메뉴 건너뛰기




Volumn 23, Issue 1-2, 2012, Pages 141-153

In silico toxicity prediction by support vector machine and SMILES representation-based string kernel

Author keywords

simplified molecular input line entry specification (SMILES); string kernel; structure toxicity relationship (STR); support vector machine (SVM); toxicity prediction

Indexed keywords

BOND STRENGTH (CHEMICAL); CLASSIFICATION (OF INFORMATION); FORECASTING; INDICATORS (CHEMICAL); MOLECULES; SUPPORT VECTOR MACHINES; TOXICITY;

EID: 84863116063     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/1062936X.2011.645874     Document Type: Article
Times cited : (43)

References (33)
  • 1
    • 76849109489 scopus 로고    scopus 로고
    • Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products
    • Dekant, W, Melching-Kollmu, S and Kalberlah, F. 2004. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products. Regul. Toxicol. Pharm., 56: 135-142.
    • (2004) Regul. Toxicol. Pharm. , vol.56 , pp. 135-142
    • Dekant, W.1    Melching-Kollmu, S.2    Kalberlah, F.3
  • 2
    • 85195059319 scopus 로고    scopus 로고
    • http://guidance.echa.europa.eu/guidance_en.htm
  • 3
    • 0042355457 scopus 로고    scopus 로고
    • In silico prediction of drug toxicity
    • Dearden, JC. 2003. In silico prediction of drug toxicity. J. Comput. Aid. Mol. Des., 17: 119-127.
    • (2003) J. Comput. Aid. Mol. Des. , vol.17 , pp. 119-127
    • Dearden, J.C.1
  • 4
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise?
    • van de Waterbeemd, H and Gifford, E. 2003. ADMET in silico modelling: Towards prediction paradise?. Nat. Rev. Drug Discov., 2: 192-204.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 192-204
    • van de Waterbeemd, H.1    Gifford, E.2
  • 5
    • 0021529312 scopus 로고
    • Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules
    • Klopman, G. 1984. Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J. Am. Chem. Soc., 106: 7315-7321.
    • (1984) J. Am. Chem. Soc. , vol.106 , pp. 7315-7321
    • Klopman, G.1
  • 6
    • 0025863682 scopus 로고
    • Computer prediction of possible toxic action from chemical structure: The DEREK system
    • Sanderson, DM and Earnshaw, CG. 1991. Computer prediction of possible toxic action from chemical structure: The DEREK system. Hum. Exp. Toxicol., 10: 261-273.
    • (1991) Hum. Exp. Toxicol. , vol.10 , pp. 261-273
    • Sanderson, D.M.1    Earnshaw, C.G.2
  • 7
    • 0026778110 scopus 로고
    • MULTICASE 1. A hierarchical computer automated structure evaluation program
    • Klopman, G. 1992. MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant. Struct. Act. Relat., 11: 176-184.
    • (1992) Quant. Struct. Act. Relat. , vol.11 , pp. 176-184
    • Klopman, G.1
  • 8
    • 0031601429 scopus 로고    scopus 로고
    • The MultiCASE program II. Baseline activity identification algorithm (BAIA)?
    • Klopman, G. 1998. The MultiCASE program II. Baseline activity identification algorithm (BAIA)?. J. Chem. Inf. Model., 38: 78-81.
    • (1998) J. Chem. Inf. Model. , vol.38 , pp. 78-81
    • Klopman, G.1
  • 9
    • 0035144211 scopus 로고    scopus 로고
    • Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals
    • Prival, MJ. 2001. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ. Mol. Mutagen., 37: 55-69.
    • (2001) Environ. Mol. Mutagen. , vol.37 , pp. 55-69
    • Prival, M.J.1
  • 10
    • 1842639169 scopus 로고    scopus 로고
    • ESP:A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases
    • Klopman, G, Chakravarti, SK, Zhu, H, Ivanov, JM and Saiakhov, RD. 2004. ESP:A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J. Chem. Inf. Model., 44: 704-715.
    • (2004) J. Chem. Inf. Model. , vol.44 , pp. 704-715
    • Klopman, G.1    Chakravarti, S.K.2    Zhu, H.3    Ivanov, J.M.4    Saiakhov, R.D.5
  • 11
    • 66449094983 scopus 로고    scopus 로고
    • Prediction of antibacterial compounds by machine learning approaches
    • Xue-Gang, Y, Duan, C, Min, W, Ying, X and Yu-Zong, C. 2009. Prediction of antibacterial compounds by machine learning approaches. J. Comput. Chem., 30: 1202-1211.
    • (2009) J. Comput. Chem. , vol.30 , pp. 1202-1211
    • Xue-Gang, Y.1    Duan, C.2    Min, W.3    Ying, X.4    Yu-Zong, C.5
  • 12
    • 36348960223 scopus 로고    scopus 로고
    • Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data? The Consortium on Metabonomic Toxicology Screening Approach
    • Ebbels, TMD, Keun, HC, Beckonert, OP, Bollard, ME, Lindon, JC, Holmes, E and Nicholson, JK. 2007. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data? The Consortium on Metabonomic Toxicology Screening Approach. J. Proteome Res., 6: 4407-4422.
    • (2007) J. Proteome Res. , vol.6 , pp. 4407-4422
    • Ebbels, T.M.D.1    Keun, H.C.2    Beckonert, O.P.3    Bollard, M.E.4    Lindon, J.C.5    Holmes, E.6    Nicholson, J.K.7
  • 15
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • Kazius, J, McGuire, R and Bursi, R. 2004. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 48: 312-320.
    • (2004) J. Med. Chem. , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 16
    • 53849084171 scopus 로고    scopus 로고
    • Prediction of chemical toxicity with local support vector regression and activity-specific kernels
    • Maunz, A and Helma, C. 2008. Prediction of chemical toxicity with local support vector regression and activity-specific kernels. SAR QSAR Environ. Res., 19: 413-431.
    • (2008) SAR QSAR Environ. Res. , vol.19 , pp. 413-431
    • Maunz, A.1    Helma, C.2
  • 17
    • 0035272041 scopus 로고    scopus 로고
    • Prediction of drug toxicity
    • Cronin, MTD. 2001. Prediction of drug toxicity. Il Farmaco, 56: 149-151.
    • (2001) Il Farmaco , vol.56 , pp. 149-151
    • Cronin, M.T.D.1
  • 18
    • 0029153221 scopus 로고
    • Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals
    • Woo, Y-T, Lai, DY, Argus, MF and Arcos, JC. 1995. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol. Lett., 79: 219-228.
    • (1995) Toxicol. Lett. , vol.79 , pp. 219-228
    • Woo, Y.-T.1    Lai, D.Y.2    Argus, M.F.3    Arcos, J.C.4
  • 19
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • Ivanciuc, O. 2007. Applications of support vector machines in chemistry. Rev. Comput. Chem., 23: 291-400.
    • (2007) Rev. Comput. Chem. , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 20
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao, CY, Zhang, HX, Zhang, XY, Liu, MC, Hu, ZD and Fan, BT. 2006. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 217: 105-119.
    • (2006) Toxicology , vol.217 , pp. 105-119
    • Zhao, C.Y.1    Zhang, H.X.2    Zhang, X.Y.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6
  • 21
    • 79551534528 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of druglike organic compounds using partial least squares. back-propagation network and support vector machine
    • Cao, D-S, Xu, Q-S, Liang, Y-Z, Chen, X and Li, H-D. 2010. Prediction of aqueous solubility of druglike organic compounds using partial least squares. back-propagation network and support vector machine, J. Chemometr., 24: 584-595.
    • (2010) J. Chemometr. , vol.24 , pp. 584-595
    • Cao, D.-S.1    Xu, Q.-S.2    Liang, Y.-Z.3    Chen, X.4    Li, H.-D.5
  • 22
    • 85195076397 scopus 로고    scopus 로고
    • (eds.), An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000
    • Cristianini, N and Shawe-Taylor, J. (eds.), An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 24
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, SJ, Chen, J, Phung, P, Ralaivola, L and Baldi, P. 2005. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21: I359-I368.
    • (2005) Bioinformatics , vol.21
    • Swamidass, S.J.1    Chen, J.2    Phung, P.3    Ralaivola, L.4    Baldi, P.5
  • 25
    • 34548580482 scopus 로고    scopus 로고
    • Classification of small molecules by two- and three-dimensional decomposition kernels
    • Ceroni, A, Costa, F and Frasconi, P. 2007. Classification of small molecules by two- and three-dimensional decomposition kernels. Bioinformatics, 23: 2038-2045.
    • (2007) Bioinformatics , vol.23 , pp. 2038-2045
    • Ceroni, A.1    Costa, F.2    Frasconi, P.3
  • 26
    • 34250813174 scopus 로고    scopus 로고
    • One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
    • Azencott, C-A, Ksikes, A, Swamidass, SJ, Chen, JH, Ralaivola, L and Baldi, P. 2007. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J. Chem. Inf. Model., 47: 965-974.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 965-974
    • Azencott, C.-A.1    Ksikes, A.2    Swamidass, S.J.3    Chen, J.H.4    Ralaivola, L.5    Baldi, P.6
  • 27
    • 0024664539 scopus 로고
    • SMILES. 2. Algorithm for generation of unique SMILES notation
    • Weininger, D, Weininger, A and Weininger, JL. 1989. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Model., 29: 97-101.
    • (1989) J. Chem. Inf. Model. , vol.29 , pp. 97-101
    • Weininger, D.1    Weininger, A.2    Weininger, J.L.3
  • 29
    • 79954494823 scopus 로고    scopus 로고
    • Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds
    • Cao, D-S, Liang, Y-Z, Xu, Q-S, Zhang, L-X, Hu, Q-N and Li, H-D. 2011. Feature importance sampling-based adaptive random forest as a useful tool to screen underlying lead compounds. J. Chemometr., 25: 201-207.
    • (2011) J. Chemometr. , vol.25 , pp. 201-207
    • Cao, D.-S.1    Liang, Y.-Z.2    Xu, Q.-S.3    Zhang, L.-X.4    Hu, Q.-N.5    Li, H.-D.6
  • 30
    • 79954628072 scopus 로고    scopus 로고
    • In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint
    • Cao, D-S, Hu, Q-N, Xu, Q-S, Yang, Y-N, Zhao, J-C, Lu, H-M, Zhang, L-X and Liang, Y-Z. 2011. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Anal. Chim. Acta., 692: 50-56.
    • (2011) Anal. Chim. Acta. , vol.692 , pp. 50-56
    • Cao, D.-S.1    Hu, Q.-N.2    Xu, Q.-S.3    Yang, Y.-N.4    Zhao, J.-C.5    Lu, H.-M.6    Zhang, L.-X.7    Liang, Y.-Z.8
  • 31
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn. Lett., 27: 861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 32
    • 76149114231 scopus 로고    scopus 로고
    • SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations
    • Toropov, AA, Toropova, AP, Benfenati, E, Leszczynska, D and Leszczynski, J. 2011. SMILES-based optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of balance of correlations. J. Comput. Chem., 31: 381-392.
    • (2011) J. Comput. Chem. , vol.31 , pp. 381-392
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Leszczynska, D.4    Leszczynski, J.5
  • 33
    • 77955559030 scopus 로고    scopus 로고
    • SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes
    • Toropov, AA, Toropova, AP and Benfenati, E. 2011. SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. Eur. J. Med. Chem., 45: 3581-3587.
    • (2011) Eur. J. Med. Chem. , vol.45 , pp. 3581-3587
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.