메뉴 건너뛰기




Volumn 28, Issue , 2015, Pages 1-9

Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation

Author keywords

[No Author keywords available]

Indexed keywords

DNA;

EID: 84937211391     PISSN: 13695274     EISSN: 18790364     Source Type: Journal    
DOI: 10.1016/j.mib.2015.06.018     Document Type: Review
Times cited : (27)

References (72)
  • 4
    • 84922373440 scopus 로고    scopus 로고
    • Population genomics reveals chromosome-scale heterogeneous evolution in a protoploid yeast
    • Friedrich A., Jung P., Reisser C., Fischer G., Schacherer J. Population genomics reveals chromosome-scale heterogeneous evolution in a protoploid yeast. Mol Biol Evol 2015, 32:184-192.
    • (2015) Mol Biol Evol , vol.32 , pp. 184-192
    • Friedrich, A.1    Jung, P.2    Reisser, C.3    Fischer, G.4    Schacherer, J.5
  • 6
    • 84883006832 scopus 로고    scopus 로고
    • The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto Genus
    • Scannell D.R., Zill O.A., Rokas A., Payen C., Dunham M.J., Eisen M.B., Rine J., Johnston M., Hittinger C.T. The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto Genus. G3 (Bethesda) 2012, 1:11-25.
    • (2012) G3 (Bethesda) , vol.1 , pp. 11-25
    • Scannell, D.R.1    Zill, O.A.2    Rokas, A.3    Payen, C.4    Dunham, M.J.5    Eisen, M.B.6    Rine, J.7    Johnston, M.8    Hittinger, C.T.9
  • 7
    • 27144526423 scopus 로고    scopus 로고
    • Yeast evolution and comparative genomics
    • Liti G., Louis E.J. Yeast evolution and comparative genomics. Annu Rev Microbiol 2005, 59:135-153.
    • (2005) Annu Rev Microbiol , vol.59 , pp. 135-153
    • Liti, G.1    Louis, E.J.2
  • 8
    • 33646381380 scopus 로고    scopus 로고
    • Comparative genomics and genome evolution in yeasts
    • Wolfe K.H. Comparative genomics and genome evolution in yeasts. Philos Trans R Soc Lond B: Biol Sci 2006, 361:403-412.
    • (2006) Philos Trans R Soc Lond B: Biol Sci , vol.361 , pp. 403-412
    • Wolfe, K.H.1
  • 10
    • 0032893932 scopus 로고    scopus 로고
    • Preservation of duplicate genes by complementary, degenerative mutations
    • Force A., Lynch M., Pickett F.B., Amores A., Yan Y.L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151:1531-1545.
    • (1999) Genetics , vol.151 , pp. 1531-1545
    • Force, A.1    Lynch, M.2    Pickett, F.B.3    Amores, A.4    Yan, Y.L.5    Postlethwait, J.6
  • 11
    • 0028342845 scopus 로고
    • The evolution of functionally novel proteins after gene duplication
    • Hughes A.L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 1994, 256:119-124.
    • (1994) Proc Biol Sci , vol.256 , pp. 119-124
    • Hughes, A.L.1
  • 13
    • 84929467528 scopus 로고    scopus 로고
    • Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae
    • Keane O.M., Toft C., Carretero-Paulet L., Jones G.W., Fares M.A. Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Res 2014, 24:1830-1841.
    • (2014) Genome Res , vol.24 , pp. 1830-1841
    • Keane, O.M.1    Toft, C.2    Carretero-Paulet, L.3    Jones, G.W.4    Fares, M.A.5
  • 14
    • 84894229927 scopus 로고    scopus 로고
    • The robustness and evolvability of transcription factor binding sites
    • Payne J.L., Wagner A. The robustness and evolvability of transcription factor binding sites. Science 2014, 343:875-877.
    • (2014) Science , vol.343 , pp. 875-877
    • Payne, J.L.1    Wagner, A.2
  • 15
    • 1942452749 scopus 로고    scopus 로고
    • Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae
    • Kellis M., Birren B.W., Lander E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004, 428:617-624.
    • (2004) Nature , vol.428 , pp. 617-624
    • Kellis, M.1    Birren, B.W.2    Lander, E.S.3
  • 16
    • 0037456380 scopus 로고    scopus 로고
    • Yeast genome duplication was followed by asynchronous differentiation of duplicated genes
    • Langkjaer R.B., Cliften P.F., Johnston M., Piskur J. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 2003, 421:848-852.
    • (2003) Nature , vol.421 , pp. 848-852
    • Langkjaer, R.B.1    Cliften, P.F.2    Johnston, M.3    Piskur, J.4
  • 17
    • 0030947344 scopus 로고    scopus 로고
    • Molecular evidence for an ancient duplication of the entire yeast genome
    • Wolfe K.H., Shields D.C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 1997, 387:708-713.
    • (1997) Nature , vol.387 , pp. 708-713
    • Wolfe, K.H.1    Shields, D.C.2
  • 18
    • 33645023614 scopus 로고    scopus 로고
    • Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts
    • Scannell D.R., Byrne K.P., Gordon J.L., Wong S., Wolfe K.H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 2006, 440:341-345.
    • (2006) Nature , vol.440 , pp. 341-345
    • Scannell, D.R.1    Byrne, K.P.2    Gordon, J.L.3    Wong, S.4    Wolfe, K.H.5
  • 19
    • 25844471721 scopus 로고    scopus 로고
    • The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species
    • Byrne K.P., Wolfe K.H. The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 2005, 15:1456-1461.
    • (2005) Genome Res , vol.15 , pp. 1456-1461
    • Byrne, K.P.1    Wolfe, K.H.2
  • 20
    • 67149106149 scopus 로고    scopus 로고
    • Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome
    • Gordon J.L., Byrne K.P., Wolfe K.H. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 2009, 5:e1000485.
    • (2009) PLoS Genet , vol.5 , pp. e1000485
    • Gordon, J.L.1    Byrne, K.P.2    Wolfe, K.H.3
  • 22
    • 84885647005 scopus 로고    scopus 로고
    • Following gene duplication, paralog interference constrains transcriptional circuit evolution
    • Baker C.R., Hanson-Smith V., Johnson A.D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 2013, 342:104-108.
    • (2013) Science , vol.342 , pp. 104-108
    • Baker, C.R.1    Hanson-Smith, V.2    Johnson, A.D.3
  • 23
    • 84871697209 scopus 로고    scopus 로고
    • Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication
    • Voordeckers K., Brown C.A., Vanneste K., van der Zande E., Voet A., Maere S., Verstrepen K.J. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 2012, 10:e1001446.
    • (2012) PLoS Biol , vol.10 , pp. e1001446
    • Voordeckers, K.1    Brown, C.A.2    Vanneste, K.3    van der Zande, E.4    Voet, A.5    Maere, S.6    Verstrepen, K.J.7
  • 24
    • 34548501747 scopus 로고    scopus 로고
    • Natural history and evolutionary principles of gene duplication in fungi
    • Wapinski I., Pfeffer A., Friedman N., Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature 2007, 449:54-61.
    • (2007) Nature , vol.449 , pp. 54-61
    • Wapinski, I.1    Pfeffer, A.2    Friedman, N.3    Regev, A.4
  • 27
    • 2442537233 scopus 로고    scopus 로고
    • Gene regulatory network growth by duplication
    • Teichmann S.A., Babu M.M. Gene regulatory network growth by duplication. Nat Genet 2004, 36:492-496.
    • (2004) Nat Genet , vol.36 , pp. 492-496
    • Teichmann, S.A.1    Babu, M.M.2
  • 28
    • 84923310169 scopus 로고    scopus 로고
    • How do regulatory networks evolve and expand throughout evolution?
    • Voordeckers K., Pougach K., Verstrepen K.J. How do regulatory networks evolve and expand throughout evolution?. Curr Opin Biotechnol 2015, 34:180-188.
    • (2015) Curr Opin Biotechnol , vol.34 , pp. 180-188
    • Voordeckers, K.1    Pougach, K.2    Verstrepen, K.J.3
  • 29
    • 0034967623 scopus 로고    scopus 로고
    • Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction
    • Bhat P.J., Murthy T.V. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 2001, 40:1059-1066.
    • (2001) Mol Microbiol , vol.40 , pp. 1059-1066
    • Bhat, P.J.1    Murthy, T.V.2
  • 30
    • 35148863240 scopus 로고    scopus 로고
    • Gene duplication and the adaptive evolution of a classic genetic switch
    • Hittinger C.T., Carroll S.B. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 2007, 449:677-681.
    • (2007) Nature , vol.449 , pp. 677-681
    • Hittinger, C.T.1    Carroll, S.B.2
  • 34
    • 77953139551 scopus 로고    scopus 로고
    • Rapid expansion and functional divergence of subtelomeric gene families in yeasts
    • Brown C.A., Murray A.W., Verstrepen K.J. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol 2010, 20:895-903.
    • (2010) Curr Biol , vol.20 , pp. 895-903
    • Brown, C.A.1    Murray, A.W.2    Verstrepen, K.J.3
  • 36
    • 34547611439 scopus 로고    scopus 로고
    • Increased glycolytic flux as an outcome of whole-genome duplication in yeast
    • Conant G.C., Wolfe K.H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 2007, 3:129.
    • (2007) Mol Syst Biol , vol.3 , pp. 129
    • Conant, G.C.1    Wolfe, K.H.2
  • 37
    • 73349113515 scopus 로고    scopus 로고
    • Metabolic adaptation after whole genome duplication
    • van Hoek M.J., Hogeweg P. Metabolic adaptation after whole genome duplication. Mol Biol Evol 2009, 26:2441-2453.
    • (2009) Mol Biol Evol , vol.26 , pp. 2441-2453
    • van Hoek, M.J.1    Hogeweg, P.2
  • 38
    • 3142700743 scopus 로고    scopus 로고
    • Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes
    • Blanc G., Wolfe K.H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 2004, 16:1667-1678.
    • (2004) Plant Cell , vol.16 , pp. 1667-1678
    • Blanc, G.1    Wolfe, K.H.2
  • 39
    • 4143134848 scopus 로고    scopus 로고
    • Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish
    • Hoegg S., Brinkmann H., Taylor J.S., Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 2004, 59:190-203.
    • (2004) J Mol Evol , vol.59 , pp. 190-203
    • Hoegg, S.1    Brinkmann, H.2    Taylor, J.S.3    Meyer, A.4
  • 40
    • 84957429296 scopus 로고    scopus 로고
    • Experimental microbial evolution: history and conceptual underpinnings
    • Adams J., Rosenzweig F. Experimental microbial evolution: history and conceptual underpinnings. Genomics 2014, 104:393-398.
    • (2014) Genomics , vol.104 , pp. 393-398
    • Adams, J.1    Rosenzweig, F.2
  • 41
    • 84888001845 scopus 로고    scopus 로고
    • Genome dynamics during experimental evolution
    • Barrick J.E., Lenski R.E. Genome dynamics during experimental evolution. Nat Rev Genet 2013, 14:827-839.
    • (2013) Nat Rev Genet , vol.14 , pp. 827-839
    • Barrick, J.E.1    Lenski, R.E.2
  • 44
    • 84874535714 scopus 로고    scopus 로고
    • Parallel evolutionary dynamics of adaptive diversification in Escherichia coli
    • Herron M.D., Doebeli M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 2013, 11:e1001490.
    • (2013) PLoS Biol , vol.11 , pp. e1001490
    • Herron, M.D.1    Doebeli, M.2
  • 45
    • 84893817979 scopus 로고    scopus 로고
    • Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments
    • Hong J., Gresham D. Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 2014, 10:e1004041.
    • (2014) PLoS Genet , vol.10 , pp. e1004041
    • Hong, J.1    Gresham, D.2
  • 46
    • 84888213196 scopus 로고    scopus 로고
    • Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment
    • Kvitek D.J., Sherlock G. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 2013, 9:e1003972.
    • (2013) PLoS Genet , vol.9 , pp. e1003972
    • Kvitek, D.J.1    Sherlock, G.2
  • 49
    • 84957430346 scopus 로고    scopus 로고
    • The enduring utility of continuous culturing in experimental evolution
    • Gresham D., Dunham M.J. The enduring utility of continuous culturing in experimental evolution. Genomics 2014, 104:399-405.
    • (2014) Genomics , vol.104 , pp. 399-405
    • Gresham, D.1    Dunham, M.J.2
  • 50
    • 0001555399 scopus 로고
    • Description of the chemostat
    • Novick A., Szilard L. Description of the chemostat. Science 1950, 112:715-716.
    • (1950) Science , vol.112 , pp. 715-716
    • Novick, A.1    Szilard, L.2
  • 51
    • 0041883396 scopus 로고
    • Microbial selection
    • Bryson V., Szybalski W. Microbial selection. Science 1952, 116:45-51.
    • (1952) Science , vol.116 , pp. 45-51
    • Bryson, V.1    Szybalski, W.2
  • 52
    • 84555171441 scopus 로고    scopus 로고
    • Evolutionary paths to antibiotic resistance under dynamically sustained drug selection
    • Toprak E., Veres A., Michel J.B., Chait R., Hartl D.L., Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 2011, 44:101-105.
    • (2011) Nat Genet , vol.44 , pp. 101-105
    • Toprak, E.1    Veres, A.2    Michel, J.B.3    Chait, R.4    Hartl, D.L.5    Kishony, R.6
  • 53
    • 84875138391 scopus 로고    scopus 로고
    • Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition
    • Toprak E., Veres A., Yildiz S., Pedraza J.M., Chait R., Paulsson J., Kishony R. Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat Protoc 2013, 8:555-567.
    • (2013) Nat Protoc , vol.8 , pp. 555-567
    • Toprak, E.1    Veres, A.2    Yildiz, S.3    Pedraza, J.M.4    Chait, R.5    Paulsson, J.6    Kishony, R.7
  • 54
    • 84925014763 scopus 로고    scopus 로고
    • Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae
    • Burke M.K., Liti G., Long A.D. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol Biol Evol 2014, 31:3228-3239.
    • (2014) Mol Biol Evol , vol.31 , pp. 3228-3239
    • Burke, M.K.1    Liti, G.2    Long, A.D.3
  • 60
    • 84930668371 scopus 로고    scopus 로고
    • The fitness consequences of aneuploidy are driven by condition-dependent gene effects
    • Sunshine A.B., Payen C., Ong G.T., Liachko I., Tan K.M., Dunham M.J. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol 2015, 13:e1002155.
    • (2015) PLoS Biol , vol.13 , pp. e1002155
    • Sunshine, A.B.1    Payen, C.2    Ong, G.T.3    Liachko, I.4    Tan, K.M.5    Dunham, M.J.6
  • 61
    • 84873314664 scopus 로고    scopus 로고
    • Gene copy-number alterations: a cost-benefit analysis
    • Tang Y.C., Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell 2013, 152:394-405.
    • (2013) Cell , vol.152 , pp. 394-405
    • Tang, Y.C.1    Amon, A.2
  • 65
    • 84957428901 scopus 로고    scopus 로고
    • Recent advances in the evolutionary engineering of industrial biocatalysts
    • Winkler J.D., Kao K.C. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 2014, 104:406-411.
    • (2014) Genomics , vol.104 , pp. 406-411
    • Winkler, J.D.1    Kao, K.C.2
  • 66
    • 80052321144 scopus 로고    scopus 로고
    • Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity
    • Koschwanez J.H., Foster K.R., Murray A.W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol 2011, 9:e1001122.
    • (2011) PLoS Biol , vol.9 , pp. e1001122
    • Koschwanez, J.H.1    Foster, K.R.2    Murray, A.W.3
  • 69
    • 84903741051 scopus 로고    scopus 로고
    • Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism
    • Hom E.F., Murray A.W. Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 2014, 345:94-98.
    • (2014) Science , vol.345 , pp. 94-98
    • Hom, E.F.1    Murray, A.W.2
  • 71
    • 84936084864 scopus 로고    scopus 로고
    • Evolving a 24-hr oscillator in budding yeast
    • Wildenberg G.A., Murray A.W. Evolving a 24-hr oscillator in budding yeast. eLife 2014, 3.
    • (2014) eLife , pp. 3
    • Wildenberg, G.A.1    Murray, A.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.