메뉴 건너뛰기




Volumn 87, Issue 9, 2012, Pages 1291-1301

Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains

Author keywords

Anaerobic digestion; Bio hydrogen; Biofilm carrier; Process optimization; Thermotoga; Waste treatment and waste minimization

Indexed keywords

BIO-HYDROGEN; BIO-HYDROGEN PRODUCTION; BIOFILM CARRIERS; CHEESE WHEY; ENERGY GENERATIONS; GROWTH MEDIUM; HYPERTHERMOPHILIC; ORGANIC RESIDUES; PROCESS PERFORMANCE; PRODUCTION RATES; SPECIFIC SURFACE; THERMOTOGA; WASTE MINIMIZATION;

EID: 84865183617     PISSN: 02682575     EISSN: 10974660     Source Type: Journal    
DOI: 10.1002/jctb.3782     Document Type: Article
Times cited : (41)

References (51)
  • 1
    • 15944404697 scopus 로고    scopus 로고
    • Into the hydrogen energy economy-milestones
    • Winter CJ, Into the hydrogen energy economy-milestones. Int J Hydrogen Energy 30: 681-685 (2005).
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 681-685
    • Winter, C.J.1
  • 2
    • 0036827191 scopus 로고    scopus 로고
    • Biological hydrogen production: fundamentals and limiting processes
    • Hallenbeck PC and Benemann JR, Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27: 1185-1193 (2002).
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 3
    • 0343462148 scopus 로고    scopus 로고
    • Hydrogen production by biological processes: a survey of literature
    • Das D and Veziroglu TN, Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26: 13-28 (2001).
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 13-28
    • Das, D.1    Veziroglu, T.N.2
  • 4
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: prospects and limitations to practical application
    • Levin DB, Pitt L and Love M, Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29: 173-185 (2004).
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 5
    • 0036827182 scopus 로고    scopus 로고
    • Sustainable fermentative hydrogen production: challenges for process optimisation
    • Hawkes FR, Dinsdale R, Hawkes DL and Hussy I, Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27: 1339-1347 (2002).
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1339-1347
    • Hawkes, F.R.1    Dinsdale, R.2    Hawkes, D.L.3    Hussy, I.4
  • 6
    • 33750885810 scopus 로고    scopus 로고
    • Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
    • Li C and Fang HH, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37: 1-39 (2007).
    • (2007) Crit Rev Environ Sci Technol , vol.37 , pp. 1-39
    • Li, C.1    Fang, H.H.2
  • 8
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: a review
    • Wang J and Wan W, Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34: 799-811 (2009).
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 799-811
    • Wang, J.1    Wan, W.2
  • 9
  • 11
    • 60949100790 scopus 로고    scopus 로고
    • Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5
    • Wang X and Jin B, Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107: 138-144 (2009).
    • (2009) J Biosci Bioeng , vol.107 , pp. 138-144
    • Wang, X.1    Jin, B.2
  • 12
    • 43049153255 scopus 로고    scopus 로고
    • A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses
    • Aceves-Lara CA, Latrille E, Bernet N, Pierre Buffière P and Steyer JP, A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42: 2539-2550 (2008).
    • (2008) Water Res , vol.42 , pp. 2539-2550
    • Aceves-Lara, C.A.1    Latrille, E.2    Bernet, N.3    Pierre Buffière, P.4    Steyer, J.P.5
  • 13
    • 35248835972 scopus 로고    scopus 로고
    • Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)
    • Li JZ, Li BK, Zhu GF, Ren NQ, Bo LX and He JG, Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy 32: 3274-3283 (2007).
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 3274-3283
    • Li, J.Z.1    Li, B.K.2    Zhu, G.F.3    Ren, N.Q.4    Bo, L.X.5    He, J.G.6
  • 14
    • 33750997299 scopus 로고    scopus 로고
    • Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system
    • Ren NQ, Li JZ, Li BK, Wang Y and Liu SR, Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31: 2147-2157 (2006).
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 2147-2157
    • Ren, N.Q.1    Li, J.Z.2    Li, B.K.3    Wang, Y.4    Liu, S.R.5
  • 15
    • 0029342848 scopus 로고
    • Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks
    • Tanisho S and Ishiwata Y, Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrogen Energy 20: 541-545 (1995).
    • (1995) Int J Hydrogen Energy , vol.20 , pp. 541-545
    • Tanisho, S.1    Ishiwata, Y.2
  • 16
    • 27744451656 scopus 로고    scopus 로고
    • Influence of initial pH on hydrogen production from cheese whey
    • Ferchichi M, Crabbe E, Hintz W, Gil GH and Almadidy A, Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120: 402-409 (2005).
    • (2005) J Biotechnol , vol.120 , pp. 402-409
    • Ferchichi, M.1    Crabbe, E.2    Hintz, W.3    Gil, G.H.4    Almadidy, A.5
  • 17
    • 68349152825 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions
    • Azbar N, Dokgoz FTC, Keskin T, Korkmaz KS and Syed HM, Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrogen Energy 34: 7441-7447 (2011).
    • (2011) Int J Hydrogen Energy , vol.34 , pp. 7441-7447
    • Azbar, N.1    Dokgoz, F.T.C.2    Keskin, T.3    Korkmaz, K.S.4    Syed, H.M.5
  • 18
    • 0036836416 scopus 로고    scopus 로고
    • Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range
    • Van Groenestijn JW, Hazewinkel JHO, Nienoord M and Bussmann PJT, Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 27: 1141-1147 (2002).
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1141-1147
    • Van Groenestijn, J.W.1    Hazewinkel, J.H.O.2    Nienoord, M.3    Bussmann, P.J.T.4
  • 19
    • 25444468375 scopus 로고    scopus 로고
    • Fundamentals of the fermentative production of hydrogen
    • Hallenbeck PC, Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52: 21-29 (2005).
    • (2005) Water Sci Technol , vol.52 , pp. 21-29
    • Hallenbeck, P.C.1
  • 20
    • 71749086512 scopus 로고    scopus 로고
    • Thermotogales
    • ed by Dworkin M. Springer Publishers, New York.
    • Huber R and Hannig M, Thermotogales, in Prokaryotes, ed by Dworkin M. Springer Publishers, New York, pp. 899 (2006).
    • (2006) Prokaryotes , pp. 899
    • Huber, R.1    Hannig, M.2
  • 21
    • 0028356024 scopus 로고
    • 2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime-involvement of the Embden-Meyerhof pathway
    • 2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime-involvement of the Embden-Meyerhof pathway. Arch Microbiol 161: 460-470 (1994).
    • (1994) Arch Microbiol , vol.161 , pp. 460-470
    • Schröder, C.1    Selig, M.2    Schönheit, P.3
  • 23
    • 13544259604 scopus 로고    scopus 로고
    • 2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions
    • 2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26: 1223-1232 (2004).
    • (2004) Biotechnol Lett , vol.26 , pp. 1223-1232
    • Van Ooteghem, S.A.1    Jones, A.2    Van Der Lelie, D.3    Dong, B.4    Mahajan, D.5
  • 24
    • 36649011956 scopus 로고    scopus 로고
    • Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana
    • Eriksen NT, Nielsen TM and Iversen N, Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett 30: 103-109 (2008).
    • (2008) Biotechnol Lett , vol.30 , pp. 103-109
    • Eriksen, N.T.1    Nielsen, T.M.2    Iversen, N.3
  • 25
  • 26
    • 12244253037 scopus 로고    scopus 로고
    • Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
    • van Niel EWJ, Claassen PAM and Stams AJM, Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81: 255-262 (2003).
    • (2003) Biotechnol Bioeng , vol.81 , pp. 255-262
    • van Niel, E.W.J.1    Claassen, P.A.M.2    Stams, A.J.M.3
  • 27
    • 52049088253 scopus 로고    scopus 로고
    • Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid
    • Nguyen TAD, Kim JP, Kim MS, Oh YK and Sim SJ, Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int J Hydrogen Energy 33: 5161-5168 (2008).
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5161-5168
    • Nguyen, T.A.D.1    Kim, J.P.2    Kim, M.S.3    Oh, Y.K.4    Sim, S.J.5
  • 28
    • 80051733785 scopus 로고    scopus 로고
    • Hydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources
    • Yu X and Drapcho CM, Hydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources. Biol Eng Trans 4: 101-112 (2011).
    • (2011) Biol Eng Trans , vol.4 , pp. 101-112
    • Yu, X.1    Drapcho, C.M.2
  • 29
    • 78049455162 scopus 로고    scopus 로고
    • Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana
    • Nguyen TAD, Han SJ, Kim JP, Kim MS and Sim SJ, Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrogen Energy 35: 13392-13398 (2010).
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 13392-13398
    • Nguyen, T.A.D.1    Han, S.J.2    Kim, J.P.3    Kim, M.S.4    Sim, S.J.5
  • 31
    • 0022541209 scopus 로고
    • A new sulfur-reducing extremely thermophilic eubacterium from a submarine thermal vent
    • Belkin S and Jannasch HW, A new sulfur-reducing extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51: 1180-1185 (1986).
    • (1986) Appl Environ Microbiol , vol.51 , pp. 1180-1185
    • Belkin, S.1    Jannasch, H.W.2
  • 32
    • 0022522022 scopus 로고
    • Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C
    • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, et al, Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144: 324-333 (1986).
    • (1986) Arch Microbiol , vol.144 , pp. 324-333
    • Huber, R.1    Langworthy, T.A.2    König, H.3    Thomm, M.4    Woese, C.R.5    Sleytr, U.B.6
  • 33
    • 0001218383 scopus 로고
    • Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga
    • Jannasch HW, Huber R, Belkin S and Stetter KO, Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150: 103-104 (1988).
    • (1988) Arch Microbiol , vol.150 , pp. 103-104
    • Jannasch, H.W.1    Huber, R.2    Belkin, S.3    Stetter, K.O.4
  • 34
    • 0034815472 scopus 로고    scopus 로고
    • Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan
    • Takahata Y, Nishijima M, Hoaki T and Maruyama T, Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51: 1901-1909 (2001).
    • (2001) Int J Syst Evol Microbiol , vol.51 , pp. 1901-1909
    • Takahata, Y.1    Nishijima, M.2    Hoaki, T.3    Maruyama, T.4
  • 35
    • 0026484958 scopus 로고
    • Improved methods for the cultivation of the extremely thermophilic bacterium Thermotoga neapolitana
    • Childers SE, Vargas M and Noll KM, Improved methods for the cultivation of the extremely thermophilic bacterium Thermotoga neapolitana. Appl Environ Microbiol 58: 3949-3953 (1992).
    • (1992) Appl Environ Microbiol , vol.58 , pp. 3949-3953
    • Childers, S.E.1    Vargas, M.2    Noll, K.M.3
  • 36
    • 12444272525 scopus 로고
    • Adsorption of gases in multimolecular layers
    • Brunauer S, Emmett PH and Teller E, Adsorption of gases in multimolecular layers. J Am Chem Soc 60: 309-319 (1938).
    • (1938) J Am Chem Soc , vol.60 , pp. 309-319
    • Brunauer, S.1    Emmett, P.H.2    Teller, E.3
  • 37
    • 0017613512 scopus 로고
    • A simplification of the protein assay method of Lowry, which is more generally applicable
    • Peterson GL, A simplification of the protein assay method of Lowry, et al. which is more generally applicable. Anal Biochem 83: 346-356 (1977).
    • (1977) Anal Biochem , vol.83 , pp. 346-356
    • Peterson, G.L.1
  • 38
    • 0032703237 scopus 로고    scopus 로고
    • Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples
    • Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715-4724.
    • Appl Environ Microbiol , vol.65 , pp. 4715-4724
    • Miller, D.N.1    Bryant, J.E.2    Madsen, E.L.3    Ghiorse, W.C.4
  • 39
    • 84865162501 scopus 로고    scopus 로고
    • Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (1999) (accessed November 2011).
    • Sander R, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (1999) http://www.mpch-mainz.mpg.de/∼sander/res/henry.html (accessed November 2011).
    • Sander, R.1
  • 43
    • 0034609603 scopus 로고    scopus 로고
    • Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima
    • Rinker KD and Kelly RM, Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng 69: 537-547 (2009).
    • (2009) Biotechnol Bioeng , vol.69 , pp. 537-547
    • Rinker, K.D.1    Kelly, R.M.2
  • 45
    • 34547137028 scopus 로고    scopus 로고
    • Bonferroni and Šidák corrections for multiple comparisons
    • ed by Salkind NJ. Sage Publications, Thousand Oaks, CA.
    • Abdi H, Bonferroni and Šidák corrections for multiple comparisons, in Encyclopedia of Measurement and Statistics, ed by Salkind NJ. Sage Publications, Thousand Oaks, CA (2007).
    • (2007) Encyclopedia of Measurement and Statistics
    • Abdi, H.1
  • 47
    • 8144228289 scopus 로고    scopus 로고
    • Transcriptional analysis of biofilm formation process in the anaerobic, hyperthermophilic bacterium Thermotoga maritima
    • Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, et al, Transcriptional analysis of biofilm formation process in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 70: 6098-6112 (2004).
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6098-6112
    • Pysz, M.A.1    Conners, S.B.2    Montero, C.I.3    Shockley, K.R.4    Johnson, M.R.5    Ward, D.E.6
  • 48
    • 0026062277 scopus 로고
    • A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors
    • Karamanev DG and Nikolov LN, A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors. Bioprocess Biosyst Eng 6: 127-130 (1991).
    • (1991) Bioprocess Biosyst Eng , vol.6 , pp. 127-130
    • Karamanev, D.G.1    Nikolov, L.N.2
  • 49
    • 38349172699 scopus 로고    scopus 로고
    • Modeling 1,2-dichloroethane biodegradation by Klebsiella oxytocava 8391 immobilized on granulated activated carbon
    • Mileva A, Sapundzhiev TS and Beschkov V, Modeling 1, 2-dichloroethane biodegradation by Klebsiella oxytocava 8391 immobilized on granulated activated carbon. Bioprocess Biosyst Eng 31: 75-85 (2008).
    • (2008) Bioprocess Biosyst Eng , vol.31 , pp. 75-85
    • Mileva, A.1    Sapundzhiev, T.S.2    Beschkov, V.3
  • 50
    • 0036237024 scopus 로고    scopus 로고
    • Hydrogen production by the thermophilic bacterium Thermotoga neapolitana
    • Van Ooteghem SA, Beer SK and Yue PC, Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98-100: 177-189 (2002).
    • (2002) Appl Biochem Biotechnol , vol.98-100 , pp. 177-189
    • Van Ooteghem, S.A.1    Beer, S.K.2    Yue, P.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.