메뉴 건너뛰기




Volumn 19, Issue 7, 2015, Pages 1471-1482

The role of tanycytes in hypothalamic glucosensing

Author keywords

Feeding behaviour; Glucokinase; Glucose transporters; Glucosensing; Hypothalamus; Lactate; Monocarboxylate transporters; Tanycytes

Indexed keywords

ALPHA METHYLGLUCOSIDE; COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT PEPTIDE; GLUCOKINASE; GLUCOSE TRANSPORTER 2; GLUCOSE TRANSPORTER 3; MONOCARBOXYLATE TRANSPORTER; MONOCARBOXYLATE TRANSPORTER 1; MONOCARBOXYLATE TRANSPORTER 2; MONOCARBOXYLATE TRANSPORTER 4; NEUROPEPTIDE Y; PHLORIZIN; SODIUM GLUCOSE COTRANSPORTER; GLUCOSE; GLUCOSE TRANSPORTER;

EID: 84933277884     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.12590     Document Type: Article
Times cited : (67)

References (173)
  • 2
    • 84958689411 scopus 로고
    • The role of depot fat in the hypothalamic control of food intake in the rat
    • Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953; 140: 578-96.
    • (1953) Proc R Soc Lond B Biol Sci , vol.140 , pp. 578-596
    • Kennedy, G.C.1
  • 3
    • 65449170818 scopus 로고    scopus 로고
    • Feeding behavior in mammals including humans
    • Magni P, Dozio E, Ruscica M, et al. Feeding behavior in mammals including humans. Ann N Y Acad Sci. 2009; 1163: 221-32.
    • (2009) Ann N Y Acad Sci , vol.1163 , pp. 221-232
    • Magni, P.1    Dozio, E.2    Ruscica, M.3
  • 4
    • 0029881125 scopus 로고    scopus 로고
    • Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans
    • Schwartz MW, Peskind E, Raskind M, et al. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med. 1996; 2: 589-93.
    • (1996) Nat Med , vol.2 , pp. 589-593
    • Schwartz, M.W.1    Peskind, E.2    Raskind, M.3
  • 5
    • 0018621289 scopus 로고
    • Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
    • Woods SC, Lotter EC, McKay LD, et al. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979; 282: 503-5.
    • (1979) Nature , vol.282 , pp. 503-505
    • Woods, S.C.1    Lotter, E.C.2    McKay, L.D.3
  • 6
    • 0017368491 scopus 로고
    • The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat
    • Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897-916.
    • (1977) J Neurochem , vol.28 , pp. 897-916
    • Sokoloff, L.1    Reivich, M.2    Kennedy, C.3
  • 8
    • 0000833791 scopus 로고
    • Mechanism of the development of obesity in animals with hypothalamic lesions
    • Brobeck JR. Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev. 1946; 26: 541-59.
    • (1946) Physiol Rev , vol.26 , pp. 541-559
    • Brobeck, J.R.1
  • 10
    • 84981834057 scopus 로고
    • The relation of various hypothalamic lesions to adiposity in the rat
    • Hetherington AW, Ranson SW. The relation of various hypothalamic lesions to adiposity in the rat. J Comp Neurol. 1942; 76: 475-99.
    • (1942) J Comp Neurol , vol.76 , pp. 475-499
    • Hetherington, A.W.1    Ranson, S.W.2
  • 11
    • 76949125582 scopus 로고
    • Hypothalamic control of food intake in rats and cats
    • Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med. 1951; 24: 123-40.
    • (1951) Yale J Biol Med , vol.24 , pp. 123-140
    • Anand, B.K.1    Brobeck, J.R.2
  • 12
    • 0002712310 scopus 로고
    • Glucostatic mechanism of regulation of food intake
    • Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953; 249: 13-6.
    • (1953) N Engl J Med , vol.249 , pp. 13-16
    • Mayer, J.1
  • 13
    • 0014683812 scopus 로고
    • Glucose and osmosensitive neurones of the rat hypothalamus
    • Oomura Y, Ono T, Ooyama H, et al. Glucose and osmosensitive neurones of the rat hypothalamus. Nature. 1969; 222: 282-4.
    • (1969) Nature , vol.222 , pp. 282-284
    • Oomura, Y.1    Ono, T.2    Ooyama, H.3
  • 14
    • 0242268888 scopus 로고    scopus 로고
    • Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia
    • de Vries MG, Arseneau LM, Lawson ME, et al. Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes. 2003; 52: 2767-73.
    • (2003) Diabetes , vol.52 , pp. 2767-2773
    • de Vries, M.G.1    Arseneau, L.M.2    Lawson, M.E.3
  • 15
    • 66149169972 scopus 로고    scopus 로고
    • Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding
    • Dunn-Meynell AA, Sanders NM, Compton D, et al. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci. 2009; 29: 7015-22.
    • (2009) J Neurosci , vol.29 , pp. 7015-7022
    • Dunn-Meynell, A.A.1    Sanders, N.M.2    Compton, D.3
  • 16
    • 0035706777 scopus 로고    scopus 로고
    • Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood
    • McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem. 2001; 75: 325-37.
    • (2001) Neurobiol Learn Mem , vol.75 , pp. 325-337
    • McNay, E.C.1    McCarty, R.C.2    Gold, P.E.3
  • 17
    • 0028101988 scopus 로고
    • Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals
    • Silver IA, Erecinska M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci. 1994; 14: 5068-76.
    • (1994) J Neurosci , vol.14 , pp. 5068-5076
    • Silver, I.A.1    Erecinska, M.2
  • 18
    • 84879784427 scopus 로고    scopus 로고
    • Metabolic signaling by lactate in the brain
    • Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013; 36: 396-404.
    • (2013) Trends Neurosci , vol.36 , pp. 396-404
    • Barros, L.F.1
  • 19
    • 84856354253 scopus 로고    scopus 로고
    • Sensing of glucose in the brain
    • Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol. 2012; 209: 277-94.
    • (2012) Handb Exp Pharmacol , vol.209 , pp. 277-294
    • Thorens, B.1
  • 20
    • 0016117621 scopus 로고
    • Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG
    • Lewis LD, Ljunggren B, Ratcheson RA, et al. Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem. 1974; 23: 673-9.
    • (1974) J Neurochem , vol.23 , pp. 673-679
    • Lewis, L.D.1    Ljunggren, B.2    Ratcheson, R.A.3
  • 21
    • 0030915356 scopus 로고    scopus 로고
    • Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor
    • Shram NF, Netchiporouk LI, Martelet C, et al. Brain glucose: voltammetric determination in normal and hyperglycaemic rats using a glucose microsensor. NeuroReport. 1997; 8: 1109-12.
    • (1997) NeuroReport , vol.8 , pp. 1109-1112
    • Shram, N.F.1    Netchiporouk, L.I.2    Martelet, C.3
  • 22
    • 0023747694 scopus 로고
    • Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats
    • Steffens AB, Scheurink AJ, Porte D Jr, et al. Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats. Am J Physiol. 1988; 255: R200-4.
    • (1988) Am J Physiol , vol.255 , pp. R200-R204
    • Steffens, A.B.1    Scheurink, A.J.2    Porte, D.3
  • 23
    • 0345142406 scopus 로고
    • Carrier transport of glucose between blood and cerebrospinal fluid
    • Fishman RA. Carrier transport of glucose between blood and cerebrospinal fluid. Am J Physiol. 1964; 206: 836-44.
    • (1964) Am J Physiol , vol.206 , pp. 836-844
    • Fishman, R.A.1
  • 24
    • 84899666407 scopus 로고    scopus 로고
    • Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes
    • Salgado M, Tarifeno-Saldivia E, Ordenes P, et al. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS ONE. 2014; 9: e94035.
    • (2014) PLoS ONE , vol.9 , pp. e94035
    • Salgado, M.1    Tarifeno-Saldivia, E.2    Ordenes, P.3
  • 25
    • 0042303943 scopus 로고    scopus 로고
    • Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing
    • Garcia M, Millan C, Balmaceda-Aguilera C, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem. 2003; 86: 709-24.
    • (2003) J Neurochem , vol.86 , pp. 709-724
    • Garcia, M.1    Millan, C.2    Balmaceda-Aguilera, C.3
  • 26
    • 0000918467 scopus 로고    scopus 로고
    • Neuropeptides: regulators of physiological processes
    • Iversen L. Neuropeptides: regulators of physiological processes. Trends Neurosci. 1999; 22: 482.
    • (1999) Trends Neurosci , vol.22 , pp. 482
    • Iversen, L.1
  • 27
    • 0034005066 scopus 로고    scopus 로고
    • A second look at the barriers of the medial basal hypothalamus
    • Peruzzo B, Pastor FE, Blazquez JL, et al. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000; 132: 10-26.
    • (2000) Exp Brain Res , vol.132 , pp. 10-26
    • Peruzzo, B.1    Pastor, F.E.2    Blazquez, J.L.3
  • 28
    • 0029038308 scopus 로고
    • Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes
    • Chauvet N, Parmentier ML, Alonso G. Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes. J Neurosci Res. 1995; 41: 129-44.
    • (1995) J Neurosci Res , vol.41 , pp. 129-144
    • Chauvet, N.1    Parmentier, M.L.2    Alonso, G.3
  • 29
    • 0022293260 scopus 로고
    • Tanycytes: morphology and functions: a review
    • Flament-Durand J, Brion JP. Tanycytes: morphology and functions: a review. Int Rev Cytol. 1985; 96: 121-55.
    • (1985) Int Rev Cytol , vol.96 , pp. 121-155
    • Flament-Durand, J.1    Brion, J.P.2
  • 30
    • 84875883939 scopus 로고    scopus 로고
    • Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
    • Langlet F, Levin BE, Luquet S, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013; 17: 607-17.
    • (2013) Cell Metab , vol.17 , pp. 607-617
    • Langlet, F.1    Levin, B.E.2    Luquet, S.3
  • 31
    • 84880419521 scopus 로고    scopus 로고
    • Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain
    • Prevot V, Langlet F, Dehouck B. Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging (Albany NY). 2013; 5: 332-4.
    • (2013) Aging (Albany NY) , vol.5 , pp. 332-334
    • Prevot, V.1    Langlet, F.2    Dehouck, B.3
  • 32
    • 0018074265 scopus 로고
    • Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons
    • Altman J, Bayer SA. Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J Comp Neurol. 1978; 182: 973-93.
    • (1978) J Comp Neurol , vol.182 , pp. 973-993
    • Altman, J.1    Bayer, S.A.2
  • 33
    • 0017754686 scopus 로고
    • Morphological aspects of the hypothalamic-hypophyseal system. VII. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An ultrastructural study
    • Akmayev IG, Popov AP. Morphological aspects of the hypothalamic-hypophyseal system. VII. The tanycytes: their relation to the hypophyseal adrenocorticotrophic function. An ultrastructural study. Cell Tissue Res. 1977; 180: 263-82.
    • (1977) Cell Tissue Res , vol.180 , pp. 263-282
    • Akmayev, I.G.1    Popov, A.P.2
  • 34
    • 0035140305 scopus 로고    scopus 로고
    • Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier
    • Garcia MA, Carrasco M, Godoy A, et al. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier. J Cell Biochem. 2001; 80: 491-503.
    • (2001) J Cell Biochem , vol.80 , pp. 491-503
    • Garcia, M.A.1    Carrasco, M.2    Godoy, A.3
  • 35
    • 84876865965 scopus 로고    scopus 로고
    • MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus
    • Cortes-Campos C, Elizondo R, Carril C, et al. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus. PLoS ONE. 2013; 8: e62532.
    • (2013) PLoS ONE , vol.8 , pp. e62532
    • Cortes-Campos, C.1    Elizondo, R.2    Carril, C.3
  • 36
    • 79551571718 scopus 로고    scopus 로고
    • MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction
    • Cortes-Campos C, Elizondo R, Llanos P, et al. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE. 2011; 6: e16411.
    • (2011) PLoS ONE , vol.6 , pp. e16411
    • Cortes-Campos, C.1    Elizondo, R.2    Llanos, P.3
  • 37
    • 84882865862 scopus 로고    scopus 로고
    • alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors
    • Robins SC, Stewart I, McNay DE, et al. alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun. 2013; 4: 2049.
    • (2013) Nat Commun , vol.4 , pp. 2049
    • Robins, S.C.1    Stewart, I.2    McNay, D.E.3
  • 38
    • 28944432319 scopus 로고    scopus 로고
    • Hypothalamic tanycytes: a key component of brain-endocrine interaction
    • Rodriguez EM, Blazquez JL, Pastor FE, et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol. 2005; 247: 89-164.
    • (2005) Int Rev Cytol , vol.247 , pp. 89-164
    • Rodriguez, E.M.1    Blazquez, J.L.2    Pastor, F.E.3
  • 39
    • 71949104669 scopus 로고    scopus 로고
    • Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus
    • Ciofi P, Garret M, Lapirot O, et al. Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus. Endocrinology. 2009; 150: 5509-19.
    • (2009) Endocrinology , vol.150 , pp. 5509-5519
    • Ciofi, P.1    Garret, M.2    Lapirot, O.3
  • 40
    • 84893434815 scopus 로고    scopus 로고
    • Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
    • Balland E, Dam J, Langlet F, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014; 19: 293-301.
    • (2014) Cell Metab , vol.19 , pp. 293-301
    • Balland, E.1    Dam, J.2    Langlet, F.3
  • 41
    • 85007137392 scopus 로고    scopus 로고
    • Tanycytes: a gateway to the metabolic hypothalamus
    • Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol. 2014; 26: 753-60.
    • (2014) J Neuroendocrinol , vol.26 , pp. 753-760
    • Langlet, F.1
  • 42
    • 0028296222 scopus 로고
    • Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia
    • Borg WP, During MJ, Sherwin RS, et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest. 1994; 93: 1677-82.
    • (1994) J Clin Invest , vol.93 , pp. 1677-1682
    • Borg, W.P.1    During, M.J.2    Sherwin, R.S.3
  • 43
    • 0021717476 scopus 로고
    • Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat
    • Leibowitz SF, Roossin P, Rosenn M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol Biochem Behav. 1984; 21: 801-8.
    • (1984) Pharmacol Biochem Behav , vol.21 , pp. 801-808
    • Leibowitz, S.F.1    Roossin, P.2    Rosenn, M.3
  • 44
    • 0000293983 scopus 로고
    • Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats
    • Oomura Y, Kimura K, Ooyama H, et al. Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science. 1964; 143: 484-5.
    • (1964) Science , vol.143 , pp. 484-485
    • Oomura, Y.1    Kimura, K.2    Ooyama, H.3
  • 45
    • 0032829063 scopus 로고    scopus 로고
    • Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms
    • Yang XJ, Kow LM, Funabashi T, et al. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes. 1999; 48: 1763-72.
    • (1999) Diabetes , vol.48 , pp. 1763-1772
    • Yang, X.J.1    Kow, L.M.2    Funabashi, T.3
  • 46
    • 0021249617 scopus 로고
    • Neural network of glucose monitoring system
    • Oomura Y, Yoshimatsu H. Neural network of glucose monitoring system. J Auton Nerv Syst. 1984; 10: 359-72.
    • (1984) J Auton Nerv Syst , vol.10 , pp. 359-372
    • Oomura, Y.1    Yoshimatsu, H.2
  • 47
    • 0347360368 scopus 로고    scopus 로고
    • Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose
    • Yang XJ, Kow LM, Pfaff DW, et al. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes. 2004; 53: 67-73.
    • (2004) Diabetes , vol.53 , pp. 67-73
    • Yang, X.J.1    Kow, L.M.2    Pfaff, D.W.3
  • 49
    • 2642641299 scopus 로고    scopus 로고
    • Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons
    • Silver IA, Erecinska M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J Neurophysiol. 1998; 79: 1733-45.
    • (1998) J Neurophysiol , vol.79 , pp. 1733-1745
    • Silver, I.A.1    Erecinska, M.2
  • 50
    • 3242765290 scopus 로고    scopus 로고
    • The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides
    • Wang R, Liu X, Hentges ST, et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes. 2004; 53: 1959-65.
    • (2004) Diabetes , vol.53 , pp. 1959-1965
    • Wang, R.1    Liu, X.2    Hentges, S.T.3
  • 51
    • 34248204584 scopus 로고    scopus 로고
    • Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks?
    • Fioramonti X, Contie S, Song Z, et al. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes. 2007; 56: 1219-27.
    • (2007) Diabetes , vol.56 , pp. 1219-1227
    • Fioramonti, X.1    Contie, S.2    Song, Z.3
  • 53
    • 0034611732 scopus 로고    scopus 로고
    • Central nervous system control of food intake
    • Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature. 2000; 404: 661-71.
    • (2000) Nature , vol.404 , pp. 661-671
    • Schwartz, M.W.1    Woods, S.C.2    Porte, D.3
  • 54
    • 0032576592 scopus 로고    scopus 로고
    • Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area
    • Elias CF, Saper CB, Maratos-Flier E, et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol. 1998; 402: 442-59.
    • (1998) J Comp Neurol , vol.402 , pp. 442-459
    • Elias, C.F.1    Saper, C.B.2    Maratos-Flier, E.3
  • 55
    • 0031906674 scopus 로고    scopus 로고
    • Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei
    • Elmquist JK, Ahima RS, Elias CF, et al. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA. 1998; 95: 741-6.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 741-746
    • Elmquist, J.K.1    Ahima, R.S.2    Elias, C.F.3
  • 56
    • 0033038418 scopus 로고    scopus 로고
    • Interacting appetite-regulating pathways in the hypothalamic regulation of body weight
    • Kalra SP, Dube MG, Pu S, et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999; 20: 68-100.
    • (1999) Endocr Rev , vol.20 , pp. 68-100
    • Kalra, S.P.1    Dube, M.G.2    Pu, S.3
  • 57
    • 0032492893 scopus 로고    scopus 로고
    • Hypothalamic CART is a new anorectic peptide regulated by leptin
    • Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998; 393: 72-6.
    • (1998) Nature , vol.393 , pp. 72-76
    • Kristensen, P.1    Judge, M.E.2    Thim, L.3
  • 58
    • 0032443807 scopus 로고    scopus 로고
    • The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice
    • Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998; 95: 15043-8.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 15043-15048
    • Broberger, C.1    Johansen, J.2    Johansson, C.3
  • 59
    • 0032130554 scopus 로고    scopus 로고
    • Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons
    • Hahn TM, Breininger JF, Baskin DG, et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998; 1: 271-2.
    • (1998) Nat Neurosci , vol.1 , pp. 271-272
    • Hahn, T.M.1    Breininger, J.F.2    Baskin, D.G.3
  • 60
    • 0033515710 scopus 로고    scopus 로고
    • Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y
    • Muroya S, Yada T, Shioda S, et al. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett. 1999; 264: 113-6.
    • (1999) Neurosci Lett , vol.264 , pp. 113-116
    • Muroya, S.1    Yada, T.2    Shioda, S.3
  • 61
    • 0037387207 scopus 로고    scopus 로고
    • Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels
    • Ibrahim N, Bosch MA, Smart JL, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology. 2003; 144: 1331-40.
    • (2003) Endocrinology , vol.144 , pp. 1331-1340
    • Ibrahim, N.1    Bosch, M.A.2    Smart, J.L.3
  • 62
    • 34548604499 scopus 로고    scopus 로고
    • Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity
    • Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449: 228-32.
    • (2007) Nature , vol.449 , pp. 228-232
    • Parton, L.E.1    Ye, C.P.2    Coppari, R.3
  • 63
    • 33745322219 scopus 로고    scopus 로고
    • Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding
    • Bady I, Marty N, Dallaporta M, et al. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes. 2006; 55: 988-95.
    • (2006) Diabetes , vol.55 , pp. 988-995
    • Bady, I.1    Marty, N.2    Dallaporta, M.3
  • 64
    • 15844371587 scopus 로고    scopus 로고
    • Hypothalamic responses to peripheral glucose infusion in food-restricted sheep are influenced by photoperiod
    • Archer ZA, Rhind SM, Findlay PA, et al. Hypothalamic responses to peripheral glucose infusion in food-restricted sheep are influenced by photoperiod. J Endocrinol. 2005; 184: 515-25.
    • (2005) J Endocrinol , vol.184 , pp. 515-525
    • Archer, Z.A.1    Rhind, S.M.2    Findlay, P.A.3
  • 65
    • 4644253021 scopus 로고    scopus 로고
    • Neuronal glucosensing: what do we know after 50 years?
    • Levin BE, Routh VH, Kang L, et al. Neuronal glucosensing: what do we know after 50 years? Diabetes. 2004; 53: 2521-8.
    • (2004) Diabetes , vol.53 , pp. 2521-2528
    • Levin, B.E.1    Routh, V.H.2    Kang, L.3
  • 66
    • 77956257822 scopus 로고    scopus 로고
    • Glial glucokinase expression in adult and post-natal development of the hypothalamic region
    • Millan C, Martinez F, Cortes-Campos C, et al. Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro. 2010; 2: e00035.
    • (2010) ASN Neuro , vol.2 , pp. e00035
    • Millan, C.1    Martinez, F.2    Cortes-Campos, C.3
  • 67
    • 12144275681 scopus 로고    scopus 로고
    • Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus
    • Song Z, Routh VH. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 2005; 54: 15-22.
    • (2005) Diabetes , vol.54 , pp. 15-22
    • Song, Z.1    Routh, V.H.2
  • 68
    • 23244458439 scopus 로고    scopus 로고
    • Regulation of blood glucose by hypothalamic pyruvate metabolism
    • Lam TK, Gutierrez-Juarez R, Pocai A, et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005; 309: 943-7.
    • (2005) Science , vol.309 , pp. 943-947
    • Lam, T.K.1    Gutierrez-Juarez, R.2    Pocai, A.3
  • 69
    • 84873059273 scopus 로고    scopus 로고
    • Alteration of hypothalamic glucose and lactate sensing in 48 h hyperglycemic rats
    • Allard C, Carneiro L, Collins SC, et al. Alteration of hypothalamic glucose and lactate sensing in 48 h hyperglycemic rats. Neurosci Lett. 2013; 534: 75-9.
    • (2013) Neurosci Lett , vol.534 , pp. 75-79
    • Allard, C.1    Carneiro, L.2    Collins, S.C.3
  • 70
    • 0037107408 scopus 로고    scopus 로고
    • Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels
    • Ainscow EK, Mirshamsi S, Tang T, et al. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002; 544: 429-45.
    • (2002) J Physiol , vol.544 , pp. 429-445
    • Ainscow, E.K.1    Mirshamsi, S.2    Tang, T.3
  • 71
    • 0035909948 scopus 로고    scopus 로고
    • Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection
    • Almeida A, Almeida J, Bolanos JP, et al. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA. 2001; 98: 15294-9.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15294-15299
    • Almeida, A.1    Almeida, J.2    Bolanos, J.P.3
  • 72
    • 64349109646 scopus 로고    scopus 로고
    • Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices
    • Barros LF, Courjaret R, Jakoby P, et al. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia. 2009; 57: 962-70.
    • (2009) Glia , vol.57 , pp. 962-970
    • Barros, L.F.1    Courjaret, R.2    Jakoby, P.3
  • 73
    • 33748896023 scopus 로고    scopus 로고
    • Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study
    • Bouzier-Sore AK, Voisin P, Bouchaud V, et al. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006; 24: 1687-94.
    • (2006) Eur J Neurosci , vol.24 , pp. 1687-1694
    • Bouzier-Sore, A.K.1    Voisin, P.2    Bouchaud, V.3
  • 75
    • 0032079447 scopus 로고    scopus 로고
    • Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study
    • Kacem K, Lacombe P, Seylaz J, et al. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia. 1998; 23: 1-10.
    • (1998) Glia , vol.23 , pp. 1-10
    • Kacem, K.1    Lacombe, P.2    Seylaz, J.3
  • 76
    • 0028080101 scopus 로고
    • Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization
    • Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994; 91: 10625-9.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 10625-10629
    • Pellerin, L.1    Magistretti, P.J.2
  • 77
    • 0029009496 scopus 로고
    • Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina
    • Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. 1995; 15: 5179-91.
    • (1995) J Neurosci , vol.15 , pp. 5179-5191
    • Poitry-Yamate, C.L.1    Poitry, S.2    Tsacopoulos, M.3
  • 79
    • 79956330533 scopus 로고    scopus 로고
    • In vivo evidence for lactate as a neuronal energy source
    • Wyss MT, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source. J Neurosci. 2011; 31: 7477-85.
    • (2011) J Neurosci , vol.31 , pp. 7477-7485
    • Wyss, M.T.1    Jolivet, R.2    Buck, A.3
  • 80
    • 79952305803 scopus 로고    scopus 로고
    • Astrocyte-neuron lactate transport is required for long-term memory formation
    • Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011; 144: 810-23.
    • (2011) Cell , vol.144 , pp. 810-823
    • Suzuki, A.1    Stern, S.A.2    Bozdagi, O.3
  • 81
    • 0035478762 scopus 로고    scopus 로고
    • Do active cerebral neurons really use lactate rather than glucose?
    • Chih C-P, Lipton P, Roberts EL Jr. Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci. 2001; 24: 573-8.
    • (2001) Trends Neurosci , vol.24 , pp. 573-578
    • Chih, C.-P.1    Lipton, P.2    Roberts, E.L.3
  • 82
    • 0033614973 scopus 로고    scopus 로고
    • Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging
    • Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999; 354: 1155-63.
    • (1999) Philos Trans R Soc Lond B Biol Sci , vol.354 , pp. 1155-1163
    • Magistretti, P.J.1    Pellerin, L.2
  • 83
    • 84908224824 scopus 로고    scopus 로고
    • The contribution of hypothalamic macroglia to the regulation of energy homeostasis
    • Buckman LB, Ellacott KL. The contribution of hypothalamic macroglia to the regulation of energy homeostasis. Front Syst Neurosci. 2014; 8: 212.
    • (2014) Front Syst Neurosci , vol.8 , pp. 212
    • Buckman, L.B.1    Ellacott, K.L.2
  • 84
    • 79959428713 scopus 로고    scopus 로고
    • Metabolic sensing and the brain: who, what, where, and how?
    • Levin BE, Magnan C, Dunn-Meynell A, et al. Metabolic sensing and the brain: who, what, where, and how? Endocrinology. 2011; 152: 2552-7.
    • (2011) Endocrinology , vol.152 , pp. 2552-2557
    • Levin, B.E.1    Magnan, C.2    Dunn-Meynell, A.3
  • 85
    • 0026596005 scopus 로고
    • A new brain glucosensor and its physiological significance
    • Oomura Y, Sasaki K, Suzuki K, et al. A new brain glucosensor and its physiological significance. Am J Clin Nutr. 1992; 55: 278S-82S.
    • (1992) Am J Clin Nutr , vol.55 , pp. 278S-282S
    • Oomura, Y.1    Sasaki, K.2    Suzuki, K.3
  • 86
  • 87
    • 81155138974 scopus 로고    scopus 로고
    • Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels
    • Orellana JA, Saez PJ, Cortes-Campos C, et al. Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia. 2012; 60: 53-68.
    • (2012) Glia , vol.60 , pp. 53-68
    • Orellana, J.A.1    Saez, P.J.2    Cortes-Campos, C.3
  • 88
    • 79953212635 scopus 로고    scopus 로고
    • ATP-mediated glucosensing by hypothalamic tanycytes
    • Frayling C, Britton R, Dale N. ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol. 2011; 589: 2275-86.
    • (2011) J Physiol , vol.589 , pp. 2275-2286
    • Frayling, C.1    Britton, R.2    Dale, N.3
  • 89
    • 84875183640 scopus 로고    scopus 로고
    • The SLC16 gene family - structure, role and regulation in health and disease
    • Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med. 2013; 34: 337-49.
    • (2013) Mol Aspects Med , vol.34 , pp. 337-349
    • Halestrap, A.P.1
  • 90
    • 84921449824 scopus 로고    scopus 로고
    • Monocarboxylate transporters: new players in body weight regulation
    • Carneiro L, Pellerin L. Monocarboxylate transporters: new players in body weight regulation. Obes Rev. 2015; 16: 55-66.
    • (2015) Obes Rev , vol.16 , pp. 55-66
    • Carneiro, L.1    Pellerin, L.2
  • 91
    • 0033569442 scopus 로고    scopus 로고
    • The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation
    • Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999; 343: 281-99.
    • (1999) Biochem J , vol.343 , pp. 281-299
    • Halestrap, A.P.1    Price, N.T.2
  • 92
    • 0034525940 scopus 로고    scopus 로고
    • Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle
    • Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol. 2000; 529: 285-93.
    • (2000) J Physiol , vol.529 , pp. 285-293
    • Manning Fox, J.E.1    Meredith, D.2    Halestrap, A.P.3
  • 93
    • 0242485280 scopus 로고    scopus 로고
    • Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain
    • Rafiki A, Boulland JL, Halestrap AP, et al. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience. 2003; 122: 677-88.
    • (2003) Neuroscience , vol.122 , pp. 677-688
    • Rafiki, A.1    Boulland, J.L.2    Halestrap, A.P.3
  • 94
    • 0034663601 scopus 로고    scopus 로고
    • The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
    • Dimmer KS, Friedrich B, Lang F, et al. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J. 2000; 350: 219-27.
    • (2000) Biochem J , vol.350 , pp. 219-227
    • Dimmer, K.S.1    Friedrich, B.2    Lang, F.3
  • 95
    • 12244262261 scopus 로고    scopus 로고
    • Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain
    • Pellerin L, Bergersen LH, Halestrap AP, et al. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res. 2005; 79: 55-64.
    • (2005) J Neurosci Res , vol.79 , pp. 55-64
    • Pellerin, L.1    Bergersen, L.H.2    Halestrap, A.P.3
  • 96
    • 34548359349 scopus 로고    scopus 로고
    • Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice
    • Pierre K, Parent A, Jayet PY, et al. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol. 2007; 583: 469-86.
    • (2007) J Physiol , vol.583 , pp. 469-486
    • Pierre, K.1    Parent, A.2    Jayet, P.Y.3
  • 97
    • 0035187234 scopus 로고    scopus 로고
    • Effects of lactate on glucose-sensing neurons in the solitary tract nucleus
    • Himmi T, Perrin J, Dallaporta M, et al. Effects of lactate on glucose-sensing neurons in the solitary tract nucleus. Physiol Behav. 2001; 74: 391-7.
    • (2001) Physiol Behav , vol.74 , pp. 391-397
    • Himmi, T.1    Perrin, J.2    Dallaporta, M.3
  • 98
    • 0027420730 scopus 로고
    • The glucose transporter family: structure, function and tissue-specific expression
    • Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993; 295: 329-41.
    • (1993) Biochem J , vol.295 , pp. 329-341
    • Gould, G.W.1    Holman, G.D.2
  • 99
    • 84875135352 scopus 로고    scopus 로고
    • The SLC2 (GLUT) family of membrane transporters
    • Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013; 34: 121-38.
    • (2013) Mol Aspects Med , vol.34 , pp. 121-138
    • Mueckler, M.1    Thorens, B.2
  • 100
    • 78651349221 scopus 로고    scopus 로고
    • Biology of human sodium glucose transporters
    • Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91: 733-94.
    • (2011) Physiol Rev , vol.91 , pp. 733-794
    • Wright, E.M.1    Loo, D.D.2    Hirayama, B.A.3
  • 101
    • 0025355977 scopus 로고
    • Molecular biology of mammalian glucose transporters
    • Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990; 13: 198-208.
    • (1990) Diabetes Care , vol.13 , pp. 198-208
    • Bell, G.I.1    Kayano, T.2    Buse, J.B.3
  • 103
    • 33845516690 scopus 로고    scopus 로고
    • Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing
    • O'Malley D, Reimann F, Simpson AK, et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006; 55: 3381-6.
    • (2006) Diabetes , vol.55 , pp. 3381-3386
    • O'Malley, D.1    Reimann, F.2    Simpson, A.K.3
  • 104
    • 84873336411 scopus 로고    scopus 로고
    • Regional distribution of SGLT activity in rat brain in vivo
    • Yu AS, Hirayama BA, Timbol G, et al. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol. 2013; 304: C240-7.
    • (2013) Am J Physiol Cell Physiol , vol.304 , pp. C240-C247
    • Yu, A.S.1    Hirayama, B.A.2    Timbol, G.3
  • 105
    • 58149307894 scopus 로고    scopus 로고
    • Dissociation between sensing and metabolism of glucose in sugar sensing neurones
    • Gonzalez JA, Reimann F, Burdakov D. Dissociation between sensing and metabolism of glucose in sugar sensing neurones. J Physiol. 2009; 587: 41-8.
    • (2009) J Physiol , vol.587 , pp. 41-48
    • Gonzalez, J.A.1    Reimann, F.2    Burdakov, D.3
  • 106
    • 0141532690 scopus 로고    scopus 로고
    • A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line
    • Gribble FM, Williams L, Simpson AK, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes. 2003; 52: 1147-54.
    • (2003) Diabetes , vol.52 , pp. 1147-1154
    • Gribble, F.M.1    Williams, L.2    Simpson, A.K.3
  • 107
    • 0025218676 scopus 로고
    • Effects of glucose, 2-deoxyglucose, phlorizin, and insulin on food intake of lean and fatty rats
    • Tsujii S, Bray GA. Effects of glucose, 2-deoxyglucose, phlorizin, and insulin on food intake of lean and fatty rats. Am J Physiol. 1990; 258: E476-81.
    • (1990) Am J Physiol , vol.258 , pp. E476-E481
    • Tsujii, S.1    Bray, G.A.2
  • 108
    • 0027970863 scopus 로고
    • Glucose transporter proteins in brain
    • Maher F, Vannucci SJ, Simpson IA. Glucose transporter proteins in brain. FASEB J. 1994; 8: 1003-11.
    • (1994) FASEB J , vol.8 , pp. 1003-1011
    • Maher, F.1    Vannucci, S.J.2    Simpson, I.A.3
  • 109
    • 1842734654 scopus 로고    scopus 로고
    • Glucose transporter expression in the central nervous system: relationship to synaptic function
    • McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004; 490: 13-24.
    • (2004) Eur J Pharmacol , vol.490 , pp. 13-24
    • McEwen, B.S.1    Reagan, L.P.2
  • 110
    • 0031238676 scopus 로고    scopus 로고
    • Glucose transporter proteins in brain: delivery of glucose to neurons and glia
    • Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia. 1997; 21: 2-21.
    • (1997) Glia , vol.21 , pp. 2-21
    • Vannucci, S.J.1    Maher, F.2    Simpson, I.A.3
  • 111
    • 0035805090 scopus 로고    scopus 로고
    • Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus
    • Ngarmukos C, Baur EL, Kumagai AK. Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res. 2001; 900: 1-8.
    • (2001) Brain Res , vol.900 , pp. 1-8
    • Ngarmukos, C.1    Baur, E.L.2    Kumagai, A.K.3
  • 112
    • 0029443909 scopus 로고
    • Immunohistochemical localization of glucose transporters (GLUT1 and GLUT3) in the rat hypothalamus
    • Yu S, Tooyama I, Ding WG, et al. Immunohistochemical localization of glucose transporters (GLUT1 and GLUT3) in the rat hypothalamus. Obes Res. 1995; 3: 753S-76S.
    • (1995) Obes Res , vol.3 , pp. 753S-776S
    • Yu, S.1    Tooyama, I.2    Ding, W.G.3
  • 113
    • 0025655654 scopus 로고
    • Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions
    • Harik SI, Kalaria RN, Andersson L, et al. Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J Neurosci. 1990; 10: 3862-72.
    • (1990) J Neurosci , vol.10 , pp. 3862-3872
    • Harik, S.I.1    Kalaria, R.N.2    Andersson, L.3
  • 114
    • 0027416149 scopus 로고
    • Facilitated glucose transporters in epithelial cells
    • Thorens B. Facilitated glucose transporters in epithelial cells. Annu Rev Physiol. 1993; 55: 591-608.
    • (1993) Annu Rev Physiol , vol.55 , pp. 591-608
    • Thorens, B.1
  • 115
    • 0037205745 scopus 로고    scopus 로고
    • GLUT2 is a high affinity glucosamine transporter
    • Uldry M, Ibberson M, Hosokawa M, et al. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 2002; 524: 199-203.
    • (2002) FEBS Lett , vol.524 , pp. 199-203
    • Uldry, M.1    Ibberson, M.2    Hosokawa, M.3
  • 116
    • 78649962844 scopus 로고    scopus 로고
    • Brain fuel metabolism, aging, and Alzheimer's disease
    • Cunnane S, Nugent S, Roy M, et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition. 2011; 27: 3-20.
    • (2011) Nutrition , vol.27 , pp. 3-20
    • Cunnane, S.1    Nugent, S.2    Roy, M.3
  • 117
    • 84867812582 scopus 로고    scopus 로고
    • The role of glucose transporters in brain disease: diabetes and Alzheimer's disease
    • Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer's disease. Int J Mol Sci. 2012; 13: 12629-55.
    • (2012) Int J Mol Sci , vol.13 , pp. 12629-12655
    • Shah, K.1    Desilva, S.2    Abbruscato, T.3
  • 118
    • 0027536484 scopus 로고
    • Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors
    • Colville CA, Seatter MJ, Jess TJ, et al. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993; 290: 701-6.
    • (1993) Biochem J , vol.290 , pp. 701-706
    • Colville, C.A.1    Seatter, M.J.2    Jess, T.J.3
  • 119
    • 0029912996 scopus 로고    scopus 로고
    • Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons
    • Maher F, Davies-Hill TM, Simpson IA. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J. 1996; 315(Pt 3): 827-31.
    • (1996) Biochem J , vol.315 , pp. 827-831
    • Maher, F.1    Davies-Hill, T.M.2    Simpson, I.A.3
  • 120
    • 34547624611 scopus 로고    scopus 로고
    • Supply and demand in cerebral energy metabolism: the role of nutrient transporters
    • Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007; 27: 1766-91.
    • (2007) J Cereb Blood Flow Metab , vol.27 , pp. 1766-1791
    • Simpson, I.A.1    Carruthers, A.2    Vannucci, S.J.3
  • 121
    • 1442276966 scopus 로고    scopus 로고
    • Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons
    • Kang L, Routh VH, Kuzhikandathil EV, et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes. 2004; 53: 549-59.
    • (2004) Diabetes , vol.53 , pp. 549-559
    • Kang, L.1    Routh, V.H.2    Kuzhikandathil, E.V.3
  • 122
    • 0025193356 scopus 로고
    • The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence
    • Johnson JH, Newgard CB, Milburn JL, et al. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem. 1990; 265: 6548-51.
    • (1990) J Biol Chem , vol.265 , pp. 6548-6551
    • Johnson, J.H.1    Newgard, C.B.2    Milburn, J.L.3
  • 123
    • 0026437459 scopus 로고
    • Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter
    • Thorens B. Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter. Int Rev Cytol. 1992; 137: 209-38.
    • (1992) Int Rev Cytol , vol.137 , pp. 209-238
    • Thorens, B.1
  • 124
    • 57349170894 scopus 로고    scopus 로고
    • Channel regulation of glucose sensing in the pancreatic beta-cell
    • Hiriart M, Aguilar-Bryan L. Channel regulation of glucose sensing in the pancreatic beta-cell. Am J Physiol Endocrinol Metab. 2008; 295: E1298-306.
    • (2008) Am J Physiol Endocrinol Metab , vol.295 , pp. E1298-E1306
    • Hiriart, M.1    Aguilar-Bryan, L.2
  • 125
    • 1442274941 scopus 로고    scopus 로고
    • Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain
    • Roncero I, Alvarez E, Chowen JA, et al. Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain. J Neurochem. 2004; 88: 1203-10.
    • (2004) J Neurochem , vol.88 , pp. 1203-1210
    • Roncero, I.1    Alvarez, E.2    Chowen, J.A.3
  • 126
    • 0038582455 scopus 로고    scopus 로고
    • Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR
    • Li B, Xi X, Roane DS, et al. Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res. 2003; 113: 139-42.
    • (2003) Brain Res Mol Brain Res , vol.113 , pp. 139-142
    • Li, B.1    Xi, X.2    Roane, D.S.3
  • 127
    • 77953502759 scopus 로고    scopus 로고
    • Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons
    • Mounien L, Marty N, Tarussio D, et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010; 24: 1747-58.
    • (2010) FASEB J , vol.24 , pp. 1747-1758
    • Mounien, L.1    Marty, N.2    Tarussio, D.3
  • 128
    • 5044231048 scopus 로고    scopus 로고
    • Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study
    • Arluison M, Quignon M, Nguyen P, et al. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J Chem Neuroanat. 2004; 28: 117-36.
    • (2004) J Chem Neuroanat , vol.28 , pp. 117-136
    • Arluison, M.1    Quignon, M.2    Nguyen, P.3
  • 129
    • 5044229137 scopus 로고    scopus 로고
    • Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study
    • Arluison M, Quignon M, Thorens B, et al. Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat. 2004; 28: 137-46.
    • (2004) J Chem Neuroanat , vol.28 , pp. 137-146
    • Arluison, M.1    Quignon, M.2    Thorens, B.3
  • 130
    • 31044444108 scopus 로고    scopus 로고
    • Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors
    • Marty N, Dallaporta M, Foretz M, et al. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest. 2005; 115: 3545-53.
    • (2005) J Clin Invest , vol.115 , pp. 3545-3553
    • Marty, N.1    Dallaporta, M.2    Foretz, M.3
  • 131
    • 2342510308 scopus 로고    scopus 로고
    • Third ventricular alloxan reversibly impairs glucose counterregulatory responses
    • Sanders NM, Dunn-Meynell AA, Levin BE. Third ventricular alloxan reversibly impairs glucose counterregulatory responses. Diabetes. 2004; 53: 1230-6.
    • (2004) Diabetes , vol.53 , pp. 1230-1236
    • Sanders, N.M.1    Dunn-Meynell, A.A.2    Levin, B.E.3
  • 132
    • 0033857373 scopus 로고    scopus 로고
    • Glucose uptake, utilization, and signaling in GLUT2-null islets
    • Guillam MT, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes. 2000; 49: 1485-91.
    • (2000) Diabetes , vol.49 , pp. 1485-1491
    • Guillam, M.T.1    Dupraz, P.2    Thorens, B.3
  • 133
    • 0030707689 scopus 로고    scopus 로고
    • Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2
    • Guillam MT, Hummler E, Schaerer E, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet. 1997; 17: 327-30.
    • (1997) Nat Genet , vol.17 , pp. 327-330
    • Guillam, M.T.1    Hummler, E.2    Schaerer, E.3
  • 134
    • 58149525327 scopus 로고    scopus 로고
    • Molecular physiology of mammalian glucokinase
    • Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci. 2009; 66: 27-42.
    • (2009) Cell Mol Life Sci , vol.66 , pp. 27-42
    • Iynedjian, P.B.1
  • 135
    • 0035157768 scopus 로고    scopus 로고
    • Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus
    • Schuit FC, Huypens P, Heimberg H, et al. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001; 50: 1-11.
    • (2001) Diabetes , vol.50 , pp. 1-11
    • Schuit, F.C.1    Huypens, P.2    Heimberg, H.3
  • 136
    • 0034090708 scopus 로고    scopus 로고
    • Functional glucokinase isoforms are expressed in rat brain
    • Roncero I, Alvarez E, Vazquez P, et al. Functional glucokinase isoforms are expressed in rat brain. J Neurochem. 2000; 74: 1848-57.
    • (2000) J Neurochem , vol.74 , pp. 1848-1857
    • Roncero, I.1    Alvarez, E.2    Vazquez, P.3
  • 137
    • 0027186032 scopus 로고
    • Mammalian glucokinase and its gene
    • Iynedjian PB. Mammalian glucokinase and its gene. Biochem J. 1993; 293: 1-13.
    • (1993) Biochem J , vol.293 , pp. 1-13
    • Iynedjian, P.B.1
  • 138
    • 0028101926 scopus 로고
    • Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut
    • Jetton TL, Liang Y, Pettepher CC, et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994; 269: 3641-54.
    • (1994) J Biol Chem , vol.269 , pp. 3641-3654
    • Jetton, T.L.1    Liang, Y.2    Pettepher, C.C.3
  • 139
    • 0036303140 scopus 로고    scopus 로고
    • Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons
    • Dunn-Meynell AA, Routh VH, Kang L, et al. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes. 2002; 51: 2056-65.
    • (2002) Diabetes , vol.51 , pp. 2056-2065
    • Dunn-Meynell, A.A.1    Routh, V.H.2    Kang, L.3
  • 140
    • 40449134788 scopus 로고    scopus 로고
    • Prior hypoglycemia enhances glucose responsiveness in some ventromedial hypothalamic glucosensing neurons
    • Kang L, Sanders NM, Dunn-Meynell AA, et al. Prior hypoglycemia enhances glucose responsiveness in some ventromedial hypothalamic glucosensing neurons. Am J Physiol Regul Integr Comp Physiol. 2008; 294: R784-92.
    • (2008) Am J Physiol Regul Integr Comp Physiol , vol.294 , pp. R784-R792
    • Kang, L.1    Sanders, N.M.2    Dunn-Meynell, A.A.3
  • 141
    • 33947400627 scopus 로고    scopus 로고
    • Glucokinase regulates reproductive function, glucocorticoid secretion, food intake, and hypothalamic gene expression
    • Yang XJ, Mastaitis J, Mizuno T, et al. Glucokinase regulates reproductive function, glucocorticoid secretion, food intake, and hypothalamic gene expression. Endocrinology. 2007; 148: 1928-32.
    • (2007) Endocrinology , vol.148 , pp. 1928-1932
    • Yang, X.J.1    Mastaitis, J.2    Mizuno, T.3
  • 142
    • 0025898418 scopus 로고
    • Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells
    • Hughes SD, Quaade C, Milburn JL, et al. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J Biol Chem. 1991; 266: 4521-30.
    • (1991) J Biol Chem , vol.266 , pp. 4521-4530
    • Hughes, S.D.1    Quaade, C.2    Milburn, J.L.3
  • 143
    • 0025773360 scopus 로고
    • Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary
    • Liang Y, Jetton TL, Zimmerman EC, et al. Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary. J Biol Chem. 1991; 266: 6999-7007.
    • (1991) J Biol Chem , vol.266 , pp. 6999-7007
    • Liang, Y.1    Jetton, T.L.2    Zimmerman, E.C.3
  • 144
    • 0035427865 scopus 로고    scopus 로고
    • Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood-brain barrier
    • Vorbrodt AW, Dobrogowska DH, Tarnawski M. Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood-brain barrier. J Neurocytol. 2001; 30: 705-16.
    • (2001) J Neurocytol , vol.30 , pp. 705-716
    • Vorbrodt, A.W.1    Dobrogowska, D.H.2    Tarnawski, M.3
  • 145
    • 0028858740 scopus 로고
    • Changes in subcellular and zonal distribution of glucokinase in rat liver during postnatal development
    • Toyoda Y, Miwa I, Kamiya M, et al. Changes in subcellular and zonal distribution of glucokinase in rat liver during postnatal development. FEBS Lett. 1995; 359: 81-4.
    • (1995) FEBS Lett , vol.359 , pp. 81-84
    • Toyoda, Y.1    Miwa, I.2    Kamiya, M.3
  • 146
    • 0025341608 scopus 로고
    • The mechanism by which rat liver glucokinase is inhibited by the regulatory protein
    • Vandercammen A, Van Schaftingen E. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur J Biochem. 1990; 191: 483-9.
    • (1990) Eur J Biochem , vol.191 , pp. 483-489
    • Vandercammen, A.1    Van Schaftingen, E.2
  • 147
    • 0025781602 scopus 로고
    • Competitive inhibition of liver glucokinase by its regulatory protein
    • Vandercammen A, Van Schaftingen E. Competitive inhibition of liver glucokinase by its regulatory protein. Eur J Biochem. 1991; 200: 545-51.
    • (1991) Eur J Biochem , vol.200 , pp. 545-551
    • Vandercammen, A.1    Van Schaftingen, E.2
  • 148
    • 0036270340 scopus 로고    scopus 로고
    • Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain
    • Alvarez E, Roncero I, Chowen JA, et al. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain. J Neurochem. 2002; 80: 45-53.
    • (2002) J Neurochem , vol.80 , pp. 45-53
    • Alvarez, E.1    Roncero, I.2    Chowen, J.A.3
  • 149
    • 0034677787 scopus 로고    scopus 로고
    • Characterization of glucokinase regulatory protein-deficient mice
    • Grimsby J, Coffey JW, Dvorozniak MT, et al. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem. 2000; 275: 7826-31.
    • (2000) J Biol Chem , vol.275 , pp. 7826-7831
    • Grimsby, J.1    Coffey, J.W.2    Dvorozniak, M.T.3
  • 150
    • 0017325750 scopus 로고
    • Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets
    • Zawalich WS, Matschinsky FM. Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets. Endocrinology. 1977; 100: 1-8.
    • (1977) Endocrinology , vol.100 , pp. 1-8
    • Zawalich, W.S.1    Matschinsky, F.M.2
  • 151
    • 0029093298 scopus 로고
    • The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation
    • Agius L, Peak M, Van Schaftingen E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem J. 1995; 309: 711-3.
    • (1995) Biochem J , vol.309 , pp. 711-713
    • Agius, L.1    Peak, M.2    Van Schaftingen, E.3
  • 152
    • 0034616107 scopus 로고    scopus 로고
    • The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte
    • de la Iglesia N, Mukhtar M, Seoane J, et al. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem. 2000; 275: 10597-603.
    • (2000) J Biol Chem , vol.275 , pp. 10597-10603
    • de la Iglesia, N.1    Mukhtar, M.2    Seoane, J.3
  • 153
    • 0033601256 scopus 로고    scopus 로고
    • Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase
    • Shiota C, Coffey J, Grimsby J, et al. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem. 1999; 274: 37125-30.
    • (1999) J Biol Chem , vol.274 , pp. 37125-37130
    • Shiota, C.1    Coffey, J.2    Grimsby, J.3
  • 154
    • 84920367212 scopus 로고    scopus 로고
    • Glucokinase activity in the arcuate nucleus regulates glucose intake
    • Hussain S, Richardson E, Ma Y, et al. Glucokinase activity in the arcuate nucleus regulates glucose intake. J Clin Invest. 2015; 125: 337-49.
    • (2015) J Clin Invest , vol.125 , pp. 337-349
    • Hussain, S.1    Richardson, E.2    Ma, Y.3
  • 155
    • 0039351371 scopus 로고    scopus 로고
    • Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes
    • Broer S, Broer A, Schneider HP, et al. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J. 1999; 341: 529-35.
    • (1999) Biochem J , vol.341 , pp. 529-535
    • Broer, S.1    Broer, A.2    Schneider, H.P.3
  • 156
    • 0030774069 scopus 로고    scopus 로고
    • Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons
    • Broer S, Rahman B, Pellegri G, et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997; 272: 30096-102.
    • (1997) J Biol Chem , vol.272 , pp. 30096-30102
    • Broer, S.1    Rahman, B.2    Pellegri, G.3
  • 157
    • 0032127127 scopus 로고    scopus 로고
    • Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH
    • Broer S, Schneider HP, Broer A, et al. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998; 333: 167-74.
    • (1998) Biochem J , vol.333 , pp. 167-174
    • Broer, S.1    Schneider, H.P.2    Broer, A.3
  • 158
    • 0030837750 scopus 로고    scopus 로고
    • Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats
    • Gerhart DZ, Enerson BE, Zhdankina OY, et al. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997; 273: E207-13.
    • (1997) Am J Physiol , vol.273 , pp. E207-E213
    • Gerhart, D.Z.1    Enerson, B.E.2    Zhdankina, O.Y.3
  • 159
    • 0032031107 scopus 로고    scopus 로고
    • Expression of the monocarboxylate transporter MCT2 by rat brain glia
    • Gerhart DZ, Enerson BE, Zhdankina OY, et al. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia. 1998; 22: 272-81.
    • (1998) Glia , vol.22 , pp. 272-281
    • Gerhart, D.Z.1    Enerson, B.E.2    Zhdankina, O.Y.3
  • 160
    • 0034041755 scopus 로고    scopus 로고
    • Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo
    • Hanu R, McKenna M, O'Neill A, et al. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J Physiol Cell Physiol. 2000; 278: C921-30.
    • (2000) Am J Physiol Cell Physiol , vol.278 , pp. C921-C930
    • Hanu, R.1    McKenna, M.2    O'Neill, A.3
  • 161
    • 84864200035 scopus 로고    scopus 로고
    • Oligodendroglia metabolically support axons and contribute to neurodegeneration
    • Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012; 487: 443-8.
    • (2012) Nature , vol.487 , pp. 443-448
    • Lee, Y.1    Morrison, B.M.2    Li, Y.3
  • 162
    • 67649852319 scopus 로고    scopus 로고
    • Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells
    • Moreira TJ, Pierre K, Maekawa F, et al. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab. 2009; 29: 1273-83.
    • (2009) J Cereb Blood Flow Metab , vol.29 , pp. 1273-1283
    • Moreira, T.J.1    Pierre, K.2    Maekawa, F.3
  • 163
    • 78651473295 scopus 로고    scopus 로고
    • Regulation of oligodendrocyte development and myelination by glucose and lactate
    • Rinholm JE, Hamilton NB, Kessaris N, et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci. 2011; 31: 538-48.
    • (2011) J Neurosci , vol.31 , pp. 538-548
    • Rinholm, J.E.1    Hamilton, N.B.2    Kessaris, N.3
  • 164
    • 0035114149 scopus 로고    scopus 로고
    • A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses
    • Bergersen L, Waerhaug O, Helm J, et al. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res. 2001; 136: 523-34.
    • (2001) Exp Brain Res , vol.136 , pp. 523-534
    • Bergersen, L.1    Waerhaug, O.2    Helm, J.3
  • 165
    • 15244358180 scopus 로고    scopus 로고
    • Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking
    • Bergersen LH, Magistretti PJ, Pellerin L. Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex. 2005; 15: 361-70.
    • (2005) Cereb Cortex , vol.15 , pp. 361-370
    • Bergersen, L.H.1    Magistretti, P.J.2    Pellerin, L.3
  • 166
    • 21344444566 scopus 로고    scopus 로고
    • Monocarboxylate transporters in the central nervous system: distribution, regulation and function
    • Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005; 94: 1-14.
    • (2005) J Neurochem , vol.94 , pp. 1-14
    • Pierre, K.1    Pellerin, L.2
  • 167
    • 0034721575 scopus 로고    scopus 로고
    • Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy
    • Pierre K, Pellerin L, Debernardi R, et al. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience. 2000; 100: 617-27.
    • (2000) Neuroscience , vol.100 , pp. 617-627
    • Pierre, K.1    Pellerin, L.2    Debernardi, R.3
  • 168
    • 0034622518 scopus 로고    scopus 로고
    • Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast
    • Grollman EF, Philp NJ, McPhie P, et al. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry. 2000; 39: 9351-7.
    • (2000) Biochemistry , vol.39 , pp. 9351-9357
    • Grollman, E.F.1    Philp, N.J.2    McPhie, P.3
  • 169
    • 0035030802 scopus 로고    scopus 로고
    • Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia
    • Philp NJ, Yoon H, Lombardi L. Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Cell Physiol. 2001; 280: C1319-26.
    • (2001) Am J Physiol Cell Physiol , vol.280 , pp. C1319-C1326
    • Philp, N.J.1    Yoon, H.2    Lombardi, L.3
  • 170
    • 0028605480 scopus 로고
    • The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF
    • Carpenter L, Halestrap AP. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994; 304: 751-60.
    • (1994) Biochem J , vol.304 , pp. 751-760
    • Carpenter, L.1    Halestrap, A.P.2
  • 171
    • 66449128624 scopus 로고    scopus 로고
    • Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-l-thyronine
    • Ceballos A, Belinchon MM, Sanchez-Mendoza E, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3, 5, 3'-triiodo-l-thyronine. Endocrinology. 2009; 150: 2491-6.
    • (2009) Endocrinology , vol.150 , pp. 2491-2496
    • Ceballos, A.1    Belinchon, M.M.2    Sanchez-Mendoza, E.3
  • 172
    • 0141891099 scopus 로고    scopus 로고
    • Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter
    • Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003; 278: 40128-35.
    • (2003) J Biol Chem , vol.278 , pp. 40128-40135
    • Friesema, E.C.1    Ganguly, S.2    Abdalla, A.3
  • 173
    • 68049138998 scopus 로고    scopus 로고
    • Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome
    • Wirth EK, Roth S, Blechschmidt C, et al. Neuronal 3', 3, 5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci. 2009; 29: 9439-49.
    • (2009) J Neurosci , vol.29 , pp. 9439-9449
    • Wirth, E.K.1    Roth, S.2    Blechschmidt, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.