메뉴 건너뛰기




Volumn 43, Issue 5, 2015, Pages

Conditional Mutual inclusive information enables accurate quantification of associations in gene regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; CONDITIONAL MUTUAL INCLUSIVE INFORMATION; DNA REPAIR; ESCHERICHIA COLI; GENE CONTROL; GENE EXPRESSION; GENE REGULATORY NETWORK; GENETIC ALGORITHM; INFORMATION; NONHUMAN; PRIORITY JOURNAL; PROBABILITY; QUALITY CONTROL; SIMULATION; ACUTE DISEASE; ALGORITHM; BIOLOGICAL MODEL; BIOLOGY; COMPUTER SIMULATION; GENE EXPRESSION REGULATION; GENETICS; INTERNET; MYELOID LEUKEMIA; PROCEDURES; REPRODUCIBILITY; SACCHAROMYCES CEREVISIAE;

EID: 84937548212     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/nar/gku1315     Document Type: Article
Times cited : (133)

References (66)
  • 1
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia of DNA elements) project
    • Consortium, E. P. (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science, 306, 636-640.
    • (2004) Science , vol.306 , pp. 636-640
    • Consortium, E.P.1
  • 5
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet, R. and Marchal, K. (2010) Advantages and limitations of current network inference methods. Nat. Rev. Microbiol., 8, 717-729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 7
    • 80053436505 scopus 로고    scopus 로고
    • Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis
    • Li, Z., Li, P., Krishnan, A. and Liu, J. (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics, 27, 2686-2691.
    • (2011) Bioinformatics , vol.27 , pp. 2686-2691
    • Li, Z.1    Li, P.2    Krishnan, A.3    Liu, J.4
  • 8
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • Barabási, A.-L., Gulbahce, N. and Loscalzo, J. (2011) Network medicine: a network-based approach to human disease. Nat. Rev. Genet., 12, 56-68.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 56-68
    • Barabási, A.-L.1    Gulbahce, N.2    Loscalzo, J.3
  • 9
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung, M. S., Tegnér, J. and Collins, J. J. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U. S. A., 99, 6163-6168.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 6163-6168
    • Yeung, M.S.1    Tegnér, J.2    Collins, J.J.3
  • 12
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner, T. S., Di Bernardo, D., Lorenz, D. and Collins, J. J. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 15
    • 84871752758 scopus 로고    scopus 로고
    • NARROMI: A noise and redundancy reduction technique improves accuracy of gene regulatory network inference
    • Zhang, X., Liu, K., Liu, Z.-P., Duval, B., Richer, J.-M., Zhao, X.-M., Hao, J.-K. and Chen, L. (2013) NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics, 29, 106-113.
    • (2013) Bioinformatics , vol.29 , pp. 106-113
    • Zhang, X.1    Liu, K.2    Liu, Z.-P.3    Duval, B.4    Richer, J.-M.5    Zhao, X.-M.6    Hao, J.-K.7    Chen, L.8
  • 16
    • 84870578537 scopus 로고    scopus 로고
    • Reconstructing dynamic gene regulatory networks from sample-based transcriptional data
    • Zhu, H., Rao, R. S. P., Zeng, T. and Chen, L. (2012) Reconstructing dynamic gene regulatory networks from sample-based transcriptional data. Nucleic Acids Res., 40, 10657-10667.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10657-10667
    • Zhu, H.1    Rao, R.S.P.2    Zeng, T.3    Chen, L.4
  • 18
    • 84877249559 scopus 로고    scopus 로고
    • Canonical correlation analysis for RNA-seq co-expression networks
    • Hong, S., Chen, X., Jin, L. and Xiong, M. (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res., 41, e95.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e95
    • Hong, S.1    Chen, X.2    Jin, L.3    Xiong, M.4
  • 19
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • De La Fuente, A., Bing, N., Hoeschele, I. and Mendes, P. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20, 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • De La Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 20
    • 79952594472 scopus 로고    scopus 로고
    • Discovery of chemical compound groups with common structures by a network analysis approach (affinity prediction method)
    • Saito, S., Hirokawa, T. and Horimoto, K. (2011) Discovery of chemical compound groups with common structures by a network analysis approach (affinity prediction method). J. Chem. Inf. Model., 51, 61-68.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 61-68
    • Saito, S.1    Hirokawa, T.2    Horimoto, K.3
  • 26
    • 84877312859 scopus 로고    scopus 로고
    • Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information
    • Wang, J., Chen, B., Wang, Y., Wang, N., Garbey, M., Tran-Son-Tay, R., Berceli, S. A. and Wu, R. (2013) Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information. Nucleic Acids Res., 41, e97.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e97
    • Wang, J.1    Chen, B.2    Wang, Y.3    Wang, N.4    Garbey, M.5    Tran-Son-Tay, R.6    Berceli, S.A.7    Wu, R.8
  • 28
    • 84855160951 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
    • Zhang, X., Zhao, X. M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J. K., Liu, Z. P. and Chen, L. (2012) Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics, 28, 98-104.
    • (2012) Bioinformatics , vol.28 , pp. 98-104
    • Zhang, X.1    Zhao, X.M.2    He, K.3    Lu, L.4    Cao, Y.5    Liu, J.6    Hao, J.K.7    Liu, Z.P.8    Chen, L.9
  • 29
    • 77955033717 scopus 로고    scopus 로고
    • MISS: A non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis
    • Brunel, H., Gallardo-Chacon, J. J., Buil, A., Vallverdu, M., Soria, J. M., Caminal, P. and Perera, A. (2010) MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis. Bioinformatics, 26, 1811-1818.
    • (2010) Bioinformatics , vol.26 , pp. 1811-1818
    • Brunel, H.1    Gallardo-Chacon, J.J.2    Buil, A.3    Vallverdu, M.4    Soria, J.M.5    Caminal, P.6    Perera, A.7
  • 30
    • 84895815806 scopus 로고    scopus 로고
    • Equitability, mutual information, and the maximal information coefficient
    • Kinney, J. B. and Atwal, G. S. (2014) Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. U. S. A., 111, 3354-3359.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 3354-3359
    • Kinney, J.B.1    Atwal, G.S.2
  • 32
    • 84861180215 scopus 로고    scopus 로고
    • Robust detection of hierarchical communities from Escherichia coli gene expression data
    • Treviño, S. III, Sun, Y., Cooper, T. F. and Bassler, K. E. (2012) Robust detection of hierarchical communities from Escherichia coli gene expression data. PLoS Comput. Biol., 8, e1002391.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002391
    • Treviño, S.1    Sun, Y.2    Cooper, T.F.3    Bassler, K.E.4
  • 33
    • 84883812062 scopus 로고    scopus 로고
    • Network link prediction by global silencing of indirect correlations
    • Barzel, B. and Barabasi, A. L. (2013) Network link prediction by global silencing of indirect correlations. Nat. Biotechnol., 31, 720-725.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 720-725
    • Barzel, B.1    Barabasi, A.L.2
  • 35
    • 84883771767 scopus 로고    scopus 로고
    • Network deconvolution as a general method to distinguish direct dependencies in networks
    • Feizi, S., Marbach, D., Medard, M. and Kellis, M. (2013) Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol., 31, 726-733.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 726-733
    • Feizi, S.1    Marbach, D.2    Medard, M.3    Kellis, M.4
  • 36
    • 36148985016 scopus 로고    scopus 로고
    • Partial mutual information for coupling analysis of multivariate time series
    • Frenzel, S. and Pompe, B. (2007) Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett., 99, 204101.
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 204101
    • Frenzel, S.1    Pompe, B.2
  • 40
    • 84862660973 scopus 로고    scopus 로고
    • Escaping the curse of dimensionality in estimating multivariate transfer entropy
    • Runge, J., Heitzig, J., Petoukhov, V. and Kurths, J. (2012) Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett., 108, 258701.
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 258701
    • Runge, J.1    Heitzig, J.2    Petoukhov, V.3    Kurths, J.4
  • 41
    • 84884397652 scopus 로고    scopus 로고
    • Integrative approaches for finding modular structure in biological networks
    • Mitra, K., Carvunis, A.-R., Ramesh, S. K. and Ideker, T. (2013) Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet., 14, 719-732.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 719-732
    • Mitra, K.1    Carvunis, A.-R.2    Ramesh, S.K.3    Ideker, T.4
  • 42
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay, G. and Emmert-Streib, F. (2010) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics, 26, 1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 43
    • 0033225867 scopus 로고    scopus 로고
    • An estimator of the mutual information based on a criterion for conditional independence
    • Darbellay, G. A. (1999) An estimator of the mutual information based on a criterion for conditional independence. Comput. Stat. Data An., 32, 1-17.
    • (1999) Comput. Stat. Data An. , vol.32 , pp. 1-17
    • Darbellay, G.A.1
  • 44
    • 84871821494 scopus 로고    scopus 로고
    • Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy
    • Runge, J., Heitzig, J., Marwan, N. and Kurths, J. (2012) Quantifying causal coupling strength: a lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E, 86, 061121.
    • (2012) Phys. Rev. E , vol.86 , pp. 061121
    • Runge, J.1    Heitzig, J.2    Marwan, N.3    Kurths, J.4
  • 45
    • 84915815121 scopus 로고    scopus 로고
    • Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks
    • Chen, J. C., Alvarez, M. J., Talos, F., Dhruv, H., Rieckhof, G. E., Iyer, A., Diefes, K. L., Aldape, K., Berens, M. and Shen, M. M. (2014) Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell, 159, 402-414.
    • (2014) Cell , vol.159 , pp. 402-414
    • Chen, J.C.1    Alvarez, M.J.2    Talos, F.3    Dhruv, H.4    Rieckhof, G.E.5    Iyer, A.6    Diefes, K.L.7    Aldape, K.8    Berens, M.9    Shen, M.M.10
  • 46
    • 33947523471 scopus 로고    scopus 로고
    • Using conditional mutual information to approximate causality for multivariate physiological time series
    • Pflieger, M. and Greenblatt, R. (2005) Using conditional mutual information to approximate causality for multivariate physiological time series. Int. J. Bioelectromagnet., 7, 285-288.
    • (2005) Int. J. Bioelectromagnet. , vol.7 , pp. 285-288
    • Pflieger, M.1    Greenblatt, R.2
  • 47
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr, S. S., Milo, R., Mangan, S. and Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31, 64-68.
    • (2002) Nat. Genet. , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 48
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics
    • Ronen, M., Rosenberg, R., Shraiman, B. I. and Alon, U. (2002) Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. U. S. A., 99, 10555-10560.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.I.3    Alon, U.4
  • 49
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch, M. and Bühlmann, P. (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8, 613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 50
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • Schaffter, T., Marbach, D. and Floreano, D. (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27, 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 51
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: New features for data integration and network visualization
    • Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L. and Ideker, T. (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-432.
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1    Ono, K.2    Ruscheinski, J.3    Wang, P.-L.4    Ideker, T.5
  • 52
    • 84861843896 scopus 로고    scopus 로고
    • Identifying dysregulated pathways in cancers from pathway interaction networks
    • Liu, K.-Q., Liu, Z.-P., Hao, J.-K., Chen, L. and Zhao, X.-M. (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126.
    • (2012) BMC Bioinformatics , vol.13 , pp. 126
    • Liu, K.-Q.1    Liu, Z.-P.2    Hao, J.-K.3    Chen, L.4    Zhao, X.-M.5
  • 54
    • 84878372012 scopus 로고    scopus 로고
    • Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
    • Cancer Genome Atlas Research Network. (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 368, 2059.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 2059
    • Cancer Genome Atlas Research Network1
  • 55
    • 84908328316 scopus 로고    scopus 로고
    • Regression analysis of combined gene expression regulation in acute myeloid leukemia
    • Li, Y., Liang, M. and Zhang, Z. (2014) Regression analysis of combined gene expression regulation in acute myeloid leukemia. PLoS Comput. Biol., 10, e1003908.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003908
    • Li, Y.1    Liang, M.2    Zhang, Z.3
  • 57
    • 44349093750 scopus 로고    scopus 로고
    • Uncovering signal transduction networks from high-throughput data by integer linear programming
    • Zhao, X.-M., Wang, R.-S., Chen, L. and Aihara, K. (2008) Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res., 36, e48-e48.
    • (2008) Nucleic Acids Res. , vol.36 , pp. e48-e48
    • Zhao, X.-M.1    Wang, R.-S.2    Chen, L.3    Aihara, K.4
  • 58
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker, T. and Krogan, N. J. (2012) Differential network biology. Mol. Syst. Biol., 8, 1-9.
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 1-9
    • Ideker, T.1    Krogan, N.J.2
  • 60
    • 84859741480 scopus 로고    scopus 로고
    • Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
    • Chen, L., Liu, R., Liu, Z.-P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 1-8.
    • (2012) Sci. Rep. , vol.2 , pp. 1-8
    • Chen, L.1    Liu, R.2    Liu, Z.-P.3    Li, M.4    Aihara, K.5
  • 61
    • 84863128658 scopus 로고    scopus 로고
    • Identifying disease genes and module biomarkers by differential interactions
    • Liu, X., Liu, Z.-P., Zhao, X.-M. and Chen, L. (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241-248.
    • (2012) J. Am. Med. Inform. Assoc. , vol.19 , pp. 241-248
    • Liu, X.1    Liu, Z.-P.2    Zhao, X.-M.3    Chen, L.4
  • 62
    • 84921954767 scopus 로고    scopus 로고
    • Netwrok-based biomarkers for complex disease
    • Zhao, X.-M. and Chen, L. (2014) Netwrok-based biomarkers for complex disease. J. Theor. Biol., 362, 1-2.
    • (2014) J. Theor. Biol. , vol.362 , pp. 1-2
    • Zhao, X.-M.1    Chen, L.2
  • 63
    • 84921915145 scopus 로고    scopus 로고
    • A survey on computational approaches to identifying disease biomarkers based on molecular networks
    • Qin, G. and Zhao, X.-M. (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9-16.
    • (2014) J. Theor. Biol. , vol.362 , pp. 9-16
    • Qin, G.1    Zhao, X.-M.2
  • 64
    • 84871750865 scopus 로고    scopus 로고
    • Identifying critical transitions and their leading biomolecular networks in complex diseases
    • Liu, R., Li, M., Liu, Z.-P., Wu, J., Chen, L. and Aihara, K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 1-9.
    • (2012) Sci. Rep. , vol.2 , pp. 1-9
    • Liu, R.1    Li, M.2    Liu, Z.-P.3    Wu, J.4    Chen, L.5    Aihara, K.6
  • 65
    • 84897433296 scopus 로고    scopus 로고
    • Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers
    • Liu, R., Wang, X., Aihara, K. and Chen, L. (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455-478.
    • (2014) Med. Res. Rev. , vol.34 , pp. 455-478
    • Liu, R.1    Wang, X.2    Aihara, K.3    Chen, L.4
  • 66
    • 84901315597 scopus 로고    scopus 로고
    • Identifying critical transitions of complex diseases based on a single sample
    • Liu, R., Yu, X., Liu, X., Xu, D., Aihara, K. and Chen, L. (2014) Identifying critical transitions of complex diseases based on a single sample. Bioinformatics, 30, 1579-1586.
    • (2014) Bioinformatics , vol.30 , pp. 1579-1586
    • Liu, R.1    Yu, X.2    Liu, X.3    Xu, D.4    Aihara, K.5    Chen, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.