczak, B.1    Massart, D.L.2
  • 38
    • 0034710274 scopus 로고    scopus 로고
    • ERRATUM. As Erratum of the article: Local modelling with Radial Basis Functions Networks
    • Walczak B, Massart DL. ERRATUM. Chemometrics Intelligent Lab. Syst. 2000; 51: 219-238 [As Erratum of the article: Local modelling with Radial Basis Functions Networks].
    • (2000) Chemometrics Intelligent Lab. Syst. , vol.51 , pp. 219-238
    • Walczak, B.1    Massart, D.L.2
  • 41
    • 4644271780 scopus 로고    scopus 로고
    • A comparison of multivariate calibration techniques applied to experimental NIR data sets. Part III: Robustness against instrumental perturbation conditions
    • Estienne F, Despagne F, Walczak B, de Noord OE, Massart DL. A comparison of multivariate calibration techniques applied to experimental NIR data sets. Part III: robustness against instrumental perturbation conditions. Chemometrics Intelligent Lab. Syst. 2004; 73: 207-218.
    • (2004) Chemometrics Intelligent Lab. Syst. , vol.73 , pp. 207-218
    • Estienne, F.1    Despagne, F.2    Walczak, B.3    De Noord, O.E.4    Massart, D.L.5
  • 42
    • 0000796382 scopus 로고
    • Exploiting neurons with localized receptive fields to learn chaos
    • Stokbro K, Umberger DK, Hertz JA. Exploiting neurons with localized receptive fields to learn chaos. Complex Syst. 1990; 4: 603-622.
    • (1990) Complex Syst. , vol.4 , pp. 603-622
    • Stokbro, K.1    Umberger, D.K.2    Hertz, J.A.3
  • 43
    • 0027147212 scopus 로고
    • Wave-net: A multiresolution, hierarchical neural network with localized learning
    • Bakshi BR, Stephanopoulos G. Wave-net: a multiresolution, hierarchical neural network with localized learning. AIChE J. 1993; 39: 57-81.
    • (1993) AIChE J. , vol.39 , pp. 57-81
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 45
    • 0025415732 scopus 로고
    • Forecasting and control using adaptive connectionist networks
    • Ydstie BE. Forecasting and control using adaptive connectionist networks. Comput. Chem. Eng. 1990; 14: 583-599.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 583-599
    • Ydstie, B.E.1
  • 47
    • 85153986593 scopus 로고    scopus 로고
    • 29 September
    • http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl? pub_no = 107 [29 September 2004].
    • (2004)
  • 48
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J. Microarray data normalization and transformation. Nat. Genet. 2002; 32: 496-501.
    • (2002) Nat. Genet. , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 49
    • 32444451403 scopus 로고    scopus 로고
    • Fast computation of trends in scatterplots
    • Eilers PHC. Fast computation of trends in scatterplots. Kwantitatieve Methoden 2004; 71: 38-45.
    • (2004) Kwantitatieve Methoden , vol.71 , pp. 38-45
    • Eilers, P.H.C.1
  • 50
    • 84894887900 scopus 로고
    • Computer-aided design of experiments
    • Kennard RW, Stone LA. Computer-aided design of experiments. Technometrics 1969; 11: 137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 51
    • 0036899286 scopus 로고    scopus 로고
    • From pattern to pathways: Gene expression data analysis comes of age
    • Slonim DK. From pattern to pathways: gene expression data analysis comes of age. Nat. Genet. 2002; 32: 502-508.
    • (2002) Nat. Genet. , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 52
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data
    • World Scientific: New Jersey, USA
    • Yoo C, Thorsson V, Cooper GF. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. Pacific Symposium on Biocomputing. World Scientific: New Jersey, USA, 2002; 498-509.
    • (2002) Pacific Symposium on Biocomputing , pp. 498-509
    • Yoo, C.1    Thorsson, V.2    Cooper, G.F.3
  • 53
    • 21044459850 scopus 로고    scopus 로고
    • Microarrays and beyond: What potential do current and future genomics tools have for breeders?
    • Walsh B, Henderson D. Microarrays and beyond: what potential do current and future genomics tools have for breeders? J. Anim. Sci. 2004; 82: E292-E299.
    • (2004) J. Anim. Sci. , vol.82
    • Walsh, B.1    Henderson, D.2
  • 55
    • 85153981635 scopus 로고    scopus 로고
    • http: //www.mathworks.com/
  • 56
    • 85153974572 scopus 로고    scopus 로고
    • 29 March
    • http: //svmlight.joachims.org/ [29 March 2005].
    • (2005)
  • 57
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalization performance: Support vector machines
    • Belousov AI, Verzakov SA, von Frese J. A flexible classification approach with optimal generalization performance: support vector machines. Chemometrics Intelligent Lab. Syst. 2002; 64: 15-25.
    • (2002) Chemometrics Intelligent Lab. Syst. , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 59
    • 2342655711 scopus 로고    scopus 로고
    • Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes
    • Chauchaerd F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometrics Intelligent Lab. Syst. 2004; 71: 141-150.
    • (2004) Chemometrics Intelligent Lab. Syst. , vol.71 , pp. 141-150
    • Chauchaerd, F.1    Cogdill, R.2    Roussel, S.3    Roger, J.M.4    Bellon-Maurel, V.5
  • 62
    • 15744367392 scopus 로고    scopus 로고
    • Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
    • Yao XJ, Panaye A, Doucet JP, Chen HF, Zhang RS, Fan BT, Liu MC, Hu ZD. Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks. Anal. Chim. Acta 2005; 535: 259-273.
    • (2005) Anal. Chim. Acta , vol.535 , pp. 259-273
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Chen, H.F.4    Zhang, R.S.5    Fan, B.T.6    Liu, M.C.7    Hu, Z.D.8
  • 64
    • 85153975896 scopus 로고    scopus 로고
    • Classification of gasoline with supplement of bio-products by means of an electronic nose and SVM neural network
    • in press
    • Brudzewski K, Osowski S, Markiewicz T, Ulaczyk J. Classification of gasoline with supplement of bio-products by means of an electronic nose and SVM neural network. Sens. Actuators B: Chem. 2005 (in press).
    • (2005) Sens. Actuators B: Chem.
    • Brudzewski, K.1    Osowski, S.2    Markiewicz, T.3    Ulaczyk, J.4
  • 65
    • 2342611333 scopus 로고    scopus 로고
    • Least-squares support vector machines for chemometrics: An introduction and evaluation
    • Cogdill RP, Dardenne P. Least-squares support vector machines for chemometrics: an introduction and evaluation. J. Near Infrared Spectrosc. 2004; 12: 93-100.
    • (2004) J. Near Infrared Spectrosc. , vol.12 , pp. 93-100
    • Cogdill, R.P.1    Dardenne, P.2
  • 67
    • 2442514721 scopus 로고    scopus 로고
    • An optimization perspective on partial least squares
    • Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds). NATO Science Series III: Computer & Systems Sciences, IOS Press Amsterdam: Amsterdam, Netherlands
    • Bennett KP, Embrechts MJ. An optimization perspective on partial least squares. In Advances in Learning Theory: Methods, Models and Applications, Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds). NATO Science Series III: Computer & Systems Sciences, Vol. 190. IOS Press Amsterdam: Amsterdam, Netherlands, 2003; 227-250.
    • (2003) Advances in Learning Theory: Methods, Models and Applications , vol.190 , pp. 227-250
    • Bennett, K.P.1    Embrechts, M.J.2
  • 68
    • 0027632248 scopus 로고
    • A neural-gas network for vector quantization and its application to time series prediction
    • Martinetz M, Berkovich S, Schulten K. A neural-gas network for vector quantization and its application to time series prediction. IEEE Transactions on Neural Networks 1993; 4: 558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, M.1    Berkovich, S.2    Schulten, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.