-
2
-
-
84958689411
-
The role of depot fat in the hypothalamic control of food intake in the rat
-
Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953; 140: 578-96.
-
(1953)
Proc R Soc Lond B Biol Sci
, vol.140
, pp. 578-596
-
-
Kennedy, G.C.1
-
3
-
-
65449170818
-
Feeding behavior in mammals including humans
-
Magni P, Dozio E, Ruscica M, et al. Feeding behavior in mammals including humans. Ann N Y Acad Sci. 2009; 1163: 221-32.
-
(2009)
Ann N Y Acad Sci
, vol.1163
, pp. 221-232
-
-
Magni, P.1
Dozio, E.2
Ruscica, M.3
-
4
-
-
0029881125
-
Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans
-
Schwartz MW, Peskind E, Raskind M, et al. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med. 1996; 2: 589-93.
-
(1996)
Nat Med
, vol.2
, pp. 589-593
-
-
Schwartz, M.W.1
Peskind, E.2
Raskind, M.3
-
5
-
-
0018621289
-
Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
-
Woods SC, Lotter EC, McKay LD, et al. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979; 282: 503-5.
-
(1979)
Nature
, vol.282
, pp. 503-505
-
-
Woods, S.C.1
Lotter, E.C.2
McKay, L.D.3
-
6
-
-
0017368491
-
The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat
-
Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897-916.
-
(1977)
J Neurochem
, vol.28
, pp. 897-916
-
-
Sokoloff, L.1
Reivich, M.2
Kennedy, C.3
-
8
-
-
0000833791
-
Mechanism of the development of obesity in animals with hypothalamic lesions
-
Brobeck JR. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev. 1946; 26: 541-59.
-
(1946)
Physiol Rev
, vol.26
, pp. 541-559
-
-
Brobeck, J.R.1
-
10
-
-
84981834057
-
The relation of various hypothalamic lesions to adiposity in the rat
-
Hetherington AW, Ranson SW. The relation of various hypothalamic lesions to adiposity in the rat. J Comp Neurol. 1942; 76: 475-99.
-
(1942)
J Comp Neurol
, vol.76
, pp. 475-499
-
-
Hetherington, A.W.1
Ranson, S.W.2
-
11
-
-
76949125582
-
Hypothalamic control of food intake in rats and cats
-
Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med. 1951; 24: 123-40.
-
(1951)
Yale J Biol Med
, vol.24
, pp. 123-140
-
-
Anand, B.K.1
Brobeck, J.R.2
-
12
-
-
0002712310
-
Glucostatic mechanism of regulation of food intake
-
Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953; 249: 13-6.
-
(1953)
N Engl J Med
, vol.249
, pp. 13-16
-
-
Mayer, J.1
-
13
-
-
0014683812
-
Glucose and osmosensitive neurones of the rat hypothalamus
-
Oomura Y, Ono T, Ooyama H, et al. Glucose and osmosensitive neurones of the rat hypothalamus. Nature. 1969; 222: 282-4.
-
(1969)
Nature
, vol.222
, pp. 282-284
-
-
Oomura, Y.1
Ono, T.2
Ooyama, H.3
-
14
-
-
0242268888
-
Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia
-
de Vries MG, Arseneau LM, Lawson ME, et al. Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes. 2003; 52: 2767-73.
-
(2003)
Diabetes
, vol.52
, pp. 2767-2773
-
-
de Vries, M.G.1
Arseneau, L.M.2
Lawson, M.E.3
-
15
-
-
66149169972
-
Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding
-
Dunn-Meynell AA, Sanders NM, Compton D, et al. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci. 2009; 29: 7015-22.
-
(2009)
J Neurosci
, vol.29
, pp. 7015-7022
-
-
Dunn-Meynell, A.A.1
Sanders, N.M.2
Compton, D.3
-
16
-
-
0035706777
-
Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood
-
McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem. 2001; 75: 325-37.
-
(2001)
Neurobiol Learn Mem
, vol.75
, pp. 325-337
-
-
McNay, E.C.1
McCarty, R.C.2
Gold, P.E.3
-
17
-
-
0028101988
-
Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals
-
Silver IA, Erecinska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci. 1994; 14: 5068-76.
-
(1994)
J Neurosci
, vol.14
, pp. 5068-5076
-
-
Silver, I.A.1
Erecinska, M.2
-
18
-
-
84879784427
-
Metabolic signaling by lactate in the brain
-
Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013; 36: 396-404.
-
(2013)
Trends Neurosci
, vol.36
, pp. 396-404
-
-
Barros, L.F.1
-
19
-
-
84856354253
-
Sensing of glucose in the brain
-
Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol. 2012; 209: 277-94.
-
(2012)
Handb Exp Pharmacol
, vol.209
, pp. 277-294
-
-
Thorens, B.1
-
20
-
-
0016117621
-
Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG
-
Lewis LD, Ljunggren B, Ratcheson RA, et al. Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem. 1974; 23: 673-9.
-
(1974)
J Neurochem
, vol.23
, pp. 673-679
-
-
Lewis, L.D.1
Ljunggren, B.2
Ratcheson, R.A.3
-
21
-
-
0030915356
-
Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor
-
Shram NF, Netchiporouk LI, Martelet C, et al. Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor. NeuroReport. 1997; 8: 1109-12.
-
(1997)
NeuroReport
, vol.8
, pp. 1109-1112
-
-
Shram, N.F.1
Netchiporouk, L.I.2
Martelet, C.3
-
22
-
-
0023747694
-
Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats
-
Steffens AB, Scheurink AJ, Porte D Jr, et al. Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats. Am J Physiol. 1988; 255: R200-4.
-
(1988)
Am J Physiol
, vol.255
, pp. R200-R204
-
-
Steffens, A.B.1
Scheurink, A.J.2
Porte, D.3
-
23
-
-
0345142406
-
Carrier transport of glucose between blood and cerebrospinal fluid
-
Fishman RA. Carrier transport of glucose between blood and cerebrospinal fluid. Am J Physiol. 1964; 206: 836-44.
-
(1964)
Am J Physiol
, vol.206
, pp. 836-844
-
-
Fishman, R.A.1
-
24
-
-
84899666407
-
Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes
-
Salgado M, Tarifeno-Saldivia E, Ordenes P, et al. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS ONE. 2014; 9: e94035.
-
(2014)
PLoS ONE
, vol.9
, pp. e94035
-
-
Salgado, M.1
Tarifeno-Saldivia, E.2
Ordenes, P.3
-
25
-
-
0042303943
-
Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing
-
Garcia M, Millan C, Balmaceda-Aguilera C, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem. 2003; 86: 709-24.
-
(2003)
J Neurochem
, vol.86
, pp. 709-724
-
-
Garcia, M.1
Millan, C.2
Balmaceda-Aguilera, C.3
-
26
-
-
0000918467
-
Neuropeptides: regulators of physiological processes
-
Iversen L. Neuropeptides: regulators of physiological processes. Trends Neurosci. 1999; 22: 482.
-
(1999)
Trends Neurosci
, vol.22
, pp. 482
-
-
Iversen, L.1
-
27
-
-
0034005066
-
A second look at the barriers of the medial basal hypothalamus
-
Peruzzo B, Pastor FE, Blazquez JL, et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000; 132: 10-26.
-
(2000)
Exp Brain Res
, vol.132
, pp. 10-26
-
-
Peruzzo, B.1
Pastor, F.E.2
Blazquez, J.L.3
-
28
-
-
0029038308
-
Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes
-
Chauvet N, Parmentier ML, Alonso G. Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes. J Neurosci Res. 1995; 41: 129-44.
-
(1995)
J Neurosci Res
, vol.41
, pp. 129-144
-
-
Chauvet, N.1
Parmentier, M.L.2
Alonso, G.3
-
29
-
-
0022293260
-
Tanycytes: morphology and functions: a review
-
Flament-Durand J, Brion JP. Tanycytes: morphology and functions: a review. Int Rev Cytol. 1985; 96: 121-55.
-
(1985)
Int Rev Cytol
, vol.96
, pp. 121-155
-
-
Flament-Durand, J.1
Brion, J.P.2
-
30
-
-
84875883939
-
Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
-
Langlet F, Levin BE, Luquet S, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013; 17: 607-17.
-
(2013)
Cell Metab
, vol.17
, pp. 607-617
-
-
Langlet, F.1
Levin, B.E.2
Luquet, S.3
-
31
-
-
84880419521
-
Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain
-
Prevot V, Langlet F, Dehouck B. Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging (Albany NY). 2013; 5: 332-4.
-
(2013)
Aging (Albany NY)
, vol.5
, pp. 332-334
-
-
Prevot, V.1
Langlet, F.2
Dehouck, B.3
-
32
-
-
0018074265
-
Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons
-
Altman J, Bayer SA. Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J Comp Neurol. 1978; 182: 973-93.
-
(1978)
J Comp Neurol
, vol.182
, pp. 973-993
-
-
Altman, J.1
Bayer, S.A.2
-
33
-
-
0017754686
-
Morphological aspects of the hypothalamic-hypophyseal system. VII. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An ultrastructural study
-
Akmayev IG, Popov AP. Morphological aspects of the hypothalamic-hypophyseal system. VII. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An ultrastructural study. Cell Tissue Res. 1977; 180: 263-82.
-
(1977)
Cell Tissue Res
, vol.180
, pp. 263-282
-
-
Akmayev, I.G.1
Popov, A.P.2
-
34
-
-
0035140305
-
Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier
-
Garcia MA, Carrasco M, Godoy A, et al. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier. J Cell Biochem. 2001; 80: 491-503.
-
(2001)
J Cell Biochem
, vol.80
, pp. 491-503
-
-
Garcia, M.A.1
Carrasco, M.2
Godoy, A.3
-
35
-
-
84876865965
-
MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus
-
Cortes-Campos C, Elizondo R, Carril C, et al. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus. PLoS ONE. 2013; 8: e62532.
-
(2013)
PLoS ONE
, vol.8
, pp. e62532
-
-
Cortes-Campos, C.1
Elizondo, R.2
Carril, C.3
-
36
-
-
79551571718
-
MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction
-
Cortes-Campos C, Elizondo R, Llanos P, et al. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE. 2011; 6: e16411.
-
(2011)
PLoS ONE
, vol.6
, pp. e16411
-
-
Cortes-Campos, C.1
Elizondo, R.2
Llanos, P.3
-
37
-
-
84882865862
-
alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors
-
Robins SC, Stewart I, McNay DE, et al. alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun. 2013; 4: 2049.
-
(2013)
Nat Commun
, vol.4
, pp. 2049
-
-
Robins, S.C.1
Stewart, I.2
McNay, D.E.3
-
38
-
-
28944432319
-
Hypothalamic tanycytes: a key component of brain-endocrine interaction
-
Rodriguez EM, Blazquez JL, Pastor FE, et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol. 2005; 247: 89-164.
-
(2005)
Int Rev Cytol
, vol.247
, pp. 89-164
-
-
Rodriguez, E.M.1
Blazquez, J.L.2
Pastor, F.E.3
-
39
-
-
71949104669
-
Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus
-
Ciofi P, Garret M, Lapirot O, et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology. 2009; 150: 5509-19.
-
(2009)
Endocrinology
, vol.150
, pp. 5509-5519
-
-
Ciofi, P.1
Garret, M.2
Lapirot, O.3
-
40
-
-
84893434815
-
Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
-
Balland E, Dam J, Langlet F, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014; 19: 293-301.
-
(2014)
Cell Metab
, vol.19
, pp. 293-301
-
-
Balland, E.1
Dam, J.2
Langlet, F.3
-
41
-
-
85007137392
-
Tanycytes: a gateway to the metabolic hypothalamus
-
Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol. 2014; 26: 753-60.
-
(2014)
J Neuroendocrinol
, vol.26
, pp. 753-760
-
-
Langlet, F.1
-
42
-
-
0028296222
-
Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia
-
Borg WP, During MJ, Sherwin RS, et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest. 1994; 93: 1677-82.
-
(1994)
J Clin Invest
, vol.93
, pp. 1677-1682
-
-
Borg, W.P.1
During, M.J.2
Sherwin, R.S.3
-
43
-
-
0021717476
-
Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat
-
Leibowitz SF, Roossin P, Rosenn M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol Biochem Behav. 1984; 21: 801-8.
-
(1984)
Pharmacol Biochem Behav
, vol.21
, pp. 801-808
-
-
Leibowitz, S.F.1
Roossin, P.2
Rosenn, M.3
-
44
-
-
0000293983
-
Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats
-
Oomura Y, Kimura K, Ooyama H, et al. Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science. 1964; 143: 484-5.
-
(1964)
Science
, vol.143
, pp. 484-485
-
-
Oomura, Y.1
Kimura, K.2
Ooyama, H.3
-
45
-
-
0032829063
-
Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms
-
Yang XJ, Kow LM, Funabashi T, et al. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes. 1999; 48: 1763-72.
-
(1999)
Diabetes
, vol.48
, pp. 1763-1772
-
-
Yang, X.J.1
Kow, L.M.2
Funabashi, T.3
-
46
-
-
0021249617
-
Neural network of glucose monitoring system
-
Oomura Y, Yoshimatsu H. Neural network of glucose monitoring system. J Auton Nerv Syst. 1984; 10: 359-72.
-
(1984)
J Auton Nerv Syst
, vol.10
, pp. 359-372
-
-
Oomura, Y.1
Yoshimatsu, H.2
-
47
-
-
0347360368
-
Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose
-
Yang XJ, Kow LM, Pfaff DW, et al. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes. 2004; 53: 67-73.
-
(2004)
Diabetes
, vol.53
, pp. 67-73
-
-
Yang, X.J.1
Kow, L.M.2
Pfaff, D.W.3
-
49
-
-
2642641299
-
Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons
-
Silver IA, Erecinska M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J Neurophysiol. 1998; 79: 1733-45.
-
(1998)
J Neurophysiol
, vol.79
, pp. 1733-1745
-
-
Silver, I.A.1
Erecinska, M.2
-
50
-
-
3242765290
-
The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides
-
Wang R, Liu X, Hentges ST, et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes. 2004; 53: 1959-65.
-
(2004)
Diabetes
, vol.53
, pp. 1959-1965
-
-
Wang, R.1
Liu, X.2
Hentges, S.T.3
-
51
-
-
34248204584
-
Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks?
-
Fioramonti X, Contie S, Song Z, et al. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes. 2007; 56: 1219-27.
-
(2007)
Diabetes
, vol.56
, pp. 1219-1227
-
-
Fioramonti, X.1
Contie, S.2
Song, Z.3
-
53
-
-
0034611732
-
Central nervous system control of food intake
-
Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature. 2000; 404: 661-71.
-
(2000)
Nature
, vol.404
, pp. 661-671
-
-
Schwartz, M.W.1
Woods, S.C.2
Porte, D.3
-
54
-
-
0032576592
-
Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area
-
Elias CF, Saper CB, Maratos-Flier E, et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol. 1998; 402: 442-59.
-
(1998)
J Comp Neurol
, vol.402
, pp. 442-459
-
-
Elias, C.F.1
Saper, C.B.2
Maratos-Flier, E.3
-
55
-
-
0031906674
-
Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei
-
Elmquist JK, Ahima RS, Elias CF, et al. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA. 1998; 95: 741-6.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 741-746
-
-
Elmquist, J.K.1
Ahima, R.S.2
Elias, C.F.3
-
56
-
-
0033038418
-
Interacting appetite-regulating pathways in the hypothalamic regulation of body weight
-
Kalra SP, Dube MG, Pu S, et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999; 20: 68-100.
-
(1999)
Endocr Rev
, vol.20
, pp. 68-100
-
-
Kalra, S.P.1
Dube, M.G.2
Pu, S.3
-
57
-
-
0032492893
-
Hypothalamic CART is a new anorectic peptide regulated by leptin
-
Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998; 393: 72-6.
-
(1998)
Nature
, vol.393
, pp. 72-76
-
-
Kristensen, P.1
Judge, M.E.2
Thim, L.3
-
58
-
-
0032443807
-
The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice
-
Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998; 95: 15043-8.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 15043-15048
-
-
Broberger, C.1
Johansen, J.2
Johansson, C.3
-
59
-
-
0032130554
-
Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons
-
Hahn TM, Breininger JF, Baskin DG, et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998; 1: 271-2.
-
(1998)
Nat Neurosci
, vol.1
, pp. 271-272
-
-
Hahn, T.M.1
Breininger, J.F.2
Baskin, D.G.3
-
60
-
-
0033515710
-
Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y
-
Muroya S, Yada T, Shioda S, et al. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett. 1999; 264: 113-6.
-
(1999)
Neurosci Lett
, vol.264
, pp. 113-116
-
-
Muroya, S.1
Yada, T.2
Shioda, S.3
-
61
-
-
0037387207
-
Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels
-
Ibrahim N, Bosch MA, Smart JL, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology. 2003; 144: 1331-40.
-
(2003)
Endocrinology
, vol.144
, pp. 1331-1340
-
-
Ibrahim, N.1
Bosch, M.A.2
Smart, J.L.3
-
62
-
-
34548604499
-
Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity
-
Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449: 228-32.
-
(2007)
Nature
, vol.449
, pp. 228-232
-
-
Parton, L.E.1
Ye, C.P.2
Coppari, R.3
-
63
-
-
33745322219
-
Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding
-
Bady I, Marty N, Dallaporta M, et al. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes. 2006; 55: 988-95.
-
(2006)
Diabetes
, vol.55
, pp. 988-995
-
-
Bady, I.1
Marty, N.2
Dallaporta, M.3
-
64
-
-
15844371587
-
Hypothalamic responses to peripheral glucose infusion in food-restricted sheep are influenced by photoperiod
-
Archer ZA, Rhind SM, Findlay PA, et al. Hypothalamic responses to peripheral glucose infusion in food-restricted sheep are influenced by photoperiod. J Endocrinol. 2005; 184: 515-25.
-
(2005)
J Endocrinol
, vol.184
, pp. 515-525
-
-
Archer, Z.A.1
Rhind, S.M.2
Findlay, P.A.3
-
65
-
-
4644253021
-
Neuronal glucosensing: what do we know after 50 years?
-
Levin BE, Routh VH, Kang L, et al. Neuronal glucosensing: what do we know after 50 years? Diabetes. 2004; 53: 2521-8.
-
(2004)
Diabetes
, vol.53
, pp. 2521-2528
-
-
Levin, B.E.1
Routh, V.H.2
Kang, L.3
-
66
-
-
77956257822
-
Glial glucokinase expression in adult and post-natal development of the hypothalamic region
-
Millan C, Martinez F, Cortes-Campos C, et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro. 2010; 2: e00035.
-
(2010)
ASN Neuro
, vol.2
, pp. e00035
-
-
Millan, C.1
Martinez, F.2
Cortes-Campos, C.3
-
67
-
-
12144275681
-
Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus
-
Song Z, Routh VH. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 2005; 54: 15-22.
-
(2005)
Diabetes
, vol.54
, pp. 15-22
-
-
Song, Z.1
Routh, V.H.2
-
68
-
-
23244458439
-
Regulation of blood glucose by hypothalamic pyruvate metabolism
-
Lam TK, Gutierrez-Juarez R, Pocai A, et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005; 309: 943-7.
-
(2005)
Science
, vol.309
, pp. 943-947
-
-
Lam, T.K.1
Gutierrez-Juarez, R.2
Pocai, A.3
-
69
-
-
84873059273
-
Alteration of hypothalamic glucose and lactate sensing in 48 h hyperglycemic rats
-
Allard C, Carneiro L, Collins SC, et al. Alteration of hypothalamic glucose and lactate sensing in 48 h hyperglycemic rats. Neurosci Lett. 2013; 534: 75-9.
-
(2013)
Neurosci Lett
, vol.534
, pp. 75-79
-
-
Allard, C.1
Carneiro, L.2
Collins, S.C.3
-
70
-
-
0037107408
-
Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels
-
Ainscow EK, Mirshamsi S, Tang T, et al. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002; 544: 429-45.
-
(2002)
J Physiol
, vol.544
, pp. 429-445
-
-
Ainscow, E.K.1
Mirshamsi, S.2
Tang, T.3
-
71
-
-
0035909948
-
Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection
-
Almeida A, Almeida J, Bolanos JP, et al. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA. 2001; 98: 15294-9.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 15294-15299
-
-
Almeida, A.1
Almeida, J.2
Bolanos, J.P.3
-
72
-
-
64349109646
-
Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices
-
Barros LF, Courjaret R, Jakoby P, et al. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia. 2009; 57: 962-70.
-
(2009)
Glia
, vol.57
, pp. 962-970
-
-
Barros, L.F.1
Courjaret, R.2
Jakoby, P.3
-
73
-
-
33748896023
-
Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study
-
Bouzier-Sore AK, Voisin P, Bouchaud V, et al. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006; 24: 1687-94.
-
(2006)
Eur J Neurosci
, vol.24
, pp. 1687-1694
-
-
Bouzier-Sore, A.K.1
Voisin, P.2
Bouchaud, V.3
-
75
-
-
0032079447
-
Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study
-
Kacem K, Lacombe P, Seylaz J, et al. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia. 1998; 23: 1-10.
-
(1998)
Glia
, vol.23
, pp. 1-10
-
-
Kacem, K.1
Lacombe, P.2
Seylaz, J.3
-
76
-
-
0028080101
-
Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization
-
Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994; 91: 10625-9.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 10625-10629
-
-
Pellerin, L.1
Magistretti, P.J.2
-
77
-
-
0029009496
-
Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina
-
Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. 1995; 15: 5179-91.
-
(1995)
J Neurosci
, vol.15
, pp. 5179-5191
-
-
Poitry-Yamate, C.L.1
Poitry, S.2
Tsacopoulos, M.3
-
79
-
-
79956330533
-
In vivo evidence for lactate as a neuronal energy source
-
Wyss MT, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source. J Neurosci. 2011; 31: 7477-85.
-
(2011)
J Neurosci
, vol.31
, pp. 7477-7485
-
-
Wyss, M.T.1
Jolivet, R.2
Buck, A.3
-
80
-
-
79952305803
-
Astrocyte-neuron lactate transport is required for long-term memory formation
-
Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011; 144: 810-23.
-
(2011)
Cell
, vol.144
, pp. 810-823
-
-
Suzuki, A.1
Stern, S.A.2
Bozdagi, O.3
-
81
-
-
0035478762
-
Do active cerebral neurons really use lactate rather than glucose?
-
Chih C-P, Lipton P, Roberts EL Jr. Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci. 2001; 24: 573-8.
-
(2001)
Trends Neurosci
, vol.24
, pp. 573-578
-
-
Chih, C.-P.1
Lipton, P.2
Roberts, E.L.3
-
82
-
-
0033614973
-
Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging
-
Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999; 354: 1155-63.
-
(1999)
Philos Trans R Soc Lond B Biol Sci
, vol.354
, pp. 1155-1163
-
-
Magistretti, P.J.1
Pellerin, L.2
-
83
-
-
84908224824
-
The contribution of hypothalamic macroglia to the regulation of energy homeostasis
-
Buckman LB, Ellacott KL. The contribution of hypothalamic macroglia to the regulation of energy homeostasis. Front Syst Neurosci. 2014; 8: 212.
-
(2014)
Front Syst Neurosci
, vol.8
, pp. 212
-
-
Buckman, L.B.1
Ellacott, K.L.2
-
84
-
-
79959428713
-
Metabolic sensing and the brain: who, what, where, and how?
-
Levin BE, Magnan C, Dunn-Meynell A, et al. Metabolic sensing and the brain: who, what, where, and how? Endocrinology. 2011; 152: 2552-7.
-
(2011)
Endocrinology
, vol.152
, pp. 2552-2557
-
-
Levin, B.E.1
Magnan, C.2
Dunn-Meynell, A.3
-
85
-
-
0026596005
-
A new brain glucosensor and its physiological significance
-
Oomura Y, Sasaki K, Suzuki K, et al. A new brain glucosensor and its physiological significance. Am J Clin Nutr. 1992; 55: 278S-82S.
-
(1992)
Am J Clin Nutr
, vol.55
, pp. 278S-282S
-
-
Oomura, Y.1
Sasaki, K.2
Suzuki, K.3
-
87
-
-
81155138974
-
Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels
-
Orellana JA, Saez PJ, Cortes-Campos C, et al. Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia. 2012; 60: 53-68.
-
(2012)
Glia
, vol.60
, pp. 53-68
-
-
Orellana, J.A.1
Saez, P.J.2
Cortes-Campos, C.3
-
88
-
-
79953212635
-
ATP-mediated glucosensing by hypothalamic tanycytes
-
Frayling C, Britton R, Dale N. ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol. 2011; 589: 2275-86.
-
(2011)
J Physiol
, vol.589
, pp. 2275-2286
-
-
Frayling, C.1
Britton, R.2
Dale, N.3
-
89
-
-
84875183640
-
The SLC16 gene family - structure, role and regulation in health and disease
-
Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med. 2013; 34: 337-49.
-
(2013)
Mol Aspects Med
, vol.34
, pp. 337-349
-
-
Halestrap, A.P.1
-
90
-
-
84921449824
-
Monocarboxylate transporters: new players in body weight regulation
-
Carneiro L, Pellerin L. Monocarboxylate transporters: new players in body weight regulation. Obes Rev. 2015; 16: 55-66.
-
(2015)
Obes Rev
, vol.16
, pp. 55-66
-
-
Carneiro, L.1
Pellerin, L.2
-
91
-
-
0033569442
-
The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation
-
Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999; 343: 281-99.
-
(1999)
Biochem J
, vol.343
, pp. 281-299
-
-
Halestrap, A.P.1
Price, N.T.2
-
92
-
-
0034525940
-
Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle
-
Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol. 2000; 529: 285-93.
-
(2000)
J Physiol
, vol.529
, pp. 285-293
-
-
Manning Fox, J.E.1
Meredith, D.2
Halestrap, A.P.3
-
93
-
-
0242485280
-
Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain
-
Rafiki A, Boulland JL, Halestrap AP, et al. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience. 2003; 122: 677-88.
-
(2003)
Neuroscience
, vol.122
, pp. 677-688
-
-
Rafiki, A.1
Boulland, J.L.2
Halestrap, A.P.3
-
94
-
-
0034663601
-
The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
-
Dimmer KS, Friedrich B, Lang F, et al. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J. 2000; 350: 219-27.
-
(2000)
Biochem J
, vol.350
, pp. 219-227
-
-
Dimmer, K.S.1
Friedrich, B.2
Lang, F.3
-
95
-
-
12244262261
-
Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain
-
Pellerin L, Bergersen LH, Halestrap AP, et al. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res. 2005; 79: 55-64.
-
(2005)
J Neurosci Res
, vol.79
, pp. 55-64
-
-
Pellerin, L.1
Bergersen, L.H.2
Halestrap, A.P.3
-
96
-
-
34548359349
-
Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice
-
Pierre K, Parent A, Jayet PY, et al. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol. 2007; 583: 469-86.
-
(2007)
J Physiol
, vol.583
, pp. 469-486
-
-
Pierre, K.1
Parent, A.2
Jayet, P.Y.3
-
97
-
-
0035187234
-
Effects of lactate on glucose-sensing neurons in the solitary tract nucleus
-
Himmi T, Perrin J, Dallaporta M, et al. Effects of lactate on glucose-sensing neurons in the solitary tract nucleus. Physiol Behav. 2001; 74: 391-7.
-
(2001)
Physiol Behav
, vol.74
, pp. 391-397
-
-
Himmi, T.1
Perrin, J.2
Dallaporta, M.3
-
98
-
-
0027420730
-
The glucose transporter family: structure, function and tissue-specific expression
-
Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993; 295: 329-41.
-
(1993)
Biochem J
, vol.295
, pp. 329-341
-
-
Gould, G.W.1
Holman, G.D.2
-
99
-
-
84875135352
-
The SLC2 (GLUT) family of membrane transporters
-
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34: 121-38.
-
(2013)
Mol Aspects Med
, vol.34
, pp. 121-138
-
-
Mueckler, M.1
Thorens, B.2
-
100
-
-
78651349221
-
Biology of human sodium glucose transporters
-
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91: 733-94.
-
(2011)
Physiol Rev
, vol.91
, pp. 733-794
-
-
Wright, E.M.1
Loo, D.D.2
Hirayama, B.A.3
-
101
-
-
0025355977
-
Molecular biology of mammalian glucose transporters
-
Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990; 13: 198-208.
-
(1990)
Diabetes Care
, vol.13
, pp. 198-208
-
-
Bell, G.I.1
Kayano, T.2
Buse, J.B.3
-
103
-
-
33845516690
-
Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing
-
O'Malley D, Reimann F, Simpson AK, et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006; 55: 3381-6.
-
(2006)
Diabetes
, vol.55
, pp. 3381-3386
-
-
O'Malley, D.1
Reimann, F.2
Simpson, A.K.3
-
104
-
-
84873336411
-
Regional distribution of SGLT activity in rat brain in vivo
-
Yu AS, Hirayama BA, Timbol G, et al. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol. 2013; 304: C240-7.
-
(2013)
Am J Physiol Cell Physiol
, vol.304
, pp. C240-C247
-
-
Yu, A.S.1
Hirayama, B.A.2
Timbol, G.3
-
105
-
-
58149307894
-
Dissociation between sensing and metabolism of glucose in sugar sensing neurones
-
Gonzalez JA, Reimann F, Burdakov D. Dissociation between sensing and metabolism of glucose in sugar sensing neurones. J Physiol. 2009; 587: 41-8.
-
(2009)
J Physiol
, vol.587
, pp. 41-48
-
-
Gonzalez, J.A.1
Reimann, F.2
Burdakov, D.3
-
106
-
-
0141532690
-
A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line
-
Gribble FM, Williams L, Simpson AK, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003; 52: 1147-54.
-
(2003)
Diabetes
, vol.52
, pp. 1147-1154
-
-
Gribble, F.M.1
Williams, L.2
Simpson, A.K.3
-
107
-
-
0025218676
-
Effects of glucose, 2-deoxyglucose, phlorizin, and insulin on food intake of lean and fatty rats
-
Tsujii S, Bray GA. Effects of glucose, 2-deoxyglucose, phlorizin, and insulin on food intake of lean and fatty rats. Am J Physiol. 1990; 258: E476-81.
-
(1990)
Am J Physiol
, vol.258
, pp. E476-E481
-
-
Tsujii, S.1
Bray, G.A.2
-
109
-
-
1842734654
-
Glucose transporter expression in the central nervous system: relationship to synaptic function
-
McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004; 490: 13-24.
-
(2004)
Eur J Pharmacol
, vol.490
, pp. 13-24
-
-
McEwen, B.S.1
Reagan, L.P.2
-
110
-
-
0031238676
-
Glucose transporter proteins in brain: delivery of glucose to neurons and glia
-
Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997; 21: 2-21.
-
(1997)
Glia
, vol.21
, pp. 2-21
-
-
Vannucci, S.J.1
Maher, F.2
Simpson, I.A.3
-
111
-
-
0035805090
-
Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus
-
Ngarmukos C, Baur EL, Kumagai AK. Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res. 2001; 900: 1-8.
-
(2001)
Brain Res
, vol.900
, pp. 1-8
-
-
Ngarmukos, C.1
Baur, E.L.2
Kumagai, A.K.3
-
112
-
-
0029443909
-
Immunohistochemical localization of glucose transporters (GLUT1 and GLUT3) in the rat hypothalamus
-
Yu S, Tooyama I, Ding WG, et al. Immunohistochemical localization of glucose transporters (GLUT1 and GLUT3) in the rat hypothalamus. Obes Res. 1995; 3: 753S-76S.
-
(1995)
Obes Res
, vol.3
, pp. 753S-776S
-
-
Yu, S.1
Tooyama, I.2
Ding, W.G.3
-
113
-
-
0025655654
-
Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions
-
Harik SI, Kalaria RN, Andersson L, et al. Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J Neurosci. 1990; 10: 3862-72.
-
(1990)
J Neurosci
, vol.10
, pp. 3862-3872
-
-
Harik, S.I.1
Kalaria, R.N.2
Andersson, L.3
-
114
-
-
0027416149
-
Facilitated glucose transporters in epithelial cells
-
Thorens B. Facilitated glucose transporters in epithelial cells. Annu Rev Physiol. 1993; 55: 591-608.
-
(1993)
Annu Rev Physiol
, vol.55
, pp. 591-608
-
-
Thorens, B.1
-
115
-
-
0037205745
-
GLUT2 is a high affinity glucosamine transporter
-
Uldry M, Ibberson M, Hosokawa M, et al. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 2002; 524: 199-203.
-
(2002)
FEBS Lett
, vol.524
, pp. 199-203
-
-
Uldry, M.1
Ibberson, M.2
Hosokawa, M.3
-
116
-
-
78649962844
-
Brain fuel metabolism, aging, and Alzheimer's disease
-
Cunnane S, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition. 2011; 27: 3-20.
-
(2011)
Nutrition
, vol.27
, pp. 3-20
-
-
Cunnane, S.1
Nugent, S.2
Roy, M.3
-
117
-
-
84867812582
-
The role of glucose transporters in brain disease: diabetes and Alzheimer's disease
-
Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer's disease. Int J Mol Sci. 2012; 13: 12629-55.
-
(2012)
Int J Mol Sci
, vol.13
, pp. 12629-12655
-
-
Shah, K.1
Desilva, S.2
Abbruscato, T.3
-
118
-
-
0027536484
-
Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors
-
Colville CA, Seatter MJ, Jess TJ, et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993; 290: 701-6.
-
(1993)
Biochem J
, vol.290
, pp. 701-706
-
-
Colville, C.A.1
Seatter, M.J.2
Jess, T.J.3
-
119
-
-
0029912996
-
Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons
-
Maher F, Davies-Hill TM, Simpson IA. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J. 1996; 315(Pt 3): 827-31.
-
(1996)
Biochem J
, vol.315
, pp. 827-831
-
-
Maher, F.1
Davies-Hill, T.M.2
Simpson, I.A.3
-
120
-
-
34547624611
-
Supply and demand in cerebral energy metabolism: the role of nutrient transporters
-
Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007; 27: 1766-91.
-
(2007)
J Cereb Blood Flow Metab
, vol.27
, pp. 1766-1791
-
-
Simpson, I.A.1
Carruthers, A.2
Vannucci, S.J.3
-
121
-
-
1442276966
-
Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons
-
Kang L, Routh VH, Kuzhikandathil EV, et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes. 2004; 53: 549-59.
-
(2004)
Diabetes
, vol.53
, pp. 549-559
-
-
Kang, L.1
Routh, V.H.2
Kuzhikandathil, E.V.3
-
122
-
-
0025193356
-
The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence
-
Johnson JH, Newgard CB, Milburn JL, et al. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem. 1990; 265: 6548-51.
-
(1990)
J Biol Chem
, vol.265
, pp. 6548-6551
-
-
Johnson, J.H.1
Newgard, C.B.2
Milburn, J.L.3
-
123
-
-
0026437459
-
Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter
-
Thorens B. Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter. Int Rev Cytol. 1992; 137: 209-38.
-
(1992)
Int Rev Cytol
, vol.137
, pp. 209-238
-
-
Thorens, B.1
-
124
-
-
57349170894
-
Channel regulation of glucose sensing in the pancreatic beta-cell
-
Hiriart M, Aguilar-Bryan L. Channel regulation of glucose sensing in the pancreatic beta-cell. Am J Physiol Endocrinol Metab. 2008; 295: E1298-306.
-
(2008)
Am J Physiol Endocrinol Metab
, vol.295
, pp. E1298-E1306
-
-
Hiriart, M.1
Aguilar-Bryan, L.2
-
125
-
-
1442274941
-
Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain
-
Roncero I, Alvarez E, Chowen JA, et al. Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain. J Neurochem. 2004; 88: 1203-10.
-
(2004)
J Neurochem
, vol.88
, pp. 1203-1210
-
-
Roncero, I.1
Alvarez, E.2
Chowen, J.A.3
-
126
-
-
0038582455
-
Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR
-
Li B, Xi X, Roane DS, et al. Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res. 2003; 113: 139-42.
-
(2003)
Brain Res Mol Brain Res
, vol.113
, pp. 139-142
-
-
Li, B.1
Xi, X.2
Roane, D.S.3
-
127
-
-
77953502759
-
Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons
-
Mounien L, Marty N, Tarussio D, et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010; 24: 1747-58.
-
(2010)
FASEB J
, vol.24
, pp. 1747-1758
-
-
Mounien, L.1
Marty, N.2
Tarussio, D.3
-
128
-
-
5044231048
-
Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study
-
Arluison M, Quignon M, Nguyen P, et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J Chem Neuroanat. 2004; 28: 117-36.
-
(2004)
J Chem Neuroanat
, vol.28
, pp. 117-136
-
-
Arluison, M.1
Quignon, M.2
Nguyen, P.3
-
129
-
-
5044229137
-
Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study
-
Arluison M, Quignon M, Thorens B, et al. Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat. 2004; 28: 137-46.
-
(2004)
J Chem Neuroanat
, vol.28
, pp. 137-146
-
-
Arluison, M.1
Quignon, M.2
Thorens, B.3
-
130
-
-
31044444108
-
Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors
-
Marty N, Dallaporta M, Foretz M, et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest. 2005; 115: 3545-53.
-
(2005)
J Clin Invest
, vol.115
, pp. 3545-3553
-
-
Marty, N.1
Dallaporta, M.2
Foretz, M.3
-
131
-
-
2342510308
-
Third ventricular alloxan reversibly impairs glucose counterregulatory responses
-
Sanders NM, Dunn-Meynell AA, Levin BE. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes. 2004; 53: 1230-6.
-
(2004)
Diabetes
, vol.53
, pp. 1230-1236
-
-
Sanders, N.M.1
Dunn-Meynell, A.A.2
Levin, B.E.3
-
132
-
-
0033857373
-
Glucose uptake, utilization, and signaling in GLUT2-null islets
-
Guillam MT, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes. 2000; 49: 1485-91.
-
(2000)
Diabetes
, vol.49
, pp. 1485-1491
-
-
Guillam, M.T.1
Dupraz, P.2
Thorens, B.3
-
133
-
-
0030707689
-
Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2
-
Guillam MT, Hummler E, Schaerer E, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet. 1997; 17: 327-30.
-
(1997)
Nat Genet
, vol.17
, pp. 327-330
-
-
Guillam, M.T.1
Hummler, E.2
Schaerer, E.3
-
134
-
-
58149525327
-
Molecular physiology of mammalian glucokinase
-
Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci. 2009; 66: 27-42.
-
(2009)
Cell Mol Life Sci
, vol.66
, pp. 27-42
-
-
Iynedjian, P.B.1
-
135
-
-
0035157768
-
Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus
-
Schuit FC, Huypens P, Heimberg H, et al. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001; 50: 1-11.
-
(2001)
Diabetes
, vol.50
, pp. 1-11
-
-
Schuit, F.C.1
Huypens, P.2
Heimberg, H.3
-
136
-
-
0034090708
-
Functional glucokinase isoforms are expressed in rat brain
-
Roncero I, Alvarez E, Vazquez P, et al. Functional glucokinase isoforms are expressed in rat brain. J Neurochem. 2000; 74: 1848-57.
-
(2000)
J Neurochem
, vol.74
, pp. 1848-1857
-
-
Roncero, I.1
Alvarez, E.2
Vazquez, P.3
-
137
-
-
0027186032
-
Mammalian glucokinase and its gene
-
Iynedjian PB. Mammalian glucokinase and its gene. Biochem J. 1993; 293: 1-13.
-
(1993)
Biochem J
, vol.293
, pp. 1-13
-
-
Iynedjian, P.B.1
-
138
-
-
0028101926
-
Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut
-
Jetton TL, Liang Y, Pettepher CC, et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994; 269: 3641-54.
-
(1994)
J Biol Chem
, vol.269
, pp. 3641-3654
-
-
Jetton, T.L.1
Liang, Y.2
Pettepher, C.C.3
-
139
-
-
0036303140
-
Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons
-
Dunn-Meynell AA, Routh VH, Kang L, et al. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes. 2002; 51: 2056-65.
-
(2002)
Diabetes
, vol.51
, pp. 2056-2065
-
-
Dunn-Meynell, A.A.1
Routh, V.H.2
Kang, L.3
-
140
-
-
40449134788
-
Prior hypoglycemia enhances glucose responsiveness in some ventromedial hypothalamic glucosensing neurons
-
Kang L, Sanders NM, Dunn-Meynell AA, et al. Prior hypoglycemia enhances glucose responsiveness in some ventromedial hypothalamic glucosensing neurons. Am J Physiol Regul Integr Comp Physiol. 2008; 294: R784-92.
-
(2008)
Am J Physiol Regul Integr Comp Physiol
, vol.294
, pp. R784-R792
-
-
Kang, L.1
Sanders, N.M.2
Dunn-Meynell, A.A.3
-
141
-
-
33947400627
-
Glucokinase regulates reproductive function, glucocorticoid secretion, food intake, and hypothalamic gene expression
-
Yang XJ, Mastaitis J, Mizuno T, et al. Glucokinase regulates reproductive function, glucocorticoid secretion, food intake, and hypothalamic gene expression. Endocrinology. 2007; 148: 1928-32.
-
(2007)
Endocrinology
, vol.148
, pp. 1928-1932
-
-
Yang, X.J.1
Mastaitis, J.2
Mizuno, T.3
-
142
-
-
0025898418
-
Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells
-
Hughes SD, Quaade C, Milburn JL, et al. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J Biol Chem. 1991; 266: 4521-30.
-
(1991)
J Biol Chem
, vol.266
, pp. 4521-4530
-
-
Hughes, S.D.1
Quaade, C.2
Milburn, J.L.3
-
143
-
-
0025773360
-
Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary
-
Liang Y, Jetton TL, Zimmerman EC, et al. Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary. J Biol Chem. 1991; 266: 6999-7007.
-
(1991)
J Biol Chem
, vol.266
, pp. 6999-7007
-
-
Liang, Y.1
Jetton, T.L.2
Zimmerman, E.C.3
-
144
-
-
0035427865
-
Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood-brain barrier
-
Vorbrodt AW, Dobrogowska DH, Tarnawski M. Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood-brain barrier. J Neurocytol. 2001; 30: 705-16.
-
(2001)
J Neurocytol
, vol.30
, pp. 705-716
-
-
Vorbrodt, A.W.1
Dobrogowska, D.H.2
Tarnawski, M.3
-
145
-
-
0028858740
-
Changes in subcellular and zonal distribution of glucokinase in rat liver during postnatal development
-
Toyoda Y, Miwa I, Kamiya M, et al. Changes in subcellular and zonal distribution of glucokinase in rat liver during postnatal development. FEBS Lett. 1995; 359: 81-4.
-
(1995)
FEBS Lett
, vol.359
, pp. 81-84
-
-
Toyoda, Y.1
Miwa, I.2
Kamiya, M.3
-
146
-
-
0025341608
-
The mechanism by which rat liver glucokinase is inhibited by the regulatory protein
-
Vandercammen A, Van Schaftingen E. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur J Biochem. 1990; 191: 483-9.
-
(1990)
Eur J Biochem
, vol.191
, pp. 483-489
-
-
Vandercammen, A.1
Van Schaftingen, E.2
-
147
-
-
0025781602
-
Competitive inhibition of liver glucokinase by its regulatory protein
-
Vandercammen A, Van Schaftingen E. Competitive inhibition of liver glucokinase by its regulatory protein. Eur J Biochem. 1991; 200: 545-51.
-
(1991)
Eur J Biochem
, vol.200
, pp. 545-551
-
-
Vandercammen, A.1
Van Schaftingen, E.2
-
148
-
-
0036270340
-
Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain
-
Alvarez E, Roncero I, Chowen JA, et al. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain. J Neurochem. 2002; 80: 45-53.
-
(2002)
J Neurochem
, vol.80
, pp. 45-53
-
-
Alvarez, E.1
Roncero, I.2
Chowen, J.A.3
-
149
-
-
0034677787
-
Characterization of glucokinase regulatory protein-deficient mice
-
Grimsby J, Coffey JW, Dvorozniak MT, et al. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem. 2000; 275: 7826-31.
-
(2000)
J Biol Chem
, vol.275
, pp. 7826-7831
-
-
Grimsby, J.1
Coffey, J.W.2
Dvorozniak, M.T.3
-
150
-
-
0017325750
-
Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets
-
Zawalich WS, Matschinsky FM. Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets. Endocrinology. 1977; 100: 1-8.
-
(1977)
Endocrinology
, vol.100
, pp. 1-8
-
-
Zawalich, W.S.1
Matschinsky, F.M.2
-
151
-
-
0029093298
-
The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation
-
Agius L, Peak M, Van Schaftingen E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem J. 1995; 309: 711-3.
-
(1995)
Biochem J
, vol.309
, pp. 711-713
-
-
Agius, L.1
Peak, M.2
Van Schaftingen, E.3
-
152
-
-
0034616107
-
The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte
-
de la Iglesia N, Mukhtar M, Seoane J, et al. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem. 2000; 275: 10597-603.
-
(2000)
J Biol Chem
, vol.275
, pp. 10597-10603
-
-
de la Iglesia, N.1
Mukhtar, M.2
Seoane, J.3
-
153
-
-
0033601256
-
Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase
-
Shiota C, Coffey J, Grimsby J, et al. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem. 1999; 274: 37125-30.
-
(1999)
J Biol Chem
, vol.274
, pp. 37125-37130
-
-
Shiota, C.1
Coffey, J.2
Grimsby, J.3
-
154
-
-
84920367212
-
Glucokinase activity in the arcuate nucleus regulates glucose intake
-
Hussain S, Richardson E, Ma Y, et al. Glucokinase activity in the arcuate nucleus regulates glucose intake. J Clin Invest. 2015; 125: 337-49.
-
(2015)
J Clin Invest
, vol.125
, pp. 337-349
-
-
Hussain, S.1
Richardson, E.2
Ma, Y.3
-
155
-
-
0039351371
-
Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes
-
Broer S, Broer A, Schneider HP, et al. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J. 1999; 341: 529-35.
-
(1999)
Biochem J
, vol.341
, pp. 529-535
-
-
Broer, S.1
Broer, A.2
Schneider, H.P.3
-
156
-
-
0030774069
-
Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons
-
Broer S, Rahman B, Pellegri G, et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997; 272: 30096-102.
-
(1997)
J Biol Chem
, vol.272
, pp. 30096-30102
-
-
Broer, S.1
Rahman, B.2
Pellegri, G.3
-
157
-
-
0032127127
-
Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH
-
Broer S, Schneider HP, Broer A, et al. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998; 333: 167-74.
-
(1998)
Biochem J
, vol.333
, pp. 167-174
-
-
Broer, S.1
Schneider, H.P.2
Broer, A.3
-
158
-
-
0030837750
-
Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats
-
Gerhart DZ, Enerson BE, Zhdankina OY, et al. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997; 273: E207-13.
-
(1997)
Am J Physiol
, vol.273
, pp. E207-E213
-
-
Gerhart, D.Z.1
Enerson, B.E.2
Zhdankina, O.Y.3
-
159
-
-
0032031107
-
Expression of the monocarboxylate transporter MCT2 by rat brain glia
-
Gerhart DZ, Enerson BE, Zhdankina OY, et al. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia. 1998; 22: 272-81.
-
(1998)
Glia
, vol.22
, pp. 272-281
-
-
Gerhart, D.Z.1
Enerson, B.E.2
Zhdankina, O.Y.3
-
160
-
-
0034041755
-
Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo
-
Hanu R, McKenna M, O'Neill A, et al. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J Physiol Cell Physiol. 2000; 278: C921-30.
-
(2000)
Am J Physiol Cell Physiol
, vol.278
, pp. C921-C930
-
-
Hanu, R.1
McKenna, M.2
O'Neill, A.3
-
161
-
-
84864200035
-
Oligodendroglia metabolically support axons and contribute to neurodegeneration
-
Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012; 487: 443-8.
-
(2012)
Nature
, vol.487
, pp. 443-448
-
-
Lee, Y.1
Morrison, B.M.2
Li, Y.3
-
162
-
-
67649852319
-
Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells
-
Moreira TJ, Pierre K, Maekawa F, et al. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab. 2009; 29: 1273-83.
-
(2009)
J Cereb Blood Flow Metab
, vol.29
, pp. 1273-1283
-
-
Moreira, T.J.1
Pierre, K.2
Maekawa, F.3
-
163
-
-
78651473295
-
Regulation of oligodendrocyte development and myelination by glucose and lactate
-
Rinholm JE, Hamilton NB, Kessaris N, et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci. 2011; 31: 538-48.
-
(2011)
J Neurosci
, vol.31
, pp. 538-548
-
-
Rinholm, J.E.1
Hamilton, N.B.2
Kessaris, N.3
-
164
-
-
0035114149
-
A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses
-
Bergersen L, Waerhaug O, Helm J, et al. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res. 2001; 136: 523-34.
-
(2001)
Exp Brain Res
, vol.136
, pp. 523-534
-
-
Bergersen, L.1
Waerhaug, O.2
Helm, J.3
-
165
-
-
15244358180
-
Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking
-
Bergersen LH, Magistretti PJ, Pellerin L. Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex. 2005; 15: 361-70.
-
(2005)
Cereb Cortex
, vol.15
, pp. 361-370
-
-
Bergersen, L.H.1
Magistretti, P.J.2
Pellerin, L.3
-
166
-
-
21344444566
-
Monocarboxylate transporters in the central nervous system: distribution, regulation and function
-
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005; 94: 1-14.
-
(2005)
J Neurochem
, vol.94
, pp. 1-14
-
-
Pierre, K.1
Pellerin, L.2
-
167
-
-
0034721575
-
Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy
-
Pierre K, Pellerin L, Debernardi R, et al. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience. 2000; 100: 617-27.
-
(2000)
Neuroscience
, vol.100
, pp. 617-627
-
-
Pierre, K.1
Pellerin, L.2
Debernardi, R.3
-
168
-
-
0034622518
-
Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast
-
Grollman EF, Philp NJ, McPhie P, et al. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry. 2000; 39: 9351-7.
-
(2000)
Biochemistry
, vol.39
, pp. 9351-9357
-
-
Grollman, E.F.1
Philp, N.J.2
McPhie, P.3
-
169
-
-
0035030802
-
Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia
-
Philp NJ, Yoon H, Lombardi L. Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Cell Physiol. 2001; 280: C1319-26.
-
(2001)
Am J Physiol Cell Physiol
, vol.280
, pp. C1319-C1326
-
-
Philp, N.J.1
Yoon, H.2
Lombardi, L.3
-
170
-
-
0028605480
-
The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF
-
Carpenter L, Halestrap AP. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994; 304: 751-60.
-
(1994)
Biochem J
, vol.304
, pp. 751-760
-
-
Carpenter, L.1
Halestrap, A.P.2
-
171
-
-
66449128624
-
Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-l-thyronine
-
Ceballos A, Belinchon MM, Sanchez-Mendoza E, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3, 5, 3'-triiodo-l-thyronine. Endocrinology. 2009; 150: 2491-6.
-
(2009)
Endocrinology
, vol.150
, pp. 2491-2496
-
-
Ceballos, A.1
Belinchon, M.M.2
Sanchez-Mendoza, E.3
-
172
-
-
0141891099
-
Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter
-
Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003; 278: 40128-35.
-
(2003)
J Biol Chem
, vol.278
, pp. 40128-40135
-
-
Friesema, E.C.1
Ganguly, S.2
Abdalla, A.3
-
173
-
-
68049138998
-
Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome
-
Wirth EK, Roth S, Blechschmidt C, et al. Neuronal 3', 3, 5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci. 2009; 29: 9439-49.
-
(2009)
J Neurosci
, vol.29
, pp. 9439-9449
-
-
Wirth, E.K.1
Roth, S.2
Blechschmidt, C.3
|