메뉴 건너뛰기




Volumn 665, Issue 2, 2010, Pages 129-145

A tutorial on support vector machine-based methods for classification problems in chemometrics

Author keywords

Feature selection; Kernel logistic regression; Kernel based learning; Least squares support vector machine; Multi class probabilities; Support vector machine

Indexed keywords

FEATURE SELECTION; KERNEL LOGISTIC REGRESSION; KERNEL-BASED LEARNING; LEAST SQUARES SUPPORT VECTOR MACHINES; MULTI-CLASS; MULTI-CLASS PROBABILITIES;

EID: 77952238401     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2010.03.030     Document Type: Article
Times cited : (289)

References (86)
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V.N. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 10
    • 34547282694 scopus 로고    scopus 로고
    • Machine learning for regulatory analysis and transcription factor target prediction in yeast
    • Holloway D.T., Kon M., DeLisi C. Machine learning for regulatory analysis and transcription factor target prediction in yeast. Syst. Synth. Biol. 2007, 1(1):25-46.
    • (2007) Syst. Synth. Biol. , vol.1 , Issue.1 , pp. 25-46
    • Holloway, D.T.1    Kon, M.2    DeLisi, C.3
  • 11
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2:121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 17
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 18
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press, Cambridge, P.J. Bartlett, B. Schölkopf, D. Schuurmans, A.J. Smola (Eds.)
    • Platt J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 2000, 61-74. MIT Press, Cambridge. P.J. Bartlett, B. Schölkopf, D. Schuurmans, A.J. Smola (Eds.).
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 19
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin H.-T., Lin C.-J., Weng R.C. A note on Platt's probabilistic outputs for support vector machines. Mach. Learn. 2007, 68:267-276.
    • (2007) Mach. Learn. , vol.68 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 21
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: evidence and predictive class probabilities
    • Sollich P. Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn. 2002, 46:21-52.
    • (2002) Mach. Learn. , vol.46 , pp. 21-52
    • Sollich, P.1
  • 22
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis
    • Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Comput. 2002, 14:1115-1147.
    • (2002) Neural Comput. , vol.14 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6
  • 23
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Netw. Comput. Neural Syst. 1995, 6:469-505.
    • (1995) Netw. Comput. Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 24
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Crammer K., Singer Y. On the learnability and design of output codes for multiclass problems. Mach. Learn. 2002, 47:201-233.
    • (2002) Mach. Learn. , vol.47 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 26
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 1994, 2:263-286.
    • (1994) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 27
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: a unifying approach for margin classifiers
    • Allwein E.A., Schapire R.E., Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 2001, 1:113-141.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.A.1    Schapire, R.E.2    Singer, Y.3
  • 28
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • MIT Press, Cambridge, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Kreßel U.H.-G. Pairwise classification and support vector machines. Advances in Kernel Methods: Support Vector Learning 1999, 255-268. MIT Press, Cambridge. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 255-268
    • Kreßel, U.H.-G.1
  • 29
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T., Tibshirani R. Classification by pairwise coupling. Ann. Stat. 1998, 26:451-471.
    • (1998) Ann. Stat. , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 32
    • 77952240457 scopus 로고    scopus 로고
    • Another Approach to Polychotomous classification, Technical Report, Stanford University
    • J. Friedman, Another Approach to Polychotomous classification, Technical Report, Stanford University (1996).
    • (1996)
    • Friedman, J.1
  • 33
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.-F., Lin C.-J., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5:975-1005.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 34
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J., Hastie T. Kernel logistic regression and the import vector machine. J. Comput. Graph. Stat. 2005, 14(1):185-205.
    • (2005) J. Comput. Graph. Stat. , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 36
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • Keerthi S.S., Duan K.B., Shevade S.K., Poo A.N. A fast dual algorithm for kernel logistic regression. Mach. Learn. 2005, 61:151-165.
    • (2005) Mach. Learn. , vol.61 , pp. 151-165
    • Keerthi, S.S.1    Duan, K.B.2    Shevade, S.K.3    Poo, A.N.4
  • 37
    • 0000259511 scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. -1923, 10:1895.
    • (1923) Neural Comput. , vol.10 , pp. 1895
    • Dietterich, T.G.1
  • 38
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D.W., Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 1997, 11:273-314.
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 39
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 40
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97:245-271.
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 44
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I.M., Weston J., Barnhill S., Vapnik V.N. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.M.1    Weston, J.2    Barnhill, S.3    Vapnik, V.N.4
  • 45
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • Ojeda F., Suykens J.A.K., De Moor B. Low rank updated LS-SVM classifiers for fast variable selection. Neural Netw. 2008, 21(2-3):437-449.
    • (2008) Neural Netw. , vol.21 , Issue.2-3 , pp. 437-449
    • Ojeda, F.1    Suykens, J.A.K.2    De Moor, B.3
  • 47
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V.N., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1-3):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.N.2    Bousquet, O.3    Mukherjee, S.4
  • 52
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley G.C., Talbot N.L.C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 2007, 8:841-861.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 53
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 54
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45:171-186.
    • (2001) Mach. Learn. , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 55
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik V.N., Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 2000, 12(9):2013-2036.
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 56
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 2004, 17:1467-1475.
    • (2004) Neural Netw. , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 57
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie T., Rosset S., Tibshirani R., Zhu J. The entire regularization path for the support vector machine. J. Mach. Learn. Res. 2004, 5:1391-1415.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 58
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2cv F test for comparing supervised classification learning algorithms
    • Alpaydin E. Combined 5×2cv F test for comparing supervised classification learning algorithms. Neural Comput. 1999, 11:1885-1892.
    • (1999) Neural Comput. , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 59
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., Bengio Y. Inference for the generalization error. Mach. Learn. 2003, 52:239-281.
    • (2003) Mach. Learn. , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 61
    • 7444237797 scopus 로고    scopus 로고
    • Evaluating the replicability of significance tests for comparing learning algorithms
    • Bouckaert R.R., Frank E. Evaluating the replicability of significance tests for comparing learning algorithms. Lect. Notes Comput. Sci. 2004, 3056:3-12.
    • (2004) Lect. Notes Comput. Sci. , vol.3056 , pp. 3-12
    • Bouckaert, R.R.1    Frank, E.2
  • 62
    • 77952241482 scopus 로고    scopus 로고
    • Hypothesis Testing for Cross-Validation, Technical Report 1285, Departement d'Informatique et Recherche Operationnelle, Universite de Montreal
    • Y. Grandvalet, Y. Bengio, Hypothesis Testing for Cross-Validation, Technical Report 1285, Departement d'Informatique et Recherche Operationnelle, Universite de Montreal (2006).
    • (2006)
    • Grandvalet, Y.1    Bengio, Y.2
  • 63
    • 31544479266 scopus 로고    scopus 로고
    • Ordering and finding the best of K>2 supervised learning algorithms
    • Yildiz O.T., Alpaydin E. Ordering and finding the best of K>2 supervised learning algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28:392-402.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 392-402
    • Yildiz, O.T.1    Alpaydin, E.2
  • 64
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 65
    • 58149287952 scopus 로고    scopus 로고
    • An extension on " Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • Garcia S., Herrera F. An extension on " Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 66
    • 57749084635 scopus 로고    scopus 로고
    • A general framework for multiple testing dependence
    • Leek J.T., Storey J.D. A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18718-18723.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 18718-18723
    • Leek, J.T.1    Storey, J.D.2
  • 67
    • 0039802908 scopus 로고
    • The earth is round (p<.05)
    • Cohen J. The earth is round (p<.05). Am. Psychol. 1994, 49:997-1003.
    • (1994) Am. Psychol. , vol.49 , pp. 997-1003
    • Cohen, J.1
  • 68
    • 0035956651 scopus 로고    scopus 로고
    • Sifting the evidence - what's wrong with significance tests?
    • Sterne J.A.C., Smith G.D. Sifting the evidence - what's wrong with significance tests?. Br. Med. J. 2001, 322:226-231.
    • (2001) Br. Med. J. , vol.322 , pp. 226-231
    • Sterne, J.A.C.1    Smith, G.D.2
  • 69
    • 77952239194 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines, National Taiwan University.
    • C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector Machines, National Taiwan University, (2001). http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    • (2001)
    • Chang, C.-C.1    Lin, C.-J.2
  • 70
    • 11244352554 scopus 로고    scopus 로고
    • Kernlab - an S4 package for kernel methods in R
    • http://www.jstatsoft.org/v11/i09/
    • Karatzoglou A., Smola A., Hornik K., Zeileis A. kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 2004, 11(9):1-20. http://www.jstatsoft.org/v11/i09/.
    • (2004) J. Stat. Softw. , vol.11 , Issue.9 , pp. 1-20
    • Karatzoglou, A.1    Smola, A.2    Hornik, K.3    Zeileis, A.4
  • 71
    • 77952243967 scopus 로고    scopus 로고
    • Bayesian Support Vector Machine Hyperparameter Tuning, King's College London.
    • P. Sollich, C. Gold, Bayesian Support Vector Machine Hyperparameter Tuning, King's College London, (2005). http://www.mth.kcl.ac.uk/~psollich/BayesSVM/.
    • (2005)
    • Sollich, P.1    Gold, C.2
  • 72
    • 77952236704 scopus 로고    scopus 로고
    • LS-SVMlab: A Matlab/C Toolbox for Least Squares Support Vector Machines, ESAT-SISTA, Katholieke Univiversiteit Leuven, Belgium
    • K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle, LS-SVMlab: A Matlab/C Toolbox for Least Squares Support Vector Machines, ESAT-SISTA, Katholieke Univiversiteit Leuven, Belgium, (2002). http://www.esat.kuleuven.be/sista/lssvmlab/.
    • (2002)
    • Pelckmans, K.1    Suykens, J.A.K.2    Van Gestel, T.3    De Brabanter, J.4    Lukas, L.5    Hamers, B.6    De Moor, B.7    Vandewalle, J.8
  • 77
    • 0142179209 scopus 로고    scopus 로고
    • Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data
    • Qian J., Lin J., Luscombe N.M., Yu H., Gerstein M. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 2003, 19(15):1917-1926.
    • (2003) Bioinformatics , vol.19 , Issue.15 , pp. 1917-1926
    • Qian, J.1    Lin, J.2    Luscombe, N.M.3    Yu, H.4    Gerstein, M.5
  • 78
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: supervised inference of regulatory networks
    • Mordelet F., Vert J.-P. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008, 24(16):76-i82.
    • (2008) Bioinformatics , vol.24 , Issue.16
    • Mordelet, F.1    Vert, J.-P.2
  • 79
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • An S., Liu W., Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 2007, 40(8):2154-2162.
    • (2007) Pattern Recogn. , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 80
    • 2942609149 scopus 로고    scopus 로고
    • VisANT: an online visualization and analysis tool for biological interaction data
    • Hu Z., Mellor J., Wu J., DeLisi C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 2004, 5(1):17.
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 17
    • Hu, Z.1    Mellor, J.2    Wu, J.3    DeLisi, C.4
  • 81
    • 0035048372 scopus 로고    scopus 로고
    • Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues
    • Stoeckli M., Chaurand P., Hallahan D.E., Caprioli R.M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 2001, 7(4):493-496.
    • (2001) Nat. Med. , vol.7 , Issue.4 , pp. 493-496
    • Stoeckli, M.1    Chaurand, P.2    Hallahan, D.E.3    Caprioli, R.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.