메뉴 건너뛰기




Volumn 6, Issue 3, 2015, Pages 543-558

Chromatin dynamics in the regulation of CFTR expression

Author keywords

CFTR; Cis regulatory elements; Higher order chromatin organization

Indexed keywords

COHESIN; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR; FORKHEAD TRANSCRIPTION FACTOR; HEPATOCYTE NUCLEAR FACTOR 1; HEPATOCYTE NUCLEAR FACTOR 3ALPHA; HEPATOCYTE NUCLEAR FACTOR 3BETA; TRANSCRIPTION FACTOR CDX2;

EID: 84937438180     PISSN: None     EISSN: 20734425     Source Type: Journal    
DOI: 10.3390/genes6030543     Document Type: Review
Times cited : (24)

References (93)
  • 2
    • 0025987020 scopus 로고
    • Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel
    • Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J., Smith, A.E. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 1991, 66, 1027–1036
    • (1991) Cell , vol.66 , pp. 1027-1036
    • Cheng, S.H.1    Rich, D.P.2    Marshall, J.3    Gregory, R.J.4    Welsh, M.J.5    Smith, A.E.6
  • 8
    • 0025787393 scopus 로고
    • In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator
    • Trezise, A.E., Buchwald, M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 1991, 353, 434-437
    • (1991) Nature , vol.353 , pp. 434-437
    • Trezise, A.E.1    Buchwald, M.2
  • 9
    • 0026043883 scopus 로고
    • Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis
    • Trapnell, B.C., Chu, C.S., Paakko, P.K., Banks, T.C., Yoshimura, K., Ferrans, V.J., Chernick, M.S., Crystal, R.G. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc. Natl. Acad. Sci. USA 1991, 88, 6565-6569
    • (1991) "');">. , vol.88 , pp. 6565-6569
    • Trapnell, B.C.1    Chu, C.S.2    Paakko, P.K.3    Banks, T.C.4    Yoshimura, K.5    Ferrans, V.J.6    Chernick, M.S.7    Crystal, R.G.8
  • 11
    • 0025883051 scopus 로고
    • Expression of the cystic fibrosis gene in human development. Dev. Camb
    • Harris, A., Chalkley, G., Goodman, S., Coleman, L. Expression of the cystic fibrosis gene in human development. Dev. Camb. Engl. 1991, 113, 305-310
    • (1991) Engl , vol.113 , pp. 305-310
    • Harris, A.1    Chalkley, G.2    Goodman, S.3    Coleman, L.4
  • 12
    • 0027207509 scopus 로고
    • Expression of the cystic fibrosis gene in human foetal tissues. Hum. Mol
    • Trezise, A.E., Chambers, J.A., Wardle, C.J., Gould, S., Harris, A. Expression of the cystic fibrosis gene in human foetal tissues. Hum. Mol. Genet. 1993, 2, 213-218
    • (1993) Genet , vol.2 , pp. 213-218
    • Trezise, A.E.1    Chambers, J.A.2    Wardle, C.J.3    Gould, S.4    Harris, A.5
  • 17
    • 0025776409 scopus 로고
    • The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin
    • Yoshimura, K., Nakamura, H., Trapnell, B.C., Dalemans, W., Pavirani, A., Lecocq, J.P., Crystal, R.G. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J. Biol. Chem. 1991, 266, 9140-9144
    • (1991) J. Biol. Chem , vol.266 , pp. 9140-9144
    • Yoshimura, K.1    Nakamura, H.2    Trapnell, B.C.3    Dalemans, W.4    Pavirani, A.5    Lecocq, J.P.6    Crystal, R.G.7
  • 18
    • 0026327058 scopus 로고
    • Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene
    • Chou, J.L., Rozmahel, R., Tsui, L.C. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J. Biol. Chem. 1991, 266, 24471-24476
    • (1991) J. Biol. Chem , vol.266 , pp. 24471-24476
    • Chou, J.L.1    Rozmahel, R.2    Tsui, L.C.3
  • 19
    • 0027185802 scopus 로고
    • Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity
    • Koh, J., Sferra, T.J., Collins, F.S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J. Biol. Chem. 1993, 268, 15912-15921
    • (1993) . J. Biol. Chem , vol.268 , pp. 15912-15921
    • Koh, J.1    Sferra, T.J.2    Collins, F.S.3
  • 20
    • 0031888202 scopus 로고    scopus 로고
    • Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes
    • White, N.L., Higgins, C.F., Trezise, A.E. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes. Hum. Mol. Genet. 1998, 7, 363-369
    • (1998) "');">. , vol.7 , pp. 363-369
    • White, N.L.1    Higgins, C.F.2    Trezise, A.E.3
  • 21
    • 0037386815 scopus 로고    scopus 로고
    • Alternative 5' exons of the CFTR gene show developmental regulation. Hum. Mol
    • Mouchel, N., Broackes-Carter, F., Harris, A. Alternative 5' exons of the CFTR gene show developmental regulation. Hum. Mol. Genet. 2003, 12, 759-769
    • (2003) Genet , vol.12 , pp. 759-769
    • Mouchel, N.1    Broackes-Carter, F.2    Harris, A.3
  • 23
    • 84922465833 scopus 로고    scopus 로고
    • E.O. CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region
    • Lukowski, S.W., Rothnagel, J.A., Trezise, A. E.O. CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region. Hum. Mol. Genet. 2015, 24, 899-912
    • (2015) Hum. Mol. Genet , vol.24 , pp. 899-912
    • Lukowski, S.W.1    Rothnagel, J.A.2    Trezise, A.3
  • 24
    • 0029127312 scopus 로고
    • Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity
    • McDonald, R.A., Matthews, R.P., Idzerda, R.L., McKnight, G.S. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc. Natl. Acad. Sci. USA 1995, 92, 7560-7564
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 7560-7564
    • McDonald, R.A.1    Matthews, R.P.2    Idzerda, R.L.3    McKnight, G.S.4
  • 25
    • 0028866431 scopus 로고
    • Ranscription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation
    • Pittman, N., Shue, G., LeLeiko, N.S., Walsh, M.J. Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J. Biol. Chem. 1995, 270, 28848-28857
    • (1995) J. Biol. Chem , vol.270 , pp. 28848-28857
    • Pittman, N.1    Shue, G.2    Leleiko, N.S.3    Walsh, M.J.4
  • 26
    • 10544220417 scopus 로고    scopus 로고
    • Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter
    • Matthews, R.P., McKnight, G.S. Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J. Biol. Chem. 1996, 271, 31869-31877
    • (1996) J. Biol. Chem , vol.271 , pp. 31869-31877
    • Matthews, R.P.1    McKnight, G.S.2
  • 27
    • 0035805534 scopus 로고    scopus 로고
    • NF-kappaB activation is involved in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) by interleukin-1beta
    • Cafferata, E.G., Guerrico, A.M., Pivetta, O.H., Santa-Coloma, T.A. NF-kappaB activation is involved in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) by interleukin-1beta. J. Biol. Chem. 2001, 276, 15441-15444
    • (2001) J. Biol. Chem , vol.276 , pp. 15441-15444
    • Cafferata, E.G.1    Guerrico, A.M.2    Pivetta, O.H.3    Santa-Coloma, T.A.4
  • 30
    • 77956276383 scopus 로고    scopus 로고
    • DNase-seq: A high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb
    • Song, L., Crawford, G.E. DNase-seq: A high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, doi:10.1101/pdb.prot5384
    • (2010) Protoc
    • Song, L.1    Crawford, G.E.2
  • 31
    • 0023899769 scopus 로고
    • Nuclease hypersensitive sites in chromatin. Annu
    • Gross, D.S., Garrard, W.T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 1988, 57, 159-197
    • (1988) Rev. Biochem , vol.57 , pp. 159-197
    • Gross, D.S.1    Garrard, W.T.2
  • 32
    • 0028978042 scopus 로고
    • Characterization of DNASE I hypersensitive sites in the 120 kb 5' to the CFTR gene. Biochem. Biophys. Res
    • Smith, A.N., Wardle, C.J., Harris, A. Characterization of DNASE I hypersensitive sites in the 120 kb 5' to the CFTR gene. Biochem. Biophys. Res. Commun. 1995, 211, 274-281
    • (1995) Commun , vol.211 , pp. 274-281
    • Smith, A.N.1    Wardle, C.J.2    Harris, A.3
  • 33
    • 0034652630 scopus 로고    scopus 로고
    • Multiple potential intragenic regulatory elements in the CFTR gene
    • Smith, D.J., Nuthall, H.N., Majetti, M.E., Harris, A. Multiple potential intragenic regulatory elements in the CFTR gene. Genomics 2000, 64, 90-96
    • (2000) Genomics , vol.64 , pp. 90-96
    • Smith, D.J.1    Nuthall, H.N.2    Majetti, M.E.3    Harris, A.4
  • 34
    • 0033179057 scopus 로고    scopus 로고
    • Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR)
    • Nuthall, H.N., Moulin, D.S., Huxley, C., Harris, A. Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR). Biochem. J. 1999, 341, 601-611
    • (1999) . Biochem. J , vol.341 , pp. 601-611
    • Nuthall, H.N.1    Moulin, D.S.2    Huxley, C.3    Harris, A.4
  • 35
    • 0036161983 scopus 로고    scopus 로고
    • Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene
    • Phylactides, M., Rowntree, R., Nuthall, H., Ussery, D., Wheeler, A., Harris, A. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene. Eur. J. Biochem. 2002, 269, 553-559
    • (2002) Eur. J. Biochem , vol.269 , pp. 553-559
    • Phylactides, M.1    Rowntree, R.2    Nuthall, H.3    Ussery, D.4    Wheeler, A.5    Harris, A.6
  • 36
    • 0033037137 scopus 로고    scopus 로고
    • In vivo analysis of DNase I hypersensitive sites in the human CFTR gene. Mol
    • Moulin, D.S., Manson, A.L., Nuthall, H.N., Smith, D.J., Huxley, C., Harris, A. In vivo analysis of DNase I hypersensitive sites in the human CFTR gene. Mol. Med. 1999, 5, 211-223
    • (1999) Med , vol.5 , pp. 211-223
    • Moulin, D.S.1    Manson, A.L.2    Nuthall, H.N.3    Smith, D.J.4    Huxley, C.5    Harris, A.6
  • 37
    • 0033485416 scopus 로고    scopus 로고
    • Analysis of a DNase I hypersensitive site located −20.9 kb upstream of the CFTR gene
    • Nuthall, H.N., Vassaux, G., Huxley, C., Harris, A. Analysis of a DNase I hypersensitive site located −20.9 kb upstream of the CFTR gene. Eur. J. Biochem. 1999, 266, 431-443
    • (1999) Eur. J. Biochem , vol.266 , pp. 431-443
    • Nuthall, H.N.1    Vassaux, G.2    Huxley, C.3    Harris, A.4
  • 38
    • 77949326555 scopus 로고    scopus 로고
    • Harris, A. Interaction of intestinal and pancreatic transcription factors in the regulation of CFTR gene expression. Biochim. Biophys
    • McCarthy, V.A., Ott, C.J., Phylactides, M., Harris, A. Interaction of intestinal and pancreatic transcription factors in the regulation of CFTR gene expression. Biochim. Biophys. Acta 2009, 1789, 709-718
    • (2009) Acta , vol.1789 , pp. 709-718
    • McCarthy, V.A.1    Ott, C.J.2    Phylactides, M.3
  • 41
    • 65249131931 scopus 로고    scopus 로고
    • Complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter
    • Ott, C.J., Suszko, M., Blackledge, N.P., Wright, J.E., Crawford, G.E., Harris, A. A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter. J. Cell. Mol. Med. 2009, 13, 680-692
    • (2009) J. Cell. Mol. Med , vol.13 , pp. 680-692
    • Ott, C.J.1    Suszko, M.2    Blackledge, N.P.3    Wright, J.E.4    Crawford, G.E.5    Harris, A.A.6
  • 42
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium;
    • ENCODE Project Consortium; Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C., Snyder, M. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57-74
    • (2012) "');">. , vol.489 , pp. 57-74
    • Bernstein, B.E.1    Birney, E.2    Dunham, I.3    Green, E.D.4    Gunter, C.5    Snyder, M.6
  • 43
    • 84866065416 scopus 로고    scopus 로고
    • The Chromatin Fingerprint of Gene Enhancer Elements
    • Zentner, G.E., Scacheri, P.C. The Chromatin Fingerprint of Gene Enhancer Elements. J. Biol. Chem. 2012, 287, 30888-30896
    • (2012) J. Biol. Chem , vol.287 , pp. 30888-30896
    • Zentner, G.E.1    Scacheri, P.C.2
  • 49
  • 51
    • 84865174240 scopus 로고    scopus 로고
    • Transcriptional networks driving enhancer function in the
    • Kerschner, J.L., Harris, A. Transcriptional networks driving enhancer function in the CFTR gene. Biochem. J. 2012, 446, 203-212
    • (2012) CFTR Gene. Biochem. J , vol.446 , pp. 203-212
    • Kerschner, J.L.1    Harris, A.2
  • 52
    • 84899132703 scopus 로고    scopus 로고
    • Chromatin remodeling mediated by the FOXA1/A2 transcription factors activates CFTR expression in intestinal epithelial cells
    • Kerschner, J.L., Gosalia, N., Leir, S.-H., Harris, A. Chromatin remodeling mediated by the FOXA1/A2 transcription factors activates CFTR expression in intestinal epithelial cells. Epigenetics 2014, 9, 557-565
    • (2014) Epigenetics , vol.9 , pp. 557-565
    • Kerschner, J.L.1    Gosalia, N.2    Leir, S.-H.3    Harris, A.4
  • 54
  • 56
    • 84880675359 scopus 로고    scopus 로고
    • Expression through a bifunctional airway-selective enhancer. Mol. Cell
    • Zhang, Z., Leir, S.-H., Harris, A. Immune mediators regulate CFTR expression through a bifunctional airway-selective enhancer. Mol. Cell. Biol. 2013, 33, 2843-2853
    • (2013) Biol , vol.33 , pp. 2843-2853
    • Zhang, Z.1    Leir, S.-H.2    Harris, A.3    Immune Mediators Regulate, C.4
  • 59
    • 62549146697 scopus 로고    scopus 로고
    • An insulator element 3' to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells
    • Blackledge, N.P., Ott, C.J., Gillen, A.E., Harris, A. An insulator element 3' to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells. Nucleic Acids Res. 2009, 37, 1086-1094
    • (2009) Nucleic Acids Res , vol.37 , pp. 1086-1094
    • Blackledge, N.P.1    Ott, C.J.2    Gillen, A.E.3    Harris, A.4
  • 60
    • 84878188440 scopus 로고    scopus 로고
    • Chromatin insulators: Linking genome organization to cellular function. Mol
    • Phillips-Cremins, J.E., Corces, V.G. Chromatin insulators: Linking genome organization to cellular function. Mol. Cell 2013, 50, 461-474
    • (2013) Cell , vol.50 , pp. 461-474
    • Phillips-Cremins, J.E.1    Corces, V.G.2
  • 61
    • 0035992199 scopus 로고    scopus 로고
    • Identification of Gasz, an evolutionarily conserved gene expressed exclusively in germ cells and encoding a protein with four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper. Mol
    • Yan, W., Rajkovic, A., Viveiros, M.M., Burns, K.H., Eppig, J.J., Matzuk, M.M. Identification of Gasz, an evolutionarily conserved gene expressed exclusively in germ cells and encoding a protein with four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper. Mol. Endocrinol. 2002, 16, 1168-1184
    • (2002) Endocrinol , vol.16 , pp. 1168-1184
    • Yan, W.1    Rajkovic, A.2    Viveiros, M.M.3    Burns, K.H.4    Eppig, J.J.5    Matzuk, M.M.6
  • 62
    • 0034766845 scopus 로고    scopus 로고
    • Identification of the human cortactin-binding protein-2 gene from the autism candidate region at 7q31
    • Cheung, J., Petek, E., Nakabayashi, K., Tsui, L.C., Vincent, J.B., Scherer, S.W. Identification of the human cortactin-binding protein-2 gene from the autism candidate region at 7q31. Genomics 2001, 78, 7-11
    • (2001) Genomics , vol.78 , pp. 7-11
    • Cheung, J.1    Petek, E.2    Nakabayashi, K.3    Tsui, L.C.4    Vincent, J.B.5    Scherer, S.W.6
  • 63
    • 34548441932 scopus 로고    scopus 로고
    • Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome
    • Xi, H., Shulha, H.P., Lin, J.M., Vales, T.R., Fu, Y., Bodine, D.M., McKay, R.D.G., Chenoweth, J.G., Tesar, P.J., Furey, T.S., et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 2007, 3, e136
    • (2007) Plos Genet , vol.e136 , pp. 3
    • Xi, H.1    Shulha, H.P.2    Lin, J.M.3    Vales, T.R.4    Fu, Y.5    Bodine, D.M.6    McKay, R.7    Chenoweth, J.G.8    Tesar, P.J.9    Furey, T.S.10
  • 64
    • 0035451090 scopus 로고    scopus 로고
    • CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease
    • Ohlsson, R., Renkawitz, R., Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 2001, 17, 520-527
    • (2001) Trends Genet , vol.17 , pp. 520-527
    • Ohlsson, R.1    Renkawitz, R.2    Lobanenkov, V.3
  • 65
    • 0033529654 scopus 로고    scopus 로고
    • The protein CTCF is required for the enhancer blocking activity of vertebrate insulators
    • Bell, A.C., West, A.G., Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 1999, 98, 387-396
    • (1999) Cell , vol.98 , pp. 387-396
    • Bell, A.C.1    West, A.G.2    Felsenfeld, G.3
  • 66
    • 67549119096 scopus 로고    scopus 로고
    • CTCF: Master weaver of the genome
    • Phillips, J.E., Corces, V.G. CTCF: Master weaver of the genome. Cell 2009, 137, 1194-1211
    • (2009) Cell , vol.137 , pp. 1194-1211
    • Phillips, J.E.1    Corces, V.G.2
  • 67
    • 84899415536 scopus 로고    scopus 로고
    • CTCF: An architectural protein bridging genome topology and function. Nat
    • Ong, C.-T., Corces, V.G. CTCF: An architectural protein bridging genome topology and function. Nat. Rev. Genet. 2014, 15, 234-246
    • (2014) Rev. Genet , vol.15 , pp. 234-246
    • Ong, C.-T.1    Corces, V.G.2
  • 71
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: Its roles and mechanisms. Annu
    • Nasmyth, K., Haering, C.H. Cohesin: Its roles and mechanisms. Annu. Rev. Genet. 2009, 43, 525-558
    • (2009) Rev. Genet , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 74
    • 84923374968 scopus 로고    scopus 로고
    • Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus
    • Gosalia, N., Neems, D., Kerschner, J.L., Kosak, S.T., Harris, A. Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus. Nucleic Acids Res. 2014, 42, 9612-9622
    • (2014) Nucleic Acids Res , vol.42 , pp. 9612-9622
    • Gosalia, N.1    Neems, D.2    Kerschner, J.L.3    Kosak, S.T.4    Harris, A.5
  • 75
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active beta-globin locus
    • Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 2002, 10, 1453-1465
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1    Palstra, R.J.2    Splinter, E.3    Grosveld, F.4    De Laat, W.5
  • 77
    • 0042880630 scopus 로고    scopus 로고
    • ., . Spatial organization of gene expression: The active chromatin hub
    • De Laat, W., Grosveld, F. Spatial organization of gene expression: The active chromatin hub. Chromosome Res. 2003, 11, 447-459
    • (2003) Chromosome Res , vol.11 , pp. 447-459
    • De Laat, W.1    Grosveld, F.2
  • 78
    • 79952901680 scopus 로고    scopus 로고
    • Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat
    • Ong, C.-T., Corces, V.G. Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 2011, 12, 283-293
    • (2011) Rev. Genet , vol.12 , pp. 283-293
    • Ong, C.-T.1    Corces, V.G.2
  • 79
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal, A., Lajoie, B.R., Jain, G., Dekker, J. The long-range interaction landscape of gene promoters. Nature 2012, 489, 109-113
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1    Lajoie, B.R.2    Jain, G.3    Dekker, J.4
  • 80
  • 82
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements
    • Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006, 16, 1299-1309
    • (2006) Genome Res , vol.16 , pp. 1299-1309
    • Dostie, J.1    Richmond, T.A.2    Arnaout, R.A.3    Selzer, R.R.4    Lee, W.L.5    Honan, T.A.6    Rubio, E.D.7    Krumm, A.8    Lamb, J.9    Nusbaum, C.10
  • 86
    • 84901649822 scopus 로고    scopus 로고
    • Global view of enhancer-promoter interactome in human cells
    • He, B., Chen, C., Teng, L., Tan, K. Global view of enhancer-promoter interactome in human cells. Proc. Natl. Acad. Sci. USA 2014, 111, E2191-E2199
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. E2191-E2199
    • He, B.1    Chen, C.2    Teng, L.3    Tan, K.4
  • 90
    • 79960807167 scopus 로고    scopus 로고
    • MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene
    • Gillen, A.E., Gosalia, N., Leir, S.-H., Harris, A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem. J. 2011, 438, 25-32
    • (2011) Biochem. J , vol.438 , pp. 25-32
    • Gillen, A.E.1    Gosalia, N.2    Leir, S.-H.3    Harris, A.4
  • 91
    • 80054777791 scopus 로고    scopus 로고
    • Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 specific binding
    • Megiorni, F., Cialfi, S., Dominici, C., Quattrucci, S., Pizzuti, A. Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS ONE 2011, 6, e26601
    • (2011) Plos ONE
    • Megiorni, F.1    Cialfi, S.2    Dominici, C.3    Quattrucci, S.4    Pizzuti, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.