-
1
-
-
76849109489
-
Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products
-
Dekant, W, Melching-Kollmu, S and Kalberlah, F. 2004. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products. Regul. Toxicol. Pharm., 56: 135-142.
-
(2004)
Regul. Toxicol. Pharm.
, vol.56
, pp. 135-142
-
-
Dekant, W.1
Melching-Kollmu, S.2
Kalberlah, F.3
-
2
-
-
85195059319
-
-
http://guidance.echa.europa.eu/guidance_en.htm
-
-
-
-
3
-
-
0042355457
-
In silico prediction of drug toxicity
-
Dearden, JC. 2003. In silico prediction of drug toxicity. J. Comput. Aid. Mol. Des., 17: 119-127.
-
(2003)
J. Comput. Aid. Mol. Des.
, vol.17
, pp. 119-127
-
-
Dearden, J.C.1
-
4
-
-
0037364162
-
ADMET in silico modelling: Towards prediction paradise?
-
van de Waterbeemd, H and Gifford, E. 2003. ADMET in silico modelling: Towards prediction paradise?. Nat. Rev. Drug Discov., 2: 192-204.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 192-204
-
-
van de Waterbeemd, H.1
Gifford, E.2
-
5
-
-
0021529312
-
Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules
-
Klopman, G. 1984. Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J. Am. Chem. Soc., 106: 7315-7321.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 7315-7321
-
-
Klopman, G.1
-
6
-
-
0025863682
-
Computer prediction of possible toxic action from chemical structure: The DEREK system
-
Sanderson, DM and Earnshaw, CG. 1991. Computer prediction of possible toxic action from chemical structure: The DEREK system. Hum. Exp. Toxicol., 10: 261-273.
-
(1991)
Hum. Exp. Toxicol.
, vol.10
, pp. 261-273
-
-
Sanderson, D.M.1
Earnshaw, C.G.2
-
7
-
-
0026778110
-
MULTICASE 1. A hierarchical computer automated structure evaluation program
-
Klopman, G. 1992. MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant. Struct. Act. Relat., 11: 176-184.
-
(1992)
Quant. Struct. Act. Relat.
, vol.11
, pp. 176-184
-
-
Klopman, G.1
-
8
-
-
0031601429
-
The MultiCASE program II. Baseline activity identification algorithm (BAIA)?
-
Klopman, G. 1998. The MultiCASE program II. Baseline activity identification algorithm (BAIA)?. J. Chem. Inf. Model., 38: 78-81.
-
(1998)
J. Chem. Inf. Model.
, vol.38
, pp. 78-81
-
-
Klopman, G.1
-
9
-
-
0035144211
-
Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals
-
Prival, MJ. 2001. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ. Mol. Mutagen., 37: 55-69.
-
(2001)
Environ. Mol. Mutagen.
, vol.37
, pp. 55-69
-
-
Prival, M.J.1
-
10
-
-
1842639169
-
ESP:A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases
-
Klopman, G, Chakravarti, SK, Zhu, H, Ivanov, JM and Saiakhov, RD. 2004. ESP:A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J. Chem. Inf. Model., 44: 704-715.
-
(2004)
J. Chem. Inf. Model.
, vol.44
, pp. 704-715
-
-
Klopman, G.1
Chakravarti, S.K.2
Zhu, H.3
Ivanov, J.M.4
Saiakhov, R.D.5
-
11
-
-
66449094983
-
Prediction of antibacterial compounds by machine learning approaches
-
Xue-Gang, Y, Duan, C, Min, W, Ying, X and Yu-Zong, C. 2009. Prediction of antibacterial compounds by machine learning approaches. J. Comput. Chem., 30: 1202-1211.
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 1202-1211
-
-
Xue-Gang, Y.1
Duan, C.2
Min, W.3
Ying, X.4
Yu-Zong, C.5
-
12
-
-
36348960223
-
Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data? The Consortium on Metabonomic Toxicology Screening Approach
-
Ebbels, TMD, Keun, HC, Beckonert, OP, Bollard, ME, Lindon, JC, Holmes, E and Nicholson, JK. 2007. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data? The Consortium on Metabonomic Toxicology Screening Approach. J. Proteome Res., 6: 4407-4422.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 4407-4422
-
-
Ebbels, T.M.D.1
Keun, H.C.2
Beckonert, O.P.3
Bollard, M.E.4
Lindon, J.C.5
Holmes, E.6
Nicholson, J.K.7
-
14
-
-
0141890760
-
Predictive toxicology: Benchmarking molecular descriptors and statistical methods
-
Feng, J, Lurati, L, Ouyang, H, Robinson, T, Wang, Y, Yuan, S and Young, SS. 2003. Predictive toxicology: Benchmarking molecular descriptors and statistical methods. J. Chem. Inf. Model., 43: 1463-1470.
-
(2003)
J. Chem. Inf. Model.
, vol.43
, pp. 1463-1470
-
-
Feng, J.1
Lurati, L.2
Ouyang, H.3
Robinson, T.4
Wang, Y.5
Yuan, S.6
Young, S.S.7
-
15
-
-
12144257810
-
Derivation and validation of toxicophores for mutagenicity prediction
-
Kazius, J, McGuire, R and Bursi, R. 2004. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 48: 312-320.
-
(2004)
J. Med. Chem.
, vol.48
, pp. 312-320
-
-
Kazius, J.1
McGuire, R.2
Bursi, R.3
-
16
-
-
53849084171
-
Prediction of chemical toxicity with local support vector regression and activity-specific kernels
-
Maunz, A and Helma, C. 2008. Prediction of chemical toxicity with local support vector regression and activity-specific kernels. SAR QSAR Environ. Res., 19: 413-431.
-
(2008)
SAR QSAR Environ. Res.
, vol.19
, pp. 413-431
-
-
Maunz, A.1
Helma, C.2
-
17
-
-
0035272041
-
Prediction of drug toxicity
-
Cronin, MTD. 2001. Prediction of drug toxicity. Il Farmaco, 56: 149-151.
-
(2001)
Il Farmaco
, vol.56
, pp. 149-151
-
-
Cronin, M.T.D.1
-
18
-
-
0029153221
-
Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals
-
Woo, Y-T, Lai, DY, Argus, MF and Arcos, JC. 1995. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol. Lett., 79: 219-228.
-
(1995)
Toxicol. Lett.
, vol.79
, pp. 219-228
-
-
Woo, Y.-T.1
Lai, D.Y.2
Argus, M.F.3
Arcos, J.C.4
-
19
-
-
34848824629
-
Applications of support vector machines in chemistry
-
Ivanciuc, O. 2007. Applications of support vector machines in chemistry. Rev. Comput. Chem., 23: 291-400.
-
(2007)
Rev. Comput. Chem.
, vol.23
, pp. 291-400
-
-
Ivanciuc, O.1
-
20
-
-
28844500372
-
Application of support vector machine (SVM) for prediction toxic activity of different data sets
-
Zhao, CY, Zhang, HX, Zhang, XY, Liu, MC, Hu, ZD and Fan, BT. 2006. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 217: 105-119.
-
(2006)
Toxicology
, vol.217
, pp. 105-119
-
-
Zhao, C.Y.1
Zhang, H.X.2
Zhang, X.Y.3
Liu, M.C.4
Hu, Z.D.5
Fan, B.T.6
-
21
-
-
79551534528
-
Prediction of aqueous solubility of druglike organic compounds using partial least squares. back-propagation network and support vector machine
-
Cao, D-S, Xu, Q-S, Liang, Y-Z, Chen, X and Li, H-D. 2010. Prediction of aqueous solubility of druglike organic compounds using partial least squares. back-propagation network and support vector machine, J. Chemometr., 24: 584-595.
-
(2010)
J. Chemometr.
, vol.24
, pp. 584-595
-
-
Cao, D.-S.1
Xu, Q.-S.2
Liang, Y.-Z.3
Chen, X.4
Li, H.-D.5
-
22
-
-
85195076397
-
-
(eds.), An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000
-
Cristianini, N and Shawe-Taylor, J. (eds.), An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000
-
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
23
-
-
0003684449
-
-
Springer-Verlag, New York: Inference and Prediction
-
Friedman, JH, Hastie, T and Tibshirani, R. 2008. The Elements of Statistical Learning: Data Mining, Springer-Verlag, New York: Inference and Prediction.
-
(2008)
The Elements of Statistical Learning: Data Mining
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
24
-
-
26944486424
-
Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
-
Swamidass, SJ, Chen, J, Phung, P, Ralaivola, L and Baldi, P. 2005. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21: I359-I368.
-
(2005)
Bioinformatics
, vol.21
-
-
Swamidass, S.J.1
Chen, J.2
Phung, P.3
Ralaivola, L.4
Baldi, P.5
-
25
-
-
34548580482
-
Classification of small molecules by two- and three-dimensional decomposition kernels
-
Ceroni, A, Costa, F and Frasconi, P. 2007. Classification of small molecules by two- and three-dimensional decomposition kernels. Bioinformatics, 23: 2038-2045.
-
(2007)
Bioinformatics
, vol.23
, pp. 2038-2045
-
-
Ceroni, A.1
Costa, F.2
Frasconi, P.3
-
26
-
-
34250813174
-
One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
-
Azencott, C-A, Ksikes, A, Swamidass, SJ, Chen, JH, Ralaivola, L and Baldi, P. 2007. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J. Chem. Inf. Model., 47: 965-974.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 965-974
-
-
Azencott, C.-A.1
Ksikes, A.2
Swamidass, S.J.3
Chen, J.H.4
Ralaivola, L.5
Baldi, P.6
-
27
-
-
0024664539
-
SMILES. 2. Algorithm for generation of unique SMILES notation
-
Weininger, D, Weininger, A and Weininger, JL. 1989. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Model., 29: 97-101.
-
(1989)
J. Chem. Inf. Model.
, vol.29
, pp. 97-101
-
-
Weininger, D.1
Weininger, A.2
Weininger, J.L.3
-
29
-
-
79954494823
-
Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds
-
Cao, D-S, Liang, Y-Z, Xu, Q-S, Zhang, L-X, Hu, Q-N and Li, H-D. 2011. Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds. J. Chemometr., 25: 201-207.
-
(2011)
J. Chemometr.
, vol.25
, pp. 201-207
-
-
Cao, D.-S.1
Liang, Y.-Z.2
Xu, Q.-S.3
Zhang, L.-X.4
Hu, Q.-N.5
Li, H.-D.6
-
30
-
-
79954628072
-
In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint
-
Cao, D-S, Hu, Q-N, Xu, Q-S, Yang, Y-N, Zhao, J-C, Lu, H-M, Zhang, L-X and Liang, Y-Z. 2011. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Anal. Chim. Acta., 692: 50-56.
-
(2011)
Anal. Chim. Acta.
, vol.692
, pp. 50-56
-
-
Cao, D.-S.1
Hu, Q.-N.2
Xu, Q.-S.3
Yang, Y.-N.4
Zhao, J.-C.5
Lu, H.-M.6
Zhang, L.-X.7
Liang, Y.-Z.8
-
31
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn. Lett., 27: 861-874.
-
(2006)
Pattern Recogn. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
32
-
-
76149114231
-
SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations
-
Toropov, AA, Toropova, AP, Benfenati, E, Leszczynska, D and Leszczynski, J. 2011. SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations. J. Comput. Chem., 31: 381-392.
-
(2011)
J. Comput. Chem.
, vol.31
, pp. 381-392
-
-
Toropov, A.A.1
Toropova, A.P.2
Benfenati, E.3
Leszczynska, D.4
Leszczynski, J.5
-
33
-
-
77955559030
-
SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes
-
Toropov, AA, Toropova, AP and Benfenati, E. 2011. SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. Eur. J. Med. Chem., 45: 3581-3587.
-
(2011)
Eur. J. Med. Chem.
, vol.45
, pp. 3581-3587
-
-
Toropov, A.A.1
Toropova, A.P.2
Benfenati, E.3
|