-
5
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V.N. Support-vector networks. Mach. Learn. 1995, 20:273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
6
-
-
2942620732
-
Brain tumor classification based on long echo proton MRS signals
-
Lukas L., Devos A., Suykens J.A.K., Vanhamme L., Howe F.A., Majos C., Moreno-Torres A., Van der Graaf M., Tate A.R., Arus C., Van Huffel S. Brain tumor classification based on long echo proton MRS signals. Artif. Intell. Med. 2004, 31:73-89.
-
(2004)
Artif. Intell. Med.
, vol.31
, pp. 73-89
-
-
Lukas, L.1
Devos, A.2
Suykens, J.A.K.3
Vanhamme, L.4
Howe, F.A.5
Majos, C.6
Moreno-Torres, A.7
Van der Graaf, M.8
Tate, A.R.9
Arus, C.10
Van Huffel, S.11
-
8
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown M.P.S., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., Ares M., Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(1):262-267.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares, M.7
Haussler, D.8
-
9
-
-
67649185174
-
Nosologic imaging of the brain: segmentation and classification using MRI and MRSI
-
Luts J., Laudadio T., Idema A.J., Simonetti A.W., Heerschap A., Vandermeulen D., Suykens J.A.K., Van Huffel S. Nosologic imaging of the brain: segmentation and classification using MRI and MRSI. NMR Biomed. 2009, 22:374-390.
-
(2009)
NMR Biomed.
, vol.22
, pp. 374-390
-
-
Luts, J.1
Laudadio, T.2
Idema, A.J.3
Simonetti, A.W.4
Heerschap, A.5
Vandermeulen, D.6
Suykens, J.A.K.7
Van Huffel, S.8
-
10
-
-
34547282694
-
Machine learning for regulatory analysis and transcription factor target prediction in yeast
-
Holloway D.T., Kon M., DeLisi C. Machine learning for regulatory analysis and transcription factor target prediction in yeast. Syst. Synth. Biol. 2007, 1(1):25-46.
-
(2007)
Syst. Synth. Biol.
, vol.1
, Issue.1
, pp. 25-46
-
-
Holloway, D.T.1
Kon, M.2
DeLisi, C.3
-
11
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
14
-
-
0003408420
-
-
MIT Press, Cambridge
-
Schölkopf B., Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2001, MIT Press, Cambridge.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
15
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least Squares Support Vector Machines 2002, World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
17
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
18
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
MIT Press, Cambridge, P.J. Bartlett, B. Schölkopf, D. Schuurmans, A.J. Smola (Eds.)
-
Platt J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 2000, 61-74. MIT Press, Cambridge. P.J. Bartlett, B. Schölkopf, D. Schuurmans, A.J. Smola (Eds.).
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
19
-
-
34548160247
-
A note on Platt's probabilistic outputs for support vector machines
-
Lin H.-T., Lin C.-J., Weng R.C. A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 2007, 68:267-276.
-
(2007)
Mach. Learn.
, vol.68
, pp. 267-276
-
-
Lin, H.-T.1
Lin, C.-J.2
Weng, R.C.3
-
21
-
-
0036163572
-
Bayesian methods for support vector machines: evidence and predictive class probabilities
-
Sollich P. Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 2002, 46:21-52.
-
(2002)
Mach. Learn.
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
22
-
-
0036582564
-
Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis
-
Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Comput. 2002, 14:1115-1147.
-
(2002)
Neural Comput.
, vol.14
, pp. 1115-1147
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
-
23
-
-
0001441372
-
Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
-
MacKay D.J.C. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Netw. Comput. Neural Syst. 1995, 6:469-505.
-
(1995)
Netw. Comput. Neural Syst.
, vol.6
, pp. 469-505
-
-
MacKay, D.J.C.1
-
24
-
-
0036568032
-
On the learnability and design of output codes for multiclass problems
-
Crammer K., Singer Y. On the learnability and design of output codes for multiclass problems. Mach. Learn. 2002, 47:201-233.
-
(2002)
Mach. Learn.
, vol.47
, pp. 201-233
-
-
Crammer, K.1
Singer, Y.2
-
26
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
Dietterich T.G., Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 1994, 2:263-286.
-
(1994)
J. Artif. Intell. Res.
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
27
-
-
24044435942
-
Reducing multiclass to binary: a unifying approach for margin classifiers
-
Allwein E.A., Schapire R.E., Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 2001, 1:113-141.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 113-141
-
-
Allwein, E.A.1
Schapire, R.E.2
Singer, Y.3
-
28
-
-
0002229304
-
Pairwise classification and support vector machines
-
MIT Press, Cambridge, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
-
Kreßel U.H.-G. Pairwise classification and support vector machines. Advances in Kernel Methods: Support Vector Learning 1999, 255-268. MIT Press, Cambridge. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 255-268
-
-
Kreßel, U.H.-G.1
-
29
-
-
0032355984
-
Classification by pairwise coupling
-
Hastie T., Tibshirani R. Classification by pairwise coupling. Ann. Stat. 1998, 26:451-471.
-
(1998)
Ann. Stat.
, vol.26
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
32
-
-
77952240457
-
-
Another Approach to Polychotomous classification, Technical Report, Stanford University
-
J. Friedman, Another Approach to Polychotomous classification, Technical Report, Stanford University (1996).
-
(1996)
-
-
Friedman, J.1
-
33
-
-
51349159085
-
Probability estimates for multi-class classification by pairwise coupling
-
Wu T.-F., Lin C.-J., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5:975-1005.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 975-1005
-
-
Wu, T.-F.1
Lin, C.-J.2
Weng, R.C.3
-
34
-
-
15944424353
-
Kernel logistic regression and the import vector machine
-
Zhu J., Hastie T. Kernel logistic regression and the import vector machine. J. Comput. Graph. Stat. 2005, 14(1):185-205.
-
(2005)
J. Comput. Graph. Stat.
, vol.14
, Issue.1
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
-
36
-
-
30044437592
-
A fast dual algorithm for kernel logistic regression
-
Keerthi S.S., Duan K.B., Shevade S.K., Poo A.N. A fast dual algorithm for kernel logistic regression. Mach. Learn. 2005, 61:151-165.
-
(2005)
Mach. Learn.
, vol.61
, pp. 151-165
-
-
Keerthi, S.S.1
Duan, K.B.2
Shevade, S.K.3
Poo, A.N.4
-
37
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. -1923, 10:1895.
-
(1923)
Neural Comput.
, vol.10
, pp. 1895
-
-
Dietterich, T.G.1
-
38
-
-
0031073477
-
A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
-
Wettschereck D., Aha D.W., Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 1997, 11:273-314.
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 273-314
-
-
Wettschereck, D.1
Aha, D.W.2
Mohri, T.3
-
39
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
40
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97:245-271.
-
(1997)
Artif. Intell.
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
42
-
-
0004149270
-
-
McGraw-Hill, Boston
-
Neter J., Kutner M.H., Wasserman W., Nachtsheim C.J. Applied Linear Statistical Models 1996, McGraw-Hill, Boston.
-
(1996)
Applied Linear Statistical Models
-
-
Neter, J.1
Kutner, M.H.2
Wasserman, W.3
Nachtsheim, C.J.4
-
44
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I.M., Weston J., Barnhill S., Vapnik V.N. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.M.1
Weston, J.2
Barnhill, S.3
Vapnik, V.N.4
-
45
-
-
40649092045
-
Low rank updated LS-SVM classifiers for fast variable selection
-
Ojeda F., Suykens J.A.K., De Moor B. Low rank updated LS-SVM classifiers for fast variable selection. Neural Netw. 2008, 21(2-3):437-449.
-
(2008)
Neural Netw.
, vol.21
, Issue.2-3
, pp. 437-449
-
-
Ojeda, F.1
Suykens, J.A.K.2
De Moor, B.3
-
46
-
-
0001001098
-
Feature selection for SVMs
-
Weston J., Mukherjee S., Chapelle O., Pontil M., Poggio T., Vapnik V.N. Feature selection for SVMs. Proceedings of the Conference on Neural Information Processing Systems 2000, 668-674.
-
(2000)
Proceedings of the Conference on Neural Information Processing Systems
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.N.6
-
47
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V.N., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1-3):131-159.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.N.2
Bousquet, O.3
Mukherjee, S.4
-
49
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston J., Elisseeff A., Schölkopf B., Tipping M. Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 2003, 3:1439-1461.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
52
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
Cawley G.C., Talbot N.L.C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 2007, 8:841-861.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
53
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
54
-
-
0003562954
-
A simple generalisation of the area under the ROC curve for multiple class classification problems
-
Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45:171-186.
-
(2001)
Mach. Learn.
, vol.45
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
55
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik V.N., Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 2000, 12(9):2013-2036.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.N.1
Chapelle, O.2
-
56
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
Cawley G.C., Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 2004, 17:1467-1475.
-
(2004)
Neural Netw.
, vol.17
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
57
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie T., Rosset S., Tibshirani R., Zhu J. The entire regularization path for the support vector machine. J. Mach. Learn. Res. 2004, 5:1391-1415.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
58
-
-
0033570831
-
Combined 5×2cv F test for comparing supervised classification learning algorithms
-
Alpaydin E. Combined 5×2cv F test for comparing supervised classification learning algorithms. Neural Comput. 1999, 11:1885-1892.
-
(1999)
Neural Comput.
, vol.11
, pp. 1885-1892
-
-
Alpaydin, E.1
-
59
-
-
0042847140
-
Inference for the generalization error
-
Nadeau C., Bengio Y. Inference for the generalization error. Mach. Learn. 2003, 52:239-281.
-
(2003)
Mach. Learn.
, vol.52
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
61
-
-
7444237797
-
Evaluating the replicability of significance tests for comparing learning algorithms
-
Bouckaert R.R., Frank E. Evaluating the replicability of significance tests for comparing learning algorithms. Lect. Notes Comput. Sci. 2004, 3056:3-12.
-
(2004)
Lect. Notes Comput. Sci.
, vol.3056
, pp. 3-12
-
-
Bouckaert, R.R.1
Frank, E.2
-
62
-
-
77952241482
-
-
Hypothesis Testing for Cross-Validation, Technical Report 1285, Departement d'Informatique et Recherche Operationnelle, Universite de Montreal
-
Y. Grandvalet, Y. Bengio, Hypothesis Testing for Cross-Validation, Technical Report 1285, Departement d'Informatique et Recherche Operationnelle, Universite de Montreal (2006).
-
(2006)
-
-
Grandvalet, Y.1
Bengio, Y.2
-
63
-
-
31544479266
-
Ordering and finding the best of K>2 supervised learning algorithms
-
Yildiz O.T., Alpaydin E. Ordering and finding the best of K>2 supervised learning algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28:392-402.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, pp. 392-402
-
-
Yildiz, O.T.1
Alpaydin, E.2
-
64
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
65
-
-
58149287952
-
An extension on " Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
Garcia S., Herrera F. An extension on " Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
Garcia, S.1
Herrera, F.2
-
66
-
-
57749084635
-
A general framework for multiple testing dependence
-
Leek J.T., Storey J.D. A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18718-18723.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 18718-18723
-
-
Leek, J.T.1
Storey, J.D.2
-
67
-
-
0039802908
-
The earth is round (p<.05)
-
Cohen J. The earth is round (p<.05). Am. Psychol. 1994, 49:997-1003.
-
(1994)
Am. Psychol.
, vol.49
, pp. 997-1003
-
-
Cohen, J.1
-
68
-
-
0035956651
-
Sifting the evidence - what's wrong with significance tests?
-
Sterne J.A.C., Smith G.D. Sifting the evidence - what's wrong with significance tests?. Br. Med. J. 2001, 322:226-231.
-
(2001)
Br. Med. J.
, vol.322
, pp. 226-231
-
-
Sterne, J.A.C.1
Smith, G.D.2
-
69
-
-
77952239194
-
-
LIBSVM: A Library for Support Vector Machines, National Taiwan University.
-
C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector Machines, National Taiwan University, (2001). http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
-
(2001)
-
-
Chang, C.-C.1
Lin, C.-J.2
-
70
-
-
11244352554
-
Kernlab - an S4 package for kernel methods in R
-
http://www.jstatsoft.org/v11/i09/
-
Karatzoglou A., Smola A., Hornik K., Zeileis A. kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 2004, 11(9):1-20. http://www.jstatsoft.org/v11/i09/.
-
(2004)
J. Stat. Softw.
, vol.11
, Issue.9
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
71
-
-
77952243967
-
-
Bayesian Support Vector Machine Hyperparameter Tuning, King's College London.
-
P. Sollich, C. Gold, Bayesian Support Vector Machine Hyperparameter Tuning, King's College London, (2005). http://www.mth.kcl.ac.uk/~psollich/BayesSVM/.
-
(2005)
-
-
Sollich, P.1
Gold, C.2
-
72
-
-
77952236704
-
-
LS-SVMlab: A Matlab/C Toolbox for Least Squares Support Vector Machines, ESAT-SISTA, Katholieke Univiversiteit Leuven, Belgium
-
K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle, LS-SVMlab: A Matlab/C Toolbox for Least Squares Support Vector Machines, ESAT-SISTA, Katholieke Univiversiteit Leuven, Belgium, (2002). http://www.esat.kuleuven.be/sista/lssvmlab/.
-
(2002)
-
-
Pelckmans, K.1
Suykens, J.A.K.2
Van Gestel, T.3
De Brabanter, J.4
Lukas, L.5
Hamers, B.6
De Moor, B.7
Vandewalle, J.8
-
74
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G., Botstein D., Brown P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11(12):4241-4257.
-
(2000)
Mol. Biol. Cell
, vol.11
, Issue.12
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
Carmel-Harel, O.4
Eisen, M.B.5
Storz, G.6
Botstein, D.7
Brown, P.O.8
-
75
-
-
4544352942
-
Transcriptional regulatory code of a eukaryotic genome
-
Harbison C.T., Gordon D.B., Lee T.I., Rinaldi N.J., Macisaac K.D., Danford T.W., Hannett N.M., Tagne J.-B., Reynolds D.B., Yoo J., Jennings E.G., Zeitlinger J., Pokholok D.K., Kellis M., Rolfe P.A., Takusagawa K.T., Lander E.S., Gifford D.K., Fraenkel E., Young R.A. Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431(7004):99-104.
-
(2004)
Nature
, vol.431
, Issue.7004
, pp. 99-104
-
-
Harbison, C.T.1
Gordon, D.B.2
Lee, T.I.3
Rinaldi, N.J.4
Macisaac, K.D.5
Danford, T.W.6
Hannett, N.M.7
Tagne, J.-B.8
Reynolds, D.B.9
Yoo, J.10
Jennings, E.G.11
Zeitlinger, J.12
Pokholok, D.K.13
Kellis, M.14
Rolfe, P.A.15
Takusagawa, K.T.16
Lander, E.S.17
Gifford, D.K.18
Fraenkel, E.19
Young, R.A.20
more..
-
76
-
-
33745128746
-
Inferring transcriptional modules from ChIP-chip, motif and microarray data
-
Lemmens K., Dhollander T., De Bie T., Monsieurs P., Engelen K., Smets B., Winderickx J., De Moor B., Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol. 2006, 7(5):R37.
-
(2006)
Genome Biol.
, vol.7
, Issue.5
-
-
Lemmens, K.1
Dhollander, T.2
De Bie, T.3
Monsieurs, P.4
Engelen, K.5
Smets, B.6
Winderickx, J.7
De Moor, B.8
Marchal, K.9
-
77
-
-
0142179209
-
Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data
-
Qian J., Lin J., Luscombe N.M., Yu H., Gerstein M. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 2003, 19(15):1917-1926.
-
(2003)
Bioinformatics
, vol.19
, Issue.15
, pp. 1917-1926
-
-
Qian, J.1
Lin, J.2
Luscombe, N.M.3
Yu, H.4
Gerstein, M.5
-
78
-
-
49549104230
-
SIRENE: supervised inference of regulatory networks
-
Mordelet F., Vert J.-P. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008, 24(16):76-i82.
-
(2008)
Bioinformatics
, vol.24
, Issue.16
-
-
Mordelet, F.1
Vert, J.-P.2
-
79
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
An S., Liu W., Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 2007, 40(8):2154-2162.
-
(2007)
Pattern Recogn.
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
80
-
-
2942609149
-
VisANT: an online visualization and analysis tool for biological interaction data
-
Hu Z., Mellor J., Wu J., DeLisi C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 2004, 5(1):17.
-
(2004)
BMC Bioinformatics
, vol.5
, Issue.1
, pp. 17
-
-
Hu, Z.1
Mellor, J.2
Wu, J.3
DeLisi, C.4
-
81
-
-
0035048372
-
Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues
-
Stoeckli M., Chaurand P., Hallahan D.E., Caprioli R.M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 2001, 7(4):493-496.
-
(2001)
Nat. Med.
, vol.7
, Issue.4
, pp. 493-496
-
-
Stoeckli, M.1
Chaurand, P.2
Hallahan, D.E.3
Caprioli, R.M.4
-
83
-
-
38449095009
-
Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis
-
Van de Plas R., Ojeda F., Dewil M., Van Den Bosch L., De Moor B., Waelkens E. Prospective exploration of biochemical tissue composition via imaging mass spectrometry guided by principal component analysis. Proceedings of the Pacific Symposium on Biocomputing 12 2007, 458-469.
-
(2007)
Proceedings of the Pacific Symposium on Biocomputing 12
, pp. 458-469
-
-
Van de Plas, R.1
Ojeda, F.2
Dewil, M.3
Van Den Bosch, L.4
De Moor, B.5
Waelkens, E.6
-
86
-
-
67650370012
-
Toward digital staining using imaging mass spectrometry and random forests
-
Hanselmann M., Kothe U., Kirchner M., Renard B.Y., Amstalden E.R., Glunde K., Heeren R.M.A., Hamprecht F.A. Toward digital staining using imaging mass spectrometry and random forests. J. Proteome Res. 2009, 8(7):3558-3567.
-
(2009)
J. Proteome Res.
, vol.8
, Issue.7
, pp. 3558-3567
-
-
Hanselmann, M.1
Kothe, U.2
Kirchner, M.3
Renard, B.Y.4
Amstalden, E.R.5
Glunde, K.6
Heeren, R.M.A.7
Hamprecht, F.A.8
|