메뉴 건너뛰기




Volumn 29, Issue 1, 2013, Pages 106-113

NARROMI: A noise and redundancy reduction technique improves accuracy of gene regulatory network inference

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI;

EID: 84871752758     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts619     Document Type: Article
Times cited : (122)

References (45)
  • 1
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay, G. and Emmert-Streib, F. (2010) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics, 26, 1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 2
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal, M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 3
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso, K. et al. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet., 37, 382-390.
    • (2005) Nat. Genet. , vol.37 , pp. 382-390
    • Basso, K.1
  • 4
    • 80455178749 scopus 로고    scopus 로고
    • Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function
    • Belcastro, V. et al. (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res., 39, 8677-8688.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 8677-8688
    • Belcastro, V.1
  • 5
    • 77955033717 scopus 로고    scopus 로고
    • MISS: A non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis
    • Brunel, H. et al. (2010) MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis. Bioinformatics, 26, 1811-1818.
    • (2010) Bioinformatics , vol.26 , pp. 1811-1818
    • Brunel, H.1
  • 6
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 7
    • 77953898349 scopus 로고    scopus 로고
    • Multilevel support vector regression analysis to identify condition-specific regulatory networks
    • Chen, L. et al. (2010) Multilevel support vector regression analysis to identify condition-specific regulatory networks. Bioinformatics, 26, 1416-1422.
    • (2010) Bioinformatics , vol.26 , pp. 1416-1422
    • Chen, L.1
  • 8
    • 69449094754 scopus 로고    scopus 로고
    • Incorporating existing network information into gene network inference
    • Christley, S. et al. (2009) Incorporating existing network information into gene network inference. PLoS One, 4, e6799.
    • (2009) PLoS One , vol.4
    • Christley, S.1
  • 9
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • De la Fuente, A. et al. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20, 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • De La Fuente, A.1
  • 10
    • 21444452397 scopus 로고    scopus 로고
    • Chemogenomic proEling on a genome-wide scale using reverse-engineered gene networks
    • di Bernardo, D. et al. (2005) Chemogenomic proEling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23, 377-383.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 377-383
    • Di Bernardo, D.1
  • 11
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression proEles
    • Faith, J.J. et al. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression proEles. PLoS Biol., 5, 54-66.
    • (2007) PLoS Biol. , vol.5 , pp. 54-66
    • Faith, J.J.1
  • 13
    • 36148985016 scopus 로고    scopus 로고
    • Partial mutual information for coupling analysis of multivariate time series
    • Frenzel, S. and Pompe, B. (2007) Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett., 99, 204101.
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 204101
    • Frenzel, S.1    Pompe, B.2
  • 14
    • 78651299341 scopus 로고    scopus 로고
    • RegulonDB version 7.0: Transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
    • Gama-Castro, S. et al. (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res., 39, D98-D105.
    • (2011) Nucleic Acids Res. , vol.39
    • Gama-Castro, S.1
  • 15
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • DOI 10.1126/science.1081900
    • Gardner, T.S. et al. (2003) Inferring genetic networks and identifying compound mode of action via expression proEling. Science, 301, 102-105. (Pubitemid 36801571)
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 16
    • 84856116180 scopus 로고    scopus 로고
    • Identification of context-specific gene regulatory networks with GEMULA-gene expression modeling using Lasso
    • Geeven, G. et al. (2012) Identification of context-specific gene regulatory networks with GEMULA-gene expression modeling using Lasso. Bioinformatics, 28, 214-221.
    • (2012) Bioinformatics , vol.28 , pp. 214-221
    • Geeven, G.1
  • 17
    • 77952328474 scopus 로고    scopus 로고
    • Model-based method for transcription factor target identification with limited data
    • Honkela, A. et al. (2010) Model-based method for transcription factor target identification with limited data. Proc. Natl. Acad. Sci. USA, 107, 7793-7798.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 7793-7798
    • Honkela, A.1
  • 18
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression proEles
    • Hughes, T.R. et al. (2000) Functional discovery via a compendium of expression proEles. Cell, 102, 109-126.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.R.1
  • 19
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu, V.A. et al. (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One, 5, e12776.
    • (2010) PLoS One , vol.5
    • Huynh-Thu, V.A.1
  • 20
    • 84859371992 scopus 로고    scopus 로고
    • Gene network inference and visualization tools for biologists: Application to new human transcriptome datasets
    • Hurley, D. et al. (2011) Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res., 40, 2377-2398.
    • (2011) Nucleic Acids Res. , vol.40 , pp. 2377-2398
    • Hurley, D.1
  • 21
    • 84861168271 scopus 로고    scopus 로고
    • Inferring gene regulatory networks by ANOVA
    • Kuffner, R. et al. (2012) Inferring gene regulatory networks by ANOVA. Bioinformatics, 28, 1376-1382.
    • (2012) Bioinformatics , vol.28 , pp. 1376-1382
    • Kuffner, R.1
  • 22
    • 80053436505 scopus 로고    scopus 로고
    • Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis
    • Li, Z. et al. (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics, 27, 2686-2691.
    • (2011) Bioinformatics , vol.27 , pp. 2686-2691
    • Li, Z.1
  • 24
    • 79953886457 scopus 로고    scopus 로고
    • Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression
    • MacNeil, L.T. and Walhout, A.J.M. (2011) Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res., 21, 645-657.
    • (2011) Genome Res. , vol.21 , pp. 645-657
    • MacNeil, L.T.1    Walhout, A.J.M.2
  • 25
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach, D. et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. USA, 107, 6286-6291.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 26
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach, D. et al. (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796-804.
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 27
    • 34547840242 scopus 로고    scopus 로고
    • Nested effects models for high-dimensional phenotyping screens
    • DOI 10.1093/bioinformatics/btm178
    • Markowetz, F. et al. (2007) Nested effects models for high-dimensional phenotyping screens. Bioinformatics, 23, i305-i312. (Pubitemid 47244414)
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Markowetz, F.1    Kostka, D.2    Troyanskaya, O.G.3    Spang, R.4
  • 28
    • 33750353888 scopus 로고    scopus 로고
    • Reverse engineering cellular networks
    • Margolin, A.A. et al. (2006a) Reverse engineering cellular networks. Nat Protoc., 1, 663-672.
    • (2006) Nat Protoc. , vol.1 , pp. 663-672
    • Margolin, A.A.1
  • 29
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin, A.A. et al. (2006b) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7, S7.
    • (2006) BMC Bioinformatics , vol.7
    • Margolin, A.A.1
  • 30
    • 59949086432 scopus 로고    scopus 로고
    • Minet: A R/bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer, P.E. et al. (2008) minet: a R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1
  • 31
    • 80053079335 scopus 로고    scopus 로고
    • Functional characterization of bacterial sRNAs using a network biology approach
    • Modi, S.R. et al. (2011) Functional characterization of bacterial sRNAs using a network biology approach. Proc. Natl. Acad. Sci. USA, 108, 15522-15527.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 15522-15527
    • Modi, S.R.1
  • 32
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef, D.N. et al. (2011) Detecting novel associations in large data sets. Science, 334, 1518-1524.
    • (2011) Science , vol.334 , pp. 1518-1524
    • Reshef, D.N.1
  • 33
    • 79952594472 scopus 로고    scopus 로고
    • Discovery of chemical compound groups with common structures by a network analysis approach
    • Saito, S. et al. (2011) Discovery of chemical compound groups with common structures by a network analysis approach. J. Chem. Inf. Model., 51, 61-68.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 61-68
    • Saito, S.1
  • 34
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance proEling of network inference methods
    • Schaffter, T. et al. (2011) GeneNetWeaver: in silico benchmark generation and performance proEling of network inference methods. Bioinformatics, 27, 2263-2270.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1
  • 35
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • Smet, R.D. and Marchal, K. (2010) Advantages and limitations of current network inference methods. Nat. Rev. Microbiol., 8, 717-729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • Smet, R.D.1    Marchal, K.2
  • 36
    • 80054689794 scopus 로고    scopus 로고
    • An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma
    • Sumazin, P. et al. (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 147, 370-381.
    • (2011) Cell , vol.147 , pp. 370-381
    • Sumazin, P.1
  • 38
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 39
    • 84861180215 scopus 로고    scopus 로고
    • Robust detection of hierarchical communities from Escherichia coli gene expression data
    • Trevino, S. III et al. (2012) Robust detection of hierarchical communities from Escherichia coli gene expression data. PLoS Comput. Biol., 8, e1002391.
    • (2012) PLoS Comput. Biol. , vol.8
    • Trevino Iii., S.1
  • 40
    • 0036138322 scopus 로고    scopus 로고
    • 2 easy steps
    • 2 easy steps. Bioinformatics, 17, 1183-1197. (Pubitemid 33735345)
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1183-1197
    • Wagner, A.1
  • 41
    • 63849290251 scopus 로고    scopus 로고
    • Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli
    • Wang, R.S. et al. (2009) Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli. BMC Bioinformatics, 10, S6.
    • (2009) BMC Bioinformatics , vol.10
    • Wang, R.S.1
  • 42
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • DOI 10.1093/bioinformatics/btl396
    • Wang, Y. et al. (2006) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 22, 2413-2420. (Pubitemid 44566971)
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.-S.3    Xu, D.4    Chen, L.5
  • 43
    • 82755198509 scopus 로고    scopus 로고
    • Construction of regulatory networks using expression time-series data of a genotyped population
    • Yeung, K.Y. et al. (2011) Construction of regulatory networks using expression time-series data of a genotyped population. Proc. Natl. Acad. Sci. USA, 108, 19436-19441.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 19436-19441
    • Yeung, K.Y.1
  • 45
    • 84871809644 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from gene expression profiles by path consistency algorithm based on conditional mutual information
    • Zhang, X. et al. (2012) Inferring gene regulatory networks from gene expression profiles by path consistency algorithm based on conditional mutual information. Bioinformatics, 28, 47-54.
    • (2012) Bioinformatics , vol.28 , pp. 47-54
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.