메뉴 건너뛰기




Volumn 16, Issue 6, 2015, Pages 12578-12600

Hydrogen production by the thermophilic bacterium Thermotoga neapolitana

Author keywords

Biomass; Carbon dioxide; Energy carrier; Fermentation; Green house gas; Hydrogen; Lactic acid; Process kinetics; Renewable energy; Thermophilic bacteria

Indexed keywords

FERREDOXIN; GLYCEROL; HYDROGEN; IRON HYDROGENASE; LACTIC ACID; CARBON; GLUCOSE;

EID: 84931275358     PISSN: 16616596     EISSN: 14220067     Source Type: Journal    
DOI: 10.3390/ijms160612578     Document Type: Review
Times cited : (61)

References (118)
  • 1
    • 0036827191 scopus 로고    scopus 로고
    • Biological H2 production; fundamentals and limiting processes
    • Hallenbeck, P.C.; Benemann, J.R. Biological H2 production; fundamentals and limiting processes. Int. J. Hydrog. Energy 2002, 27, 1185–1193.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 2
    • 6944228870 scopus 로고    scopus 로고
    • Improvement of fermentative hydrogen production: Various approaches
    • Nath, K.; Das, D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520–529.
    • (2004) Appl. Microbiol. Biotechnol , vol.65 , pp. 520-529
    • Nath, K.1    Das, D.2
  • 3
    • 26444474170 scopus 로고    scopus 로고
    • Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost
    • Fan, Y.; Zhang, Y.; Zhang, S.; Hou, H.; Ren, B. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour. Technol. 2006, 97, 500–505.
    • (2006) Bioresour. Technol , vol.97 , pp. 500-505
    • Fan, Y.1    Zhang, Y.2    Zhang, S.3    Hou, H.4    Ren, B.5
  • 4
    • 84922463707 scopus 로고    scopus 로고
    • A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products
    • Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95.
    • (2015) Appl. Energy , vol.144 , pp. 73-95
    • Ghimire, A.1    Frunzo, L.2    Pirozzi, F.3    Trably, E.4    Escudie, R.5    Lens, P.6    Esposito, G.7
  • 6
    • 67650717310 scopus 로고    scopus 로고
    • BioH2 production from pig slurry in a CSTR reactor system with mixed cultures under hyperthermophilic temperature (70 °C)
    • Kotsopoulos, T.A.; Fotidis, I.A.; Tsolakis, N.; Martzopoulos, G.G. BioH2 production from pig slurry in a CSTR reactor system with mixed cultures under hyperthermophilic temperature (70 °C). Biomass Bioenergy 2009, 33, 1168–1174.
    • (2009) Biomass Bioenergy , vol.33 , pp. 1168-1174
    • Kotsopoulos, T.A.1    Fotidis, I.A.2    Tsolakis, N.3    Martzopoulos, G.G.4
  • 7
    • 79957625438 scopus 로고    scopus 로고
    • An evaluative report and challenges for fermentative bioH2 production
    • Sinha, P.; Pandey, A. An evaluative report and challenges for fermentative bioH2 production. Int. J. Hydrog. Energy 2011, 36, 7460–7478.
    • (2011) Int. J. Hydrog. Energy , vol.36 , pp. 7460-7478
    • Sinha, P.1    Pandey, A.2
  • 8
    • 31944434662 scopus 로고    scopus 로고
    • Biohydrogen generation from palm oil mill effluent using anaerobic contact filter
    • Vijayaraghavan, K.; Ahmad, D. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int. J. Hydrog. Energy 2006, 31, 1284–1291.
    • (2006) Int. J. Hydrog. Energy , vol.31 , pp. 1284-1291
    • Vijayaraghavan, K.1    Ahmad, D.2
  • 9
    • 84886428140 scopus 로고    scopus 로고
    • Integration of biohydrogen production with heat and power generation from biomass residues
    • Wukovits, W.; Drljo, A.; Hilby, E.; Friedl, A. Integration of biohydrogen production with heat and power generation from biomass residues. Chem. Eng. Trans. 2013, 35, 1003–1008.
    • (2013) Chem. Eng. Trans , vol.35 , pp. 1003-1008
    • Wukovits, W.1    Drljo, A.2    Hilby, E.3    Friedl, A.4
  • 10
    • 78650835775 scopus 로고    scopus 로고
    • Comparative life cycle assessment of three biohydrogen pathways
    • Djomo, S.N.; Blumberga, D. Comparative life cycle assessment of three biohydrogen pathways. Bioresour. Technol. 2011, 102, 2684–2694.
    • (2011) Bioresour. Technol , vol.102 , pp. 2684-2694
    • Djomo, S.N.1    Blumberga, D.2
  • 12
    • 84875744057 scopus 로고    scopus 로고
    • Critical literature review on bioH2 production by pure cultures
    • Elsharnouby, O.; Hafez, H.; Nakhla, G.; el Naggar, M.H. A critical literature review on bioH2 production by pure cultures. Int. J. Hydrog. Energy 2013, 38, 4945–4966.
    • (2013) Int. J. Hydrog. Energy , vol.38 , pp. 4945-4966
    • Elsharnouby, O.1    Hafez, H.2    Nakhla, G.3    El Naggar, M.4
  • 13
    • 0035093350 scopus 로고    scopus 로고
    • Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archea and Bacteria
    • Amend, J.P.; Shock, E.L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archea and Bacteria. Microbiol. Rev. 2001, 25, 175–243.
    • (2001) Microbiol. Rev , vol.25 , pp. 175-243
    • Amend, J.P.1    Shock, E.L.2
  • 14
    • 84931273155 scopus 로고    scopus 로고
    • Review of research on bioreactors used in wastewater treatment for production of bioH2: Future fuel
    • Krishna, R.H. Review of research on bioreactors used in wastewater treatment for production of bioH2: Future fuel. Int. J. Sci. Invent. Today 2013, 2, 302–310.
    • (2013) Int. J. Sci. Invent. Today , vol.2 , pp. 302-310
    • Krishna, R.H.1
  • 15
    • 84875718367 scopus 로고    scopus 로고
    • Biological H2 production
    • Sherif, S.A., Ed.; CRC Press: Boca Raton, FL, USA
    • Hafez, H.; Nakhla, G.; el Naggar, H. Biological H2 production. In Handbook of H2 Energy; Sherif, S.A., Ed.; CRC Press: Boca Raton, FL, USA, 2012.
    • (2012) Handbook of H2 Energy
    • Hafez, H.1    Nakhla, G.2    El Naggar, H.3
  • 16
    • 77953714257 scopus 로고    scopus 로고
    • Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal
    • Verhaart, M.R.; Bielen, A.A.; Oost, J.V.D.; Stams, A.J.; Kengen, S.W. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal. Environ. Technol. 2010, 31, 993–1003.
    • (2010) Environ. Technol , vol.31 , pp. 993-1003
    • Verhaart, M.R.1    Bielen, A.A.2    Oost, J.3    Stams, A.J.4    Kengen, S.W.5
  • 17
    • 0142156069 scopus 로고    scopus 로고
    • Biohydrogen production from starch in wastewater under thermophilic condition
    • Zhang, T.; Liu, H.; Fang, H.H.P. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 2003, 69, 149–156.
    • (2003) J. Environ. Manag , vol.69 , pp. 149-156
    • Zhang, T.1    Liu, H.2    Fang, H.3
  • 18
    • 58549116354 scopus 로고    scopus 로고
    • Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405
    • Islam, R.; Cicek, N.; Sparling, R.; Levin, D. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 2009, 82, 141–148.
    • (2009) Appl. Microbiol. Biotechnol , vol.82 , pp. 141-148
    • Islam, R.1    Cicek, N.2    Sparling, R.3    Levin, D.4
  • 19
    • 44749092706 scopus 로고    scopus 로고
    • H2 production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17
    • Liu, Y.; Yu, P.; Song, X.; Qu, Y. H2 production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrog. Energy 2008, 33, 2927–2933.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 2927-2933
    • Liu, Y.1    Yu, P.2    Song, X.3    Qu, Y.4
  • 20
    • 12244253037 scopus 로고    scopus 로고
    • Substrate and product inhibition of H2 production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
    • Van Niel, E.W.J.; Claassen, P.A.M.; Stams, A.J.M. Substrate and product inhibition of H2 production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotech. Bioeng. 2003, 81, 255–262.
    • (2003) Biotech. Bioeng , vol.81 , pp. 255-262
    • Van Niel, E.1    Claassen, P.2    Stams, A.3
  • 21
    • 84931265543 scopus 로고    scopus 로고
    • Members of the order Thermotogales: From microbiology to hydrogen production
    • Zannoni, D., de Philippis, R., Eds.; Springer: New York, NY, USA
    • Cappelletti, M.; Zannoni, D.; Postec, A.; Ollivier, B. Members of the order Thermotogales: From microbiology to hydrogen production. In Microbial BioEnergy: Hydrogen Production; Zannoni, D., de Philippis, R., Eds.; Springer: New York, NY, USA, 2014; Volume 38, pp. 197–224.
    • (2014) Microbial Bioenergy: Hydrogen Production , vol.38 , pp. 197-224
    • Cappelletti, M.1    Zannoni, D.2    Postec, A.3    Ollivier, B.4
  • 22
    • 84897926581 scopus 로고    scopus 로고
    • Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model
    • Dipasquale, L.; d’Ippolito, G.; Fontana, A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model. Int. J. Hydrog. Energy 2014, 39, 4857–4862.
    • (2014) Int. J. Hydrog. Energy , vol.39 , pp. 4857-4862
    • Dipasquale, L.1    D’Ippolito, G.2    Fontana, A.3
  • 23
    • 0022541209 scopus 로고
    • A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent
    • Belkin, S.; Wirsen, C.O.; Jannasch, H.W. A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl. Environ. Microbiol. 1986, 51, 1180–1185.
    • (1986) Appl. Environ. Microbiol , vol.51 , pp. 1180-1185
    • Belkin, S.1    Wirsen, C.O.2    Jannasch, H.W.3
  • 24
    • 0001218383 scopus 로고
    • Thermotoga neapolitana sp. Nov. of the extremely thermophilic, eubacterial genus Thermotoga
    • Jannasch, H.W.; Huber, R.; Belkin, S.; Stetter, K.O. Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 1988, 150, 103–104.
    • (1988) Arch. Microbiol , vol.150 , pp. 103-104
    • Jannasch, H.W.1    Huber, R.2    Belkin, S.3    Stetter, K.O.4
  • 26
    • 0027180667 scopus 로고
    • The functional properties of Ompβ, the regularly arrayed porin of the hyperthermophilic bacterium Thermotoga neapolitana
    • Angel, A.M.; Brunene, M.; Baumeister, W. The functional properties of Ompβ, the regularly arrayed porin of the hyperthermophilic bacterium Thermotoga neapolitana. FEMS Microbiol. Lett. 1993, 109, 231–236.
    • (1993) FEMS Microbiol. Lett , vol.109 , pp. 231-236
    • Angel, A.M.1    Brunene, M.2    Baumeister, W.3
  • 27
    • 0022522022 scopus 로고
    • Thermotoga maritima sp. Nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C
    • Huber, R.; Langworthy, T.A.; Konig, H.; Thomm, M.; Woese, C.R.; Sleytr, U.B.; Stetter, K.O. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch. Microbiol. 1986, 144, 324–333.
    • (1986) Arch. Microbiol , vol.144 , pp. 324-333
    • Huber, R.1    Langworthy, T.A.2    Konig, H.3    Thomm, M.4    Woese, C.R.5    Sleytr, U.B.6    Stetter, K.O.7
  • 28
    • 0025246062 scopus 로고
    • A porin-type protein is the main constituent of the cell envelope of the ancestral bacterium Thermotoga maritima
    • Rachel, R.; Engel, A.M.; Huber, R.; Stetter, K.O.; Baumeister, W. A porin-type protein is the main constituent of the cell envelope of the ancestral bacterium Thermotoga maritima. FEBS Lett. 1990, 262, 64–68.
    • (1990) FEBS Lett. , vol.262 , pp. 64-68
    • Rachel, R.1    Engel, A.M.2    Huber, R.3    Stetter, K.O.4    Baumeister, W.5
  • 29
    • 84868374395 scopus 로고    scopus 로고
    • Microscopic studies on Thermosipho globiformans implicate a role of the large periplasm of Thermotogales
    • Kuwabara, T.; Igarashi, K. Microscopic studies on Thermosipho globiformans implicate a role of the large periplasm of Thermotogales. Extremophiles 2012, 16, 863–870.
    • (2012) Extremophiles , vol.16 , pp. 863-870
    • Kuwabara, T.1    Igarashi, K.2
  • 30
    • 70449374951 scopus 로고    scopus 로고
    • Characterization of glycosyl hydrolase family 3 β-N-acetylglucosaminidases from Thermotoga maritima and Thermotoga neapolitana
    • Choi, K.-W.; Seo, J.Y.; Park, K.-M.; Park, C.-S.; Cha, J. Characterization of glycosyl hydrolase family 3 β-N-acetylglucosaminidases from Thermotoga maritima and Thermotoga neapolitana. J. Biosci. Bioeng. 2009, 108, 455–459.
    • (2009) J. Biosci. Bioeng. , vol.108 , pp. 455-459
    • Choi, K.-W.1    Seo, S.J.2    Park, K.-M.3    Park, C.-S.4    Cha, J.5
  • 31
    • 80052276734 scopus 로고    scopus 로고
    • Identification of an extracellular thermostable glicosyl hydrolase family 13 a-amylase from Thermotoga neapolitana
    • Choi, K.-H.; Hwang, S.; Lee, H.-S.; Cha, J. Identification of an extracellular thermostable glicosyl hydrolase family 13 a-amylase from Thermotoga neapolitana. J. Microbiol. 2011, 49, 628–634.
    • (2011) J. Microbiol , vol.49 , pp. 628-634
    • Choi, K.-H.1    Hwang, S.2    Lee, H.-S.3    Cha, J.4
  • 32
    • 61449083524 scopus 로고    scopus 로고
    • Purification and biochemical characterization of a native invertase from the hydrogen-producing Thermotoga neapolitana
    • Dipasquale, L.; Gambacorta, A.; Siciliano, R.A.; Mazzeo, M.F.; Lama, L. Purification and biochemical characterization of a native invertase from the hydrogen-producing Thermotoga neapolitana. Extremophiles 2009, 13, 345–354.
    • (2009) Extremophiles , vol.13 , pp. 345-354
    • Dipasquale, L.1    Gambacorta, A.2    Siciliano, R.A.3    Mazzeo, M.F.4    Lama, L.5
  • 33
    • 79551472575 scopus 로고    scopus 로고
    • Molecular cloning and biochemical characterization of a heat-stable pullulanase type I from Thermotoga neapolitana
    • Kang, L.; Park, K.M.; Choi, K.H.; Park, C.S.; Kim, G.E.; Kim, D.; Cha, J. Molecular cloning and biochemical characterization of a heat-stable pullulanase type I from Thermotoga neapolitana. Enzym. Microb. Technol. 2011, 48, 260–266.
    • (2011) Enzym. Microb. Technol , vol.48 , pp. 260-266
    • Kang, L.1    Park, K.M.2    Choi, K.H.3    Park, C.S.4    Kim, G.E.5    Kim, D.6    Cha, J.7
  • 35
    • 38949210770 scopus 로고    scopus 로고
    • Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima.
    • Liebl, W.G.; Winterhalter, C.; Baumeister, W.; Armbrech, M.; Valdez, M. Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 2008, 190, 1350–1358.
    • (2008) J. Bacteriol , vol.190 , pp. 1350-1358
    • Liebl, W.G.1    Winterhalter, C.2    Baumeister, W.3    Armbrech, M.4    Valdez, M.5
  • 36
    • 84880509147 scopus 로고    scopus 로고
    • Biochemical characterization of a thermostable β-1,3-xylanase from the hyperthermophilic Eubacterium. Thermotoga neapolitana strain DSM 4359.
    • Okazaki, F.; Nakashima, N.; Ogino, C.; Tamaru, Y.; Kondo, A. Biochemical characterization of a thermostable β-1,3-xylanase from the hyperthermophilic Eubacterium, Thermotoga neapolitana strain DSM 4359. Appl. Microbiol. Biotechnol. 2013, 97, 6749–6757.
    • (2013) Appl. Microbiol. Biotechnol , vol.97 , pp. 6749-6757
    • Okazaki, F.1    Nakashima, N.2    Ogino, C.3    Tamaru, Y.4    Kondo, A.5
  • 37
    • 77649336582 scopus 로고    scopus 로고
    • Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: A thermostable three-domain representative of glycoside hydrolase 3.
    • Pozzo, T.; Pasten, J.L.; Karlsson, E.N.; Logan, D.T. Structural and functional analyses of β-glucosidase 3B from Thermotoga neapolitana: A thermostable three-domain representative of glycoside hydrolase 3. J. Mol. Biol. 2010, 397, 724–739.
    • (2010) J. Mol. Biol , vol.397 , pp. 724-739
    • Pozzo, T.1    Pasten, J.L.2    Karlsson, E.N.3    Logan, D.T.4
  • 38
    • 0025818996 scopus 로고
    • Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima
    • Schumann, J.; Wrba, A.; Jaenicke, R.; Stetter, K.O. Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima. FEBS Lett. 1991, 282, 122–126.
    • (1991) FEBS Lett , vol.282 , pp. 122-126
    • Schumann, J.1    Wrba, A.2    Jaenicke, R.3    Stetter, K.O.4
  • 40
    • 84876869596 scopus 로고    scopus 로고
    • The Genome Organization of Thermotoga maritima reflects its lifestyle.
    • e1003485
    • Latif, H.; Lerman, J.A.; Portnoy, V.A.; Tarasova, Y.; Nagarajan, H. The Genome Organization of Thermotoga maritima reflects its lifestyle. PLoS Genet. 2013, 9, e1003485.
    • (2013) PLoS Genet , vol.9
    • Latif, H.1    Lerman, J.A.2    Portnoy, V.A.3    Tarasova, Y.4    Nagarajan, H.5
  • 41
    • 84892815195 scopus 로고    scopus 로고
    • Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam.nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations.
    • Bhandari, V.; Gupta, R.S. Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam.nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie Leeuwenhoek 2014, 105, 143–168.
    • (2014) Antonie Leeuwenhoek , vol.105 , pp. 143-168
    • Bhandari, V.1    Gupta, R.S.2
  • 43
    • 0028356024 scopus 로고
    • Glucose fermentation to acetate
    • Schroder, C.; Selig, M.; Schonheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima-involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 1994, 161, 460–470.
    • (1994) Arch. Microbiol , vol.161 , pp. 460-470
    • Schroder, C.1    Selig, M.2    Schonheit, P.3
  • 44
    • 67649413347 scopus 로고    scopus 로고
    • The iron-H2ase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic H2 production
    • Schut, G.J.; Adams, M.W. The iron-H2ase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic H2 production. J. Bacteriol. 2009, 191, 4451–4457.
    • (2009) J. Bacteriol , vol.191 , pp. 4451-4457
    • Schut, G.J.1    Adams, M.W.2
  • 46
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • Thauer, R.K.; Jungerman, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180.
    • (1977) Bacteriol. Rev , vol.41 , pp. 100-180
    • Thauer, R.K.1    Jungerman, K.2    Decker, K.3
  • 47
    • 11344288635 scopus 로고    scopus 로고
    • H2: The energy source for the 21st century
    • Anshuman, K.; Mike, M.; Brenda, J. H2: The energy source for the 21st century. Technovation 2005, 25, 569–585.
    • (2005) Technovation , vol.25 , pp. 569-585
    • Anshuman, K.1    Mike, M.2    Brenda, J.3
  • 48
    • 84878974371 scopus 로고    scopus 로고
    • BioH2 production by dark fermentation
    • Khanna, N.; Das, D. BioH2 production by dark fermentation. WIREs Energy Environ. 2013, 2, 401–421.
    • (2013) Wires Energy Environ , vol.2 , pp. 401-421
    • Khanna, N.1    Das, D.2
  • 49
    • 33646071873 scopus 로고    scopus 로고
    • Fermentative H2 production and bacterial community structure in high-rate anaerobic bioreactors containing silicone immobilized and self-flocculated sludge
    • Wu, S.Y.; Hung, C.H.; Lin, C.N.; Chen, H.W.; Lee, A.S.; Chang, J.S. Fermentative H2 production and bacterial community structure in high-rate anaerobic bioreactors containing silicone immobilized and self-flocculated sludge. Biotechnol. Bioeng. 2006, 93, 934–946.
    • (2006) Biotechnol. Bioeng , vol.93 , pp. 934-946
    • Wu, S.Y.1    Hung, C.H.2    Lin, C.N.3    Chen, H.W.4    Lee, A.S.5    Chang, J.S.6
  • 50
    • 78049479748 scopus 로고    scopus 로고
    • H2 production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • De Vrije, T.; Budde, M.A.W.; Lips, S.J.; Bakker, R.R.; Mars, A.E.; Claassen, P.A.M. H2 production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrog. Energy 2010, 35, 13206–13213.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 13206-13213
    • De Vrije, T.1    Budde, M.2    Lips, S.J.3    Bakker, R.R.4    Mars, A.E.5    Claassen, P.6
  • 51
    • 84908248525 scopus 로고    scopus 로고
    • The proton iron-sulfur cluster environment of the [FeFe]-hydrogenase maturation protein HydF from Thermotoga neapolitana
    • Albertini, M.; Vallese, F.; Valentin, M.; Berto, P.; Giacometti, G.M.; Costantini, P.; Carbonera, D. The proton iron-sulfur cluster environment of the [FeFe]-hydrogenase maturation protein HydF from Thermotoga neapolitana. Int. J. Hydrog. Energy 2014, 39, 18574–18582.
    • (2014) Int. J. Hydrog. Energy , vol.39 , pp. 18574-18582
    • Albertini, M.1    Vallese, F.2    Valentin, M.3    Berto, P.4    Giacometti, G.M.5    Costantini, P.6    Carbonera, D.7
  • 52
    • 80051687984 scopus 로고    scopus 로고
    • Current status of the metabolic engineering of microorganisms for bioH2 production
    • Oh, Y.K.; Raj, S.M.; Jung, G.Y.; Park, S. Current status of the metabolic engineering of microorganisms for bioH2 production. Bioresour. Technol. 2011, 102, 8357–8367.
    • (2011) Bioresour. Technol , vol.102 , pp. 8357-8367
    • Oh, Y.K.1    Raj, S.M.2    Jung, G.Y.3    Park, S.4
  • 53
    • 38649099718 scopus 로고    scopus 로고
    • Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA deH2ase/Etf complex from Clostridium kluyveri
    • Li, F.; Hinderberger, J.; Seedorf, H.; Zhang, J.; Buckel, W.; Thauer, R.K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA deH2ase/Etf complex from Clostridium kluyveri. J. Bacteriol. 2008, 190, 843–850.
    • (2008) J. Bacteriol , vol.190 , pp. 843-850
    • Li, F.1    Hinderberger, J.2    Seedorf, H.3    Zhang, J.4    Buckel, W.5    Thauer, R.K.6
  • 54
    • 77953767555 scopus 로고    scopus 로고
    • The genus Thermotoga: Recent developments
    • Frock, A.D.; Notey, J.S.; Kelly, R.M. The genus Thermotoga: Recent developments. Environ. Tech. 2010, 31, 1169–1181.
    • (2010) Environ. Tech , vol.31 , pp. 1169-1181
    • Frock, A.D.1    Notey, J.S.2    Kelly, R.M.3
  • 55
    • 0034190805 scopus 로고    scopus 로고
    • Enhancement of hydrogen production from glucose by nitrogen gas sparging
    • Mizuno, O.; Dinsdale, R.; Hawkes, F.; Hawkes, D.; Noike, T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 2000, 73, 59–65.
    • (2000) Bioresour. Technol , vol.73 , pp. 59-65
    • Mizuno, O.1    Dinsdale, R.2    Hawkes, F.3    Hawkes, D.4    Noike, T.5
  • 56
    • 33646742974 scopus 로고    scopus 로고
    • Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace
    • Valdez, I.; Rios, E.; Carmona, A.; Muñoz, K.; Poggi, H. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ. Sci. Technol. 2006, 40, 3409–3415.
    • (2006) Environ. Sci. Technol , vol.40 , pp. 3409-3415
    • Valdez, I.1    Rios, E.2    Carmona, A.3    Muñoz, K.4    Poggi, H.5
  • 57
    • 85006410748 scopus 로고    scopus 로고
    • Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana
    • D’Ippolito, G.; Dipasquale, L.; Fontana, A. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana. ChemSusChem 2014, 7, 2678–2683.
    • (2014) Chemsuschem , vol.7 , pp. 2678-2683
    • D’Ippolito, G.1    Dipasquale, L.2    Fontana, A.3
  • 58
    • 0034666137 scopus 로고    scopus 로고
    • The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway
    • Furdui, C.; Ragsdale, S.W. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J. Biol. Chem. 2000, 275, 28494–28499.
    • (2000) J. Biol. Chem , vol.275 , pp. 28494-28499
    • Furdui, C.1    Ragsdale, S.W.2
  • 59
    • 0029985246 scopus 로고    scopus 로고
    • Catalytic properties, molecular composition and sequence alignments of pyruvate:Ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro)
    • Bock, A.K.; Kunow, J.; Glasemacher, J.; Schönheit, P. Catalytic properties, molecular composition and sequence alignments of pyruvate: Ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 1996, 237, 35–44.
    • (1996) Eur. J. Biochem , vol.237 , pp. 35-44
    • Bock, A.K.1    Kunow, J.2    Glasemacher, J.3    Schönheit, P.4
  • 61
    • 84861138834 scopus 로고    scopus 로고
    • The emergence and early evolution of biological carbon-fixation
    • Braakman, R.; Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol. 2012, 8, e1002455.
    • (2012) Plos Comput. Biol , vol.8
    • Braakman, R.1    Smith, E.2
  • 62
    • 1342298893 scopus 로고
    • Carbon dioxide assimilation in heterotrophic organisms
    • Krebs, H.A. Carbon dioxide assimilation in heterotrophic organisms. Nature 1941, 147, 560–563.
    • (1941) Nature , vol.147 , pp. 560-563
    • Krebs, H.A.1
  • 64
    • 79955465839 scopus 로고    scopus 로고
    • High-yield bioH2 production from biodiesel manufacturing waste by Thermotoga neapolitana
    • Ngo, T.A.; Kim, M.S.; Sim, S.J. High-yield bioH2 production from biodiesel manufacturing waste by Thermotoga neapolitana. Int. J. Hydrog. Energy 2011, 36, 5636–5642.
    • (2011) Int. J. Hydrog. Energy , vol.36 , pp. 5636-5642
    • Ngo, T.A.1    Kim, M.S.2    Sim, S.J.3
  • 65
    • 84865183617 scopus 로고    scopus 로고
    • BioH2 production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains
    • Cappelletti, M.; Bucchi, G.; Mendes, J.D.S.; Alberini, A.; Fedi, S.; Bertin, L.; Frascari, D. BioH2 production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains. J. Chem. Technol. Biotechnol. 2012, 87, 1291–1301.
    • (2012) J. Chem. Technol. Biotechnol , vol.87 , pp. 1291-1301
    • Cappelletti, M.1    Bucchi, G.2    Mendes, J.3    Alberini, A.4    Fedi, S.5    Bertin, L.6    Frascari, D.7
  • 66
    • 84864989109 scopus 로고    scopus 로고
    • H2 production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii
    • Dipasquale, L.; d’Ippolito, G.; Gallo, C.; Vella, F.M.; Gambacorta, A.; Picariello, G.; Fontana, A. H2 production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii. Int. J. Hydrog. Energy 2012, 37, 12250–12257.
    • (2012) Int. J. Hydrog. Energy , vol.37 , pp. 12250-12257
    • Dipasquale, L.1    D’Ippolito, G.2    Gallo, C.3    Vella, F.M.4    Gambacorta, A.5    Picariello, G.6    Fontana, A.7
  • 68
    • 77955515166 scopus 로고    scopus 로고
    • BioH2 production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • Mars, A.E.; Veuskens, T.; Budde, M.A.W.; van Doeveren, P.F.N.M.; Lips, S.J.; Bakker, R.R.; de Vrije, T.; Claassen, P.A.M. BioH2 production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrog. Energy 2010, 35, 7730–7737.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 7730-7737
    • Mars, A.E.1    Veuskens, T.2    Budde, M.3    Van Doeveren, P.4    Lips, S.J.5    Bakker, R.R.6    De Vrije, T.7    Claassen, P.8
  • 70
    • 78049455162 scopus 로고    scopus 로고
    • Thermophilic H2 fermentation from Korean rice straw by Thermotoga neapolitana
    • Nguyen, T.A.D.; Kim, K.R.; Kim, M.S.; Sim, S.J. Thermophilic H2 fermentation from Korean rice straw by Thermotoga neapolitana. Int. J. Hydrog. Energy 2010, 35, 13392–13398.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 13392-13398
    • Nguyen, T.1    Kim, K.R.2    Kim, M.S.3    Sim, S.J.4
  • 71
    • 78049468432 scopus 로고    scopus 로고
    • Enhancement of fermentative H2 production from green algal biomass of Thermotoga neapolitana by various pretreatment methods
    • Nguyen, T.A.D.; Kim, K.R.; Nguyen, M.T.; Kim, M.S.; Kim, D.; Sim, S.J. Enhancement of fermentative H2 production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int. J. Hydrog. Energy 2010, 35, 13035–13040.
    • (2010) Int. J. Hydrog. Energy , vol.35 , pp. 13035-13040
    • Nguyen, T.1    Kim, K.R.2    Nguyen, M.T.3    Kim, M.S.4    Kim, D.5    Sim, S.J.6
  • 72
    • 84862681207 scopus 로고    scopus 로고
    • Dark fermentation of H2 from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ. Prog. Sustain
    • Ngo, T.N.; Sim, S.J. Dark fermentation of H2 from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ. Prog. Sustain. Energy 2012, 31, 466–473.
    • (2012) Energy , vol.31 , pp. 466-473
    • Ngo, T.N.1    Sim, S.J.2
  • 73
    • 28744432513 scopus 로고    scopus 로고
    • H2 and ethanol production from Glycerol-containing wastes discharged after biodiesel manufacturing process
    • Ito, T.; Nakashimada, Y.; Senba, K.; Matsui, T.; Nishio, N. H2 and ethanol production from Glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 2005, 100, 260–265.
    • (2005) J. Biosci. Bioeng , vol.100 , pp. 260-265
    • Ito, T.1    Nakashimada, Y.2    Senba, K.3    Matsui, T.4    Nishio, N.5
  • 74
    • 84872394321 scopus 로고    scopus 로고
    • Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: Comparison with organic acids and the identification of inhibitory compounds
    • Pott, R.W.M.; Howe, C.J.; Dennis, J.S. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: Comparison with organic acids and the identification of inhibitory compounds. Bioresour. Technol. 2013, 130, 725–730.
    • (2013) Bioresour. Technol , vol.130 , pp. 725-730
    • Pott, R.1    Howe, C.J.2    Dennis, J.S.3
  • 75
    • 84859628265 scopus 로고    scopus 로고
    • Proteomic and physiological experiments to test Thermotoga neapolitana constraint-based model hypotheses of carbon source utilization
    • Munro S.A.; Choe, L.; Zinder, S.H.; Lee, K.H.; Walker, L.P. Proteomic and physiological experiments to test Thermotoga neapolitana constraint-based model hypotheses of carbon source utilization. Biotechnol. Prog. 2012, 28, 312–318.
    • (2012) Biotechnol. Prog , vol.28 , pp. 312-318
    • Munro, S.A.1    Choe, L.2    Zinder, S.H.3    Lee, K.H.4    Walker, L.P.5
  • 76
    • 79961127896 scopus 로고    scopus 로고
    • Thermophilic fermentative H2 production from xylose by Thermotoga neapolitana DSM 4359. Renew
    • Ngo, T.A.; Nguyen, T.H.; Bui, H.T.V. Thermophilic fermentative H2 production from xylose by Thermotoga neapolitana DSM 4359. Renew. Energy 2012, 37, 174–179.
    • (2012) Energy , vol.37 , pp. 174-179
    • Ngo, T.A.1    Nguyen, T.H.2    Bui, H.3
  • 77
    • 67649795292 scopus 로고    scopus 로고
    • Efficient H2 production from the lignocellulosic energy crop miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • De Vrije, T.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M. Efficient H2 production from the lignocellulosic energy crop miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2009, 2, 12.
    • (2009) Biotechnol. Biofuels , vol.2
    • De Vrije, T.1    Bakker, R.R.2    Budde, M.3    Lai, M.H.4    Mars, A.E.5    Claassen, P.6
  • 78
    • 84931261916 scopus 로고    scopus 로고
    • BioH2 Production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads
    • Ngo, T.A.; Bui, H.T.V. BioH2 Production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads. J. Technol. Innov. Renew. Energy 2013, 2, 231–238.
    • (2013) J. Technol. Innov. Renew. Energy , vol.2 , pp. 231-238
    • Ngo, T.A.1    Bui, H.2
  • 80
    • 83055184484 scopus 로고    scopus 로고
    • Thermophilic H2 fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture
    • Ngo, T.A.; Kim, M.S.; Sim, S.J. Thermophilic H2 fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture. Int. J. Hydrog. Energy 2011, 36, 14014–14023.
    • (2011) Int. J. Hydrog. Energy , vol.36 , pp. 14014-14023
    • Ngo, T.A.1    Kim, M.S.2    Sim, S.J.3
  • 81
    • 69149083787 scopus 로고    scopus 로고
    • The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on H2 production
    • Munro, S.A.; Zinder, S.H.; Walker, L.P. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on H2 production. Biotechnol. Progress 2009, 25, 1035–1042.
    • (2009) Biotechnol. Progress , vol.25 , pp. 1035-1042
    • Munro, S.A.1    Zinder, S.H.2    Walker, L.P.3
  • 82
    • 13544259604 scopus 로고    scopus 로고
    • H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions
    • Van Ooteghem, S.A.; Jones, A.; van der Lelie, D.; Dong, B.; Mahajan, D. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 2004, 26, 1223–1232.
    • (2004) Biotechnol. Lett , vol.26 , pp. 1223-1232
    • Van Ooteghem, S.A.1    Jones, A.2    Van Der Lelie, D.3    Dong, B.4    Mahajan, D.5
  • 83
    • 52049088253 scopus 로고    scopus 로고
    • H2 production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid
    • Nguyen, T.A.D.; Han, S.J.; Kim, J.P.; Kim, M.S.; Oh, Y.K.; Sim, S.J. H2 production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int. J. Hydrog. Energy 2008, 33, 5161–5168.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 5161-5168
    • Nguyen, T.1    Han, S.J.2    Kim, J.P.3    Kim, M.S.4    Oh, Y.K.5    Sim, S.J.6
  • 84
    • 0036237024 scopus 로고    scopus 로고
    • H2 production by the thermophilic bacterium Thermotoga neapolitana
    • Van Ooteghem, S.A.; Beer, S.K.; Yue, P.C. H2 production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 2002, 98, 177–189.
    • (2002) Appl. Biochem. Biotechnol , vol.98 , pp. 177-189
    • Van Ooteghem, S.A.1    Beer, S.K.2    Yue, P.C.3
  • 85
    • 40749084738 scopus 로고    scopus 로고
    • Optimization of H2 production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation
    • Nguyen, T.A.D.; Kim, J.P.; Kim, M.S.; Oh, Y.K.; Sim, S.J. Optimization of H2 production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int. J. Hydrog. Energy 2008, 33, 1483–1488.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 1483-1488
    • Nguyen, T.A.D.1    Kim, J.P.2    Kim, M.S.3    Oh, Y.K.4    Sim, S.J.5
  • 86
    • 0344896607 scopus 로고    scopus 로고
    • BioH2 production: Prospects and limitations to practical application
    • Levin, D.B.; Pitt, L.; Love, M. BioH2 production: Prospects and limitations to practical application. Int. J. Hydrog. Energy 2004, 29, 173–185.
    • (2004) Int. J. Hydrog. Energy , vol.29 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 87
    • 33846213610 scopus 로고    scopus 로고
    • The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art
    • Basak, N.; Das, D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J. Microbiol. Biotechnol. 2006, 23, 31–42.
    • (2006) World J. Microbiol. Biotechnol , vol.23 , pp. 31-42
    • Basak, N.1    Das, D.2
  • 88
    • 68349148134 scopus 로고    scopus 로고
    • Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent
    • Uyar, B.; Schumacher, M.; Gebicki, J.; Modigell, M. Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent. Bioprocess Biosyst. Eng. 2009, 32, 603–606.
    • (2009) Bioprocess Biosyst. Eng , vol.32 , pp. 603-606
    • Uyar, B.1    Schumacher, M.2    Gebicki, J.3    Modigell, M.4
  • 89
    • 84925506730 scopus 로고    scopus 로고
    • Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: A route to unparalleled H2 yields
    • Dipasquale L.; Adessi, A.; d’Ippolito, G.; Rossi, F.; Fontana, A.; de Philippis, R. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: A route to unparalleled H2 yields. Appl. Microbiol. Biotechnol. 2015, 99, 1001–1010.
    • (2015) Appl. Microbiol. Biotechnol , vol.99 , pp. 1001-1010
    • Dipasquale, L.1    Adessi, A.2    D’Ippolito, G.3    Rossi, F.4    Fontana, A.5    De Philippis, R.6
  • 90
    • 84867402136 scopus 로고    scopus 로고
    • A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4+-containing vegetable wastes
    • Adessi, A.; McKinlay, J.B.; Harwood, C.S.; de Philippis, R. A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4+-containing vegetable wastes. Int. J. Hydrog. Energy 2012, 37, 15893–15900.
    • (2012) Int. J. Hydrog. Energy , vol.37 , pp. 15893-15900
    • Adessi, A.1    McKinlay, J.B.2    Harwood, C.S.3    De Philippis, R.4
  • 91
    • 0030943791 scopus 로고    scopus 로고
    • Highly thermostable endo-1,3-b-glucanase (Chrysolaminaranase) LamA from Thermotoga neapolitana: Nucleotide sequence of the gene and characterization of the recombinant gene product
    • Zverlov, V.V.; Volkov, I.Y.; Velikodvorskaya, T.V.; Schwarz, W.H. Highly thermostable endo-1,3-b-glucanase (chrysolaminaranase) LamA from Thermotoga neapolitana: Nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 1997, 143, 1701–1708.
    • (1997) Microbiology , vol.143 , pp. 1701-1708
    • Zverlov, V.V.1    Volkov, I.Y.2    Velikodvorskaya, T.V.3    Schwarz, W.H.4
  • 92
    • 0030680965 scopus 로고    scopus 로고
    • Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase
    • Zverlov, V.V.; Volkov, I.Y.; Velikodvorskaya, T.V.; Schwarz, W.H. Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 1997, 143, 3537–3542.
    • (1997) Microbiology , vol.143 , pp. 3537-3542
    • Zverlov, V.V.1    Volkov, I.Y.2    Velikodvorskaya, T.V.3    Schwarz, W.H.4
  • 93
    • 42749093280 scopus 로고    scopus 로고
    • Characteristics of a phototrophic sludge producing H2 from acetate and butyrate
    • Li, R.Y.; Zhang, T.; Fang, H.H.P. Characteristics of a phototrophic sludge producing H2 from acetate and butyrate. Int. J. Hydrog. Energy 2008, 33, 2147–2155.
    • (2008) Int. J. Hydrog. Energy , vol.33 , pp. 2147-2155
    • Li, R.Y.1    Zhang, T.2    Fang, H.3
  • 94
    • 0030680965 scopus 로고    scopus 로고
    • Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase
    • Zverlov, V.V.; Volkov, I.Y.; Velikodvorskaya, T.V.; Schwarz, W.H. Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 1997, 143, 3537–3542.
    • (1997) Microbiology , vol.143 , pp. 3537-3542
    • Zverlov, V.V.1    Volkov, I.Y.2    Velikodvorskaya, T.V.3    Schwarz, W.H.4
  • 95
    • 13844280347 scopus 로고    scopus 로고
    • Treatment of complex chemical effluents by sequencing batch reactor (SBR) with aerobic suspended growth configuration
    • Mohan, S.V.; Rao, N.C.; Prasad, K.K.; Madhavi, B.T.V.; Sarma, P.N. Treatment of complex chemical effluents by sequencing batch reactor (SBR) with aerobic suspended growth configuration. Process Biochem. 2005, 40, 1501–1508.
    • (2005) Process Biochem , vol.40 , pp. 1501-1508
    • Mohan, S.V.1    Rao, N.C.2    Prasad, K.K.3    Madhavi, B.4    Sarma, P.N.5
  • 96
    • 84862510714 scopus 로고    scopus 로고
    • Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties
    • Basile, M.A.; Carfagna, C.; Cerruti, P.; d’Avala, G.G.; Fontana, A.; Gambacorta, A.; Malinconico, M.; Dipasquale, L. Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv. 2012, 2, 3611–3614.
    • (2012) RSC Adv , vol.2 , pp. 3611-3614
    • Basile, M.A.1    Carfagna, C.2    Cerruti, P.3    D’Avala, G.G.4    Fontana, A.5    Gambacorta, A.6    Malinconico, M.7    Dipasquale, L.8
  • 97
    • 0036827171 scopus 로고    scopus 로고
    • BioH2 production with fixed-bed bioreactors
    • Chang, J.S.; Lee, K.S.; Lin, P.J. BioH2 production with fixed-bed bioreactors. Int. J. Hydrog. Energy 2002, 27, 1167–1174.
    • (2002) Int. J. Hydrog. Energy , vol.27 , pp. 1167-1174
    • Chang, J.S.1    Lee, K.S.2    Lin, P.J.3
  • 98
    • 0035812352 scopus 로고    scopus 로고
    • Continuous H2 production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices
    • Kumar, N.; Das, D. Continuous H2 production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzym. Microb. Technol. 2001, 29, 280–287.
    • (2001) Enzym. Microb. Technol , vol.29 , pp. 280-287
    • Kumar, N.1    Das, D.2
  • 99
    • 33846226122 scopus 로고    scopus 로고
    • Batch and continuous fermentative production of H2 with anaerobic sludge entrapped in a composite polymeric matrix
    • Wu, K.J.; Chang, J.S. Batch and continuous fermentative production of H2 with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem. 2007, 42, 279–284.
    • (2007) Process Biochem , vol.42 , pp. 279-284
    • Wu, K.J.1    Chang, J.S.2
  • 101
    • 36549029355 scopus 로고    scopus 로고
    • BioH2 production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities
    • Yang, P.; Zhang, R.; McGarvey, J.A.; Benemann, J.R. BioH2 production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy 2007, 32, 4761–4771.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 4761-4771
    • Yang, P.1    Zhang, R.2    McGarvey, J.A.3    Benemann, J.R.4
  • 102
    • 38049071132 scopus 로고    scopus 로고
    • Optimization of continuous H2 fermentation of food waste as a function of solids retention time independent of hydraulic retention time
    • Kim, S.H.; Han, S.K.; Shin, H.S. Optimization of continuous H2 fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem. 2008, 43, 213–218.
    • (2008) Process Biochem , vol.43 , pp. 213-218
    • Kim, S.H.1    Han, S.K.2    Shin, H.S.3
  • 103
    • 0001340023 scopus 로고    scopus 로고
    • Granulation of H2-producing acidogenic sludge
    • Antwerp, Belgium, 2–6 September
    • Fang, H.H.P.; Liu, H. Granulation of H2-producing acidogenic sludge. In Proceeding of the 9th World Congress Anaerobic Digestion Part 2, Antwerp, Belgium, 2–6 September 2001; Volume 2, pp. 527–532.
    • (2001) Proceeding of the 9Th World Congress Anaerobic Digestion Part 2 , vol.2 , pp. 527-532
    • Fang, H.1    Liu, H.2
  • 105
    • 33846192340 scopus 로고    scopus 로고
    • Continuous dark fermentative H2 production by mesophilic microflora: Principles and progress
    • Hawkes, F.R.; Hussy, I.; Kyazza, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative H2 production by mesophilic microflora: Principles and progress. Int. J. Hydrog. Energy 2007, 32, 172–184.
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 172-184
    • Hawkes, F.R.1    Hussy, I.2    Kyazza, G.3    Dinsdale, R.4    Hawkes, D.L.5
  • 106
    • 36649011956 scopus 로고    scopus 로고
    • H2 production in anaerobic and microaerobic Thermotoga neapolitana
    • Eriksen, T.N.; Niels, N.T.; Iversen, N. H2 production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol. Lett. 2008, 30, 103–109.
    • (2008) Biotechnol. Lett , vol.30 , pp. 103-109
    • Eriksen, T.N.1    Niels, N.T.2    Iversen, N.3
  • 107
    • 84877716029 scopus 로고    scopus 로고
    • Optimization of conditions for H2 production from complex dairy wastewater by anaerobic sludge using desirability function approach
    • Gadhe, A.; Sonawane, S.S.; Varma, M.N. Optimization of conditions for H2 production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int. J. Hydrog. Energy 2013, 38, 6607.
    • (2013) Int. J. Hydrog. Energy , vol.38
    • Gadhe, A.1    Sonawane, S.S.2    Varma, M.N.3
  • 110
    • 67650753517 scopus 로고    scopus 로고
    • Feasibility of bioH2 production from cheese whey using a UASB reactor: Links between microbial community and reactor performance
    • Castello, E.; García, C.; Santos, Y.; Iglesias, T.; Paolino, G.; Wenzel, J.; Borzacconi, L. Feasibility of bioH2 production from cheese whey using a UASB reactor: Links between microbial community and reactor performance. Int. J. Hydrog. Energy 2009, 34, 5674–5682.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 5674-5682
    • Castello, E.1    García, C.2    Santos, Y.3    Iglesias, T.4    Paolino, G.5    Wenzel, J.6    Borzacconi, L.7
  • 111
    • 85020734956 scopus 로고    scopus 로고
    • Modeling of H2 production in biofilm reactors: Application of the Anaerobic Digestion Model 1
    • Fuentes, M.; Scenna, N.J.; Aguirre, P.A. Modeling of H2 production in biofilm reactors: Application of the Anaerobic Digestion Model 1. Hyfusen 2011, 01-223.
    • (2011) Hyfusen , pp. 01-223
    • Fuentes, M.1    Scenna, N.J.2    Aguirre, P.A.3
  • 112
    • 84879215262 scopus 로고    scopus 로고
    • Modeling and parameter estimation in biofuel discontinuous production by H2 forming bacteria (HFB)
    • Paulo, C.I.; Maggio, J.A.D.; Diaz, M.S.; Ruggeri, B. Modeling and parameter estimation in biofuel discontinuous production by H2 forming bacteria (HFB). Chem. Eng. Trans. 2013, 32, 1033–1038.
    • (2013) Chem. Eng. Trans , vol.32 , pp. 1033-1038
    • Paulo, C.I.1    Maggio, J.2    Diaz, M.S.3    Ruggeri, B.4
  • 113
    • 64449084684 scopus 로고    scopus 로고
    • Kinetic models for fermentative H2 production: A review
    • Wang, J.; Wan, W. Kinetic models for fermentative H2 production: A review. Int. J. Hydrog. Energy 2009, 34, 3313.
    • (2009) Int. J. Hydrog. Energy , vol.34
    • Wang, J.1    Wan, W.2
  • 114
    • 80051733785 scopus 로고    scopus 로고
    • H2 production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources
    • Yu, X.; Drapcho, C. H2 production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources. Biol. Eng. Trans. 2011, 4, 101–112.
    • (2011) Biol. Eng. Trans , vol.4 , pp. 101-112
    • Yu, X.1    Drapcho, C.2
  • 116
    • 84856214886 scopus 로고    scopus 로고
    • Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste
    • Munoz-Páez, K.M.; Ríos-Leal, E.; Valdez-Vazquez, I. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste. J. Environ. Manag. 2012, 95, S355–S359.
    • (2012) J. Environ. Manag , vol.95 , pp. S355-S359
    • Munoz-Páez, K.M.1    Ríos-Leal, E.2    Valdez-Vazquez, I.3
  • 117
    • 68349158947 scopus 로고    scopus 로고
    • Metabolic pathway engineering for enhanced bioH2 production
    • Mathews, J.; Wang, G. Metabolic pathway engineering for enhanced bioH2 production. Int. J. Hydrog. Energy 2009, 34, 7404–7416.
    • (2009) Int. J. Hydrog. Energy , vol.34 , pp. 7404-7416
    • Mathews, J.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.