메뉴 건너뛰기




Volumn 144, Issue , 2015, Pages 73-95

A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products

Author keywords

Biofuels; Biohydrogen; Biomass valorization; Dark fermentation; Fermentation metabolites; H2 yield

Indexed keywords

AGRICULTURAL WASTES; BIOCONVERSION; BIOFUELS; BIOMASS; BIOREACTORS; FERMENTATION; HYDROGEN PRODUCTION; INDUSTRIAL WASTES; METHANE; VOLATILE FATTY ACIDS;

EID: 84922463707     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.01.045     Document Type: Review
Times cited : (761)

References (265)
  • 2
    • 38349162066 scopus 로고    scopus 로고
    • Biohydrogen as a renewable energy resource - prospects and potentials
    • Kotay S.M., Das D. Biohydrogen as a renewable energy resource - prospects and potentials. Int J Hydrogen Energy 2008, 33:258-263.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 258-263
    • Kotay, S.M.1    Das, D.2
  • 3
    • 84857209306 scopus 로고    scopus 로고
    • Fermentative hydrogen production - an alternative clean energy source
    • Kothari R., Singh D.P., Tyagi V.V., Tyagi S.K. Fermentative hydrogen production - an alternative clean energy source. Renew Sustain Energy Rev 2012, 16:2337-2346.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 2337-2346
    • Kothari, R.1    Singh, D.P.2    Tyagi, V.V.3    Tyagi, S.K.4
  • 5
    • 74949133023 scopus 로고    scopus 로고
    • The prospects for a hydrogen economy (1): hydrogen futures
    • Ekins P., Hughes N. The prospects for a hydrogen economy (1): hydrogen futures. Technol Anal Strateg Manage 2009, 21:783-803.
    • (2009) Technol Anal Strateg Manage , vol.21 , pp. 783-803
    • Ekins, P.1    Hughes, N.2
  • 6
    • 50349093805 scopus 로고    scopus 로고
    • Potential importance of hydrogen as a future solution to environmental and transportation problems
    • Balat M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 2008, 33:4013-4029.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 4013-4029
    • Balat, M.1
  • 7
    • 55049115238 scopus 로고    scopus 로고
    • Advances in biological hydrogen production processes
    • Das D., Veziroglu T. Advances in biological hydrogen production processes. Int J Hydrogen Energy 2008, 33:6046-6057.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 6046-6057
    • Das, D.1    Veziroglu, T.2
  • 8
    • 33750885810 scopus 로고    scopus 로고
    • Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
    • Li C., Fang H.H.P. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 2007, 37:1-39.
    • (2007) Crit Rev Environ Sci Technol , vol.37 , pp. 1-39
    • Li, C.1    Fang, H.H.P.2
  • 9
    • 84922462127 scopus 로고    scopus 로고
    • [accessed 29.12.14].
    • Scopus. Keywords searches and abstracts; 2014. [accessed 29.12.14]. http://scopus.com/.
    • (2014)
  • 10
    • 84922446135 scopus 로고    scopus 로고
    • Keywords searches and abstracts
    • [accessed 29.12.14].
    • Google Scholar. Keywords searches and abstracts; 2014. [accessed 29.12.14]. http://scholar.google.com/.
    • (2014)
  • 11
    • 80051680145 scopus 로고    scopus 로고
    • Bioreactor and process design for biohydrogen production
    • Show K., Lee D., Chang J. Bioreactor and process design for biohydrogen production. Bioresour Technol 2011, 102:8524-8533.
    • (2011) Bioresour Technol , vol.102 , pp. 8524-8533
    • Show, K.1    Lee, D.2    Chang, J.3
  • 12
    • 79957995821 scopus 로고    scopus 로고
    • Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production
    • Ren N., Guo W., Liu B., Cao G., Ding J. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 2011, 22:365-370.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 365-370
    • Ren, N.1    Guo, W.2    Liu, B.3    Cao, G.4    Ding, J.5
  • 13
    • 30944443553 scopus 로고    scopus 로고
    • Bio-hydrogen production from waste materials
    • Kapdan I.K., Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol 2006, 38:569-582.
    • (2006) Enzyme Microb Technol , vol.38 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 14
    • 84866453569 scopus 로고    scopus 로고
    • Biohydrogen production: current perspectives and the way forward
    • Show K.Y., Lee D.J., Tay J.H., Lin C.Y., Chang J.S. Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 2012, 37:15616-15631.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 15616-15631
    • Show, K.Y.1    Lee, D.J.2    Tay, J.H.3    Lin, C.Y.4    Chang, J.S.5
  • 15
    • 84897527720 scopus 로고    scopus 로고
    • A review of sustainable hydrogen production using seed sludge via dark fermentation
    • Wong Y.M., Wu T.Y., Juan J.C. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 2014, 34:471-482.
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 471-482
    • Wong, Y.M.1    Wu, T.Y.2    Juan, J.C.3
  • 16
    • 78651460327 scopus 로고    scopus 로고
    • Biohydrogen production from biomass and wastes via dark fermentation: a review
    • Ntaikou I., Antonopoulou G., Lyberatos G. Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valorizat 2010, 1:21-39.
    • (2010) Waste Biomass Valorizat , vol.1 , pp. 21-39
    • Ntaikou, I.1    Antonopoulou, G.2    Lyberatos, G.3
  • 17
    • 84881224754 scopus 로고    scopus 로고
    • A review of dark fermentative hydrogen production from biodegradable municipal waste fractions
    • De Gioannis G., Muntoni a., Polettini a., Pomi R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manage 2013, 33:1345-1361.
    • (2013) Waste Manage , vol.33 , pp. 1345-1361
    • De Gioannis, G.1    Muntoni, A.2    Polettini, A.3    Pomi, R.4
  • 18
    • 84896094372 scopus 로고    scopus 로고
    • Pretreatment methods to enhance anaerobic digestion of organic solid waste
    • Ariunbaatar J., Panico A., Esposito G., Pirozzi F., Lens P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 2014, 123:143-156.
    • (2014) Appl Energy , vol.123 , pp. 143-156
    • Ariunbaatar, J.1    Panico, A.2    Esposito, G.3    Pirozzi, F.4    Lens, P.N.L.5
  • 19
    • 84873669585 scopus 로고    scopus 로고
    • Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment
    • Monlau F., Barakat A., Trably E., Dumas C., Steyer J.-P., Carrère H. Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 2013, 43:260-322.
    • (2013) Crit Rev Environ Sci Technol , vol.43 , pp. 260-322
    • Monlau, F.1    Barakat, A.2    Trably, E.3    Dumas, C.4    Steyer, J.-P.5    Carrère, H.6
  • 20
    • 84907960278 scopus 로고    scopus 로고
    • Substrate milling pretreatment as a key parameter for solid-state anaerobic digestion optimization
    • Motte J.-C., Escudié R., Hamelin J., Steyer J.-P., Bernet N., Delgenes J.-P., et al. Substrate milling pretreatment as a key parameter for solid-state anaerobic digestion optimization. Bioresour Technol 2014, 173C:185-192.
    • (2014) Bioresour Technol , vol.173 C , pp. 185-192
    • Motte, J.-C.1    Escudié, R.2    Hamelin, J.3    Steyer, J.-P.4    Bernet, N.5    Delgenes, J.-P.6
  • 21
    • 64749098287 scopus 로고    scopus 로고
    • Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy
    • Redwood M.D., Paterson-Beedle M., Macaskie L.E. Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Bio/Technol 2008, 8:149-185.
    • (2008) Rev Environ Sci Bio/Technol , vol.8 , pp. 149-185
    • Redwood, M.D.1    Paterson-Beedle, M.2    Macaskie, L.E.3
  • 22
    • 84888408312 scopus 로고    scopus 로고
    • Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation
    • Rai P.K., Singh S.P., Asthana R.K. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour Technol 2014, 152:140-146.
    • (2014) Bioresour Technol , vol.152 , pp. 140-146
    • Rai, P.K.1    Singh, S.P.2    Asthana, R.K.3
  • 24
    • 84916237389 scopus 로고    scopus 로고
    • A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis
    • Moreno R., Escapa A., Cara J., Carracedo B., Gómez X. A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. Int J Hydrogen Energy 2015, 40:1-8.
    • (2015) Int J Hydrogen Energy , vol.40 , pp. 1-8
    • Moreno, R.1    Escapa, A.2    Cara, J.3    Carracedo, B.4    Gómez, X.5
  • 25
    • 84893641160 scopus 로고    scopus 로고
    • Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell
    • Chookaew T., Prasertsan P., Ren Z.J. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. Nano Biotechnol 2014, 31:179-184.
    • (2014) Nano Biotechnol , vol.31 , pp. 179-184
    • Chookaew, T.1    Prasertsan, P.2    Ren, Z.J.3
  • 28
    • 84879235674 scopus 로고    scopus 로고
    • Dark fermentation optimization by anaerobic digested sludge recirculation: effects on hydrogen
    • Gottardo M., Cavinato C., Bolzonella D., Pavan P. Dark fermentation optimization by anaerobic digested sludge recirculation: effects on hydrogen. Production 2013, 32:997-1002.
    • (2013) Production , vol.32 , pp. 997-1002
    • Gottardo, M.1    Cavinato, C.2    Bolzonella, D.3    Pavan, P.4
  • 29
    • 0343462148 scopus 로고    scopus 로고
    • Hydrogen production by biological processes: a survey of literature
    • Das D., Veziroglu T.N. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 2001, 26:13-28.
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 13-28
    • Das, D.1    Veziroglu, T.N.2
  • 30
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: a review
    • Wang J., Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 2009, 34:799-811.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 799-811
    • Wang, J.1    Wan, W.2
  • 32
    • 33846192340 scopus 로고    scopus 로고
    • Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress
    • Hawkes F., Hussy I., Kyazze G., Dinsdale R., Hawkes D. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 2007, 32:172-184.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 172-184
    • Hawkes, F.1    Hussy, I.2    Kyazze, G.3    Dinsdale, R.4    Hawkes, D.5
  • 33
    • 0036827191 scopus 로고    scopus 로고
    • Biological hydrogen production; fundamentals and limiting processes
    • Hallenbeck P.C., Benemann J.R. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 2002, 27:1185-1193.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 34
    • 6944228870 scopus 로고    scopus 로고
    • Improvement of fermentative hydrogen production: various approaches
    • Nath K., Das D. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 2004, 65:520-529.
    • (2004) Appl Microbiol Biotechnol , vol.65 , pp. 520-529
    • Nath, K.1    Das, D.2
  • 35
    • 2342472020 scopus 로고    scopus 로고
    • Biological hydrogen production: effects of pH and intermediate products.
    • Khanal S., Chen W.H., Li L., Sung S. Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 2003, 29:1123-1131.
    • (2003) Int J Hydrogen Energy , vol.29 , pp. 1123-1131
    • Khanal, S.1    Chen, W.H.2    Li, L.3    Sung, S.4
  • 36
    • 28944455507 scopus 로고    scopus 로고
    • Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter
    • Kim S.-H., Han S.-K., Shin H.-S. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 2006, 41:199-207.
    • (2006) Process Biochem , vol.41 , pp. 199-207
    • Kim, S.-H.1    Han, S.-K.2    Shin, H.-S.3
  • 37
    • 84884175339 scopus 로고    scopus 로고
    • Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways
    • Guo X.M., Trably E., Latrille E., Carrere H., Steyer J. Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrogen Energy 2013, 39:1-10.
    • (2013) Int J Hydrogen Energy , vol.39 , pp. 1-10
    • Guo, X.M.1    Trably, E.2    Latrille, E.3    Carrere, H.4    Steyer, J.5
  • 38
    • 0036172432 scopus 로고    scopus 로고
    • Microbial diversity of a mesophilic hydrogen-producing sludge
    • Fang H.H.P., Zhang T., Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 2002, 58:112-118.
    • (2002) Appl Microbiol Biotechnol , vol.58 , pp. 112-118
    • Fang, H.H.P.1    Zhang, T.2    Liu, H.3
  • 40
    • 84866451441 scopus 로고    scopus 로고
    • Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production
    • Chen C.-C., Chuang Y.-S., Lin C.-Y., Lay C.-H., Sen B. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy 2012, 37:15540-15546.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 15540-15546
    • Chen, C.-C.1    Chuang, Y.-S.2    Lin, C.-Y.3    Lay, C.-H.4    Sen, B.5
  • 41
    • 3142701514 scopus 로고    scopus 로고
    • Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
    • Shin H.S., Youn J.H., Kim S.H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 2004, 29:1355-1363.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1355-1363
    • Shin, H.S.1    Youn, J.H.2    Kim, S.H.3
  • 42
    • 79952454544 scopus 로고    scopus 로고
    • Functional versus phylogenetic fingerprint analyses for monitoring hydrogen-producing bacterial populations in dark fermentation cultures
    • Quéméneur M., Hamelin J., Latrille E., Steyer J.-P., Trably E. Functional versus phylogenetic fingerprint analyses for monitoring hydrogen-producing bacterial populations in dark fermentation cultures. Int J Hydrogen Energy 2011, 36:3870-3879.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 3870-3879
    • Quéméneur, M.1    Hamelin, J.2    Latrille, E.3    Steyer, J.-P.4    Trably, E.5
  • 44
    • 64449086664 scopus 로고    scopus 로고
    • Biohydrogen production from biomass and industrial wastes by dark fermentation
    • Chong M., Sabaratnam V., Shirai Y., Ali M., Hassan M.A. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy 2009, 34:3277-3287.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 3277-3287
    • Chong, M.1    Sabaratnam, V.2    Shirai, Y.3    Ali, M.4    Hassan, M.A.5
  • 46
    • 33847163669 scopus 로고    scopus 로고
    • Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures
    • Zhang M.-L., Fan Y.-T., Xing Y., Pan C.-M., Zhang G.-S., Lay J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 2007, 31:250-254.
    • (2007) Biomass Bioenergy , vol.31 , pp. 250-254
    • Zhang, M.-L.1    Fan, Y.-T.2    Xing, Y.3    Pan, C.-M.4    Zhang, G.-S.5    Lay, J.-J.6
  • 47
    • 84922445977 scopus 로고    scopus 로고
    • Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: effects of different heat treatments
    • Nissilä M.E., Tähti H.P., Rintala J.a., Puhakka J.a. Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: effects of different heat treatments. Bioresour Technol 2011, 102:1482-1490.
    • (2011) Bioresour Technol , vol.102 , pp. 1482-1490
    • Nissilä, M.E.1    Tähti, H.P.2    Rintala, J.3    Puhakka, J.4
  • 48
    • 84860450252 scopus 로고    scopus 로고
    • Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor
    • Tawfik a., El-Qelish M. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour Technol 2012, 114:270-274.
    • (2012) Bioresour Technol , vol.114 , pp. 270-274
    • Tawfik, A.1    El-Qelish, M.2
  • 49
  • 50
    • 84902287175 scopus 로고    scopus 로고
    • Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach
    • Venkata Subhash G., Venkata Mohan S. Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach. Int J Hydrogen Energy 2014, 39:9573-9579.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 9573-9579
    • Venkata Subhash, G.1    Venkata Mohan, S.2
  • 52
  • 54
    • 84887122541 scopus 로고    scopus 로고
    • Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation
    • Liu C., Chang C., Liao Q., Zhu X. Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrogen Energy 2013, 38:2-9.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 2-9
    • Liu, C.1    Chang, C.2    Liao, Q.3    Zhu, X.4
  • 55
    • 78650842936 scopus 로고    scopus 로고
    • The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production
    • Fei Q., Chang H.N., Shang L., Choi J., Kim N., Kang J. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 2011, 102:2695-2701.
    • (2011) Bioresour Technol , vol.102 , pp. 2695-2701
    • Fei, Q.1    Chang, H.N.2    Shang, L.3    Choi, J.4    Kim, N.5    Kang, J.6
  • 56
    • 84893810635 scopus 로고    scopus 로고
    • Characteristics of biohydrogen fermentation from various substrates
    • Choi J., Ahn Y. Characteristics of biohydrogen fermentation from various substrates. Int J Hydrogen Energy 2013, 39:3152-3159.
    • (2013) Int J Hydrogen Energy , vol.39 , pp. 3152-3159
    • Choi, J.1    Ahn, Y.2
  • 57
    • 84868531107 scopus 로고    scopus 로고
    • Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials
    • Monlau F., Sambusiti C., Barakat A., Guo X.M., Latrille E., Trably E., et al. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 2012, 46:12217-12225.
    • (2012) Environ Sci Technol , vol.46 , pp. 12217-12225
    • Monlau, F.1    Sambusiti, C.2    Barakat, A.3    Guo, X.M.4    Latrille, E.5    Trably, E.6
  • 58
    • 66749184336 scopus 로고    scopus 로고
    • Recent advances in pretreatment of lignocellulosic wastes and production of value added products
    • Mtui G.Y.S. Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 2009, 8:1398-1415.
    • (2009) Afr J Biotechnol , vol.8 , pp. 1398-1415
    • Mtui, G.Y.S.1
  • 59
    • 77955597457 scopus 로고    scopus 로고
    • Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries
    • Paris Cedex 15, France; [accessed 14.05.13].
    • Eisentraut A. Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries. Paris Cedex 15, France; 2010. [accessed 14.05.13]. http://www.iea.org/publications/freepublications/publication/second_generation_biofuels.pdf.
    • (2010)
    • Eisentraut, A.1
  • 60
    • 0942298061 scopus 로고    scopus 로고
    • Performance of an innovative two-stage process converting food waste to hydrogen and methane
    • Han S.-K., Shin H.-S. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manage Assoc 2004, 54:242-249.
    • (2004) J Air Waste Manage Assoc , vol.54 , pp. 242-249
    • Han, S.-K.1    Shin, H.-S.2
  • 61
    • 78049480842 scopus 로고    scopus 로고
    • Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste
    • Lee Z.-K., Li S.-L., Kuo P.-C., Chen I.-C., Tien Y.-M., Huang Y.-J., et al. Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. Int J Hydrogen Energy 2010, 35:13458-13466.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 13458-13466
    • Lee, Z.-K.1    Li, S.-L.2    Kuo, P.-C.3    Chen, I.-C.4    Tien, Y.-M.5    Huang, Y.-J.6
  • 62
    • 9344266385 scopus 로고    scopus 로고
    • Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
    • Kim S.-H., Sun-Kee H., Hang-Sik S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 2004, 29:1607-1616.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1607-1616
    • Kim, S.-H.1    Sun-Kee, H.2    Hang-Sik, S.3
  • 63
    • 35348835626 scopus 로고    scopus 로고
    • Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater
    • Alzate-Gaviria L.M., Sebastian P.J., Pérez-Hernández A., Eapen D. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrogen Energy 2007, 32:3141-3146.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 3141-3146
    • Alzate-Gaviria, L.M.1    Sebastian, P.J.2    Pérez-Hernández, A.3    Eapen, D.4
  • 64
    • 26444474170 scopus 로고    scopus 로고
    • Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost
    • Fan Y.-T., Zhang Y.-H., Zhang S.-F., Hou H.-W., Ren B.-Z. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 2006, 97:500-505.
    • (2006) Bioresour Technol , vol.97 , pp. 500-505
    • Fan, Y.-T.1    Zhang, Y.-H.2    Zhang, S.-F.3    Hou, H.-W.4    Ren, B.-Z.5
  • 65
    • 33645701676 scopus 로고    scopus 로고
    • Acidophilic biohydrogen production from rice slurry
    • Fang H., Li C., Zhang T. Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 2006, 31:683-692.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 683-692
    • Fang, H.1    Li, C.2    Zhang, T.3
  • 66
    • 84860386252 scopus 로고    scopus 로고
    • Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations
    • Kargi F., Eren N.S., Ozmihci S. Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. Int J Hydrogen Energy 2012, 37:8338-8342.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 8338-8342
    • Kargi, F.1    Eren, N.S.2    Ozmihci, S.3
  • 67
    • 67650717310 scopus 로고    scopus 로고
    • Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C)
    • Kotsopoulos T.a., Fotidis I.a., Tsolakis N., Martzopoulos G.G. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy 2009, 33:1168-1174.
    • (2009) Biomass Bioenergy , vol.33 , pp. 1168-1174
    • Kotsopoulos, T.1    Fotidis, I.2    Tsolakis, N.3    Martzopoulos, G.G.4
  • 68
    • 84921489143 scopus 로고    scopus 로고
    • Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate
    • Ghimire A., Frunzo L., Pontoni L., D'Antonio G., Lens P.N.L., Esposito G., et al. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manage 2015, 152:43-48.
    • (2015) J Environ Manage , vol.152 , pp. 43-48
    • Ghimire, A.1    Frunzo, L.2    Pontoni, L.3    D'Antonio, G.4    Lens, P.N.L.5    Esposito, G.6
  • 70
    • 22544436707 scopus 로고    scopus 로고
    • Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis
    • Zhu S., Wu Y., Yu Z., Liao J., Zhang Y. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 2005, 40:3082-3086.
    • (2005) Process Biochem , vol.40 , pp. 3082-3086
    • Zhu, S.1    Wu, Y.2    Yu, Z.3    Liao, J.4    Zhang, Y.5
  • 71
    • 84880397192 scopus 로고    scopus 로고
    • Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion
    • Motte J.-C.J.-C., Escudié R., Bernet N., Delgenes J.-P.J.-P., Steyer J.-P.J.-P., Dumas C. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresour Technol 2013, 144:141-148.
    • (2013) Bioresour Technol , vol.144 , pp. 141-148
    • Motte, J.-C.J.-C.1    Escudié, R.2    Bernet, N.3    Delgenes, J.-P.J.-P.4    Steyer, J.-P.J.-P.5    Dumas, C.6
  • 73
    • 85050579968 scopus 로고    scopus 로고
    • Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass
    • Panagiotopoulos I., Bakker R., de Vrije T., Van Niel E., Koukios E., Claassen P. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass. J Jpn Inst Energy 2011, 90:363-368.
    • (2011) J Jpn Inst Energy , vol.90 , pp. 363-368
    • Panagiotopoulos, I.1    Bakker, R.2    de Vrije, T.3    Van Niel, E.4    Koukios, E.5    Claassen, P.6
  • 74
  • 75
    • 51349153711 scopus 로고    scopus 로고
    • Pretreatments to enhance the digestibility of lignocellulosic biomass
    • Hendriks a T.W.M., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009, 100:10-18.
    • (2009) Bioresour Technol , vol.100 , pp. 10-18
    • Hendriksa, T.W.M.1    Zeeman, G.2
  • 76
    • 84898873433 scopus 로고    scopus 로고
    • Pretreatment of lignocellulosic biomass for enhanced biogas production
    • Zheng Y., Zhao J., Xu F., Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 2014, 42:35-53.
    • (2014) Prog Energy Combust Sci , vol.42 , pp. 35-53
    • Zheng, Y.1    Zhao, J.2    Xu, F.3    Li, Y.4
  • 77
    • 84863635420 scopus 로고    scopus 로고
    • Literature review of physical and chemical pretreatment processes for lignocellulosic
    • Harmsen P., Huijgen W. Literature review of physical and chemical pretreatment processes for lignocellulosic. Biomass 2010, 1-49.
    • (2010) Biomass , pp. 1-49
    • Harmsen, P.1    Huijgen, W.2
  • 79
    • 84863195068 scopus 로고    scopus 로고
    • Lata. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility
    • Saritha M., Arora A. Lata. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 2012, 52:122-130.
    • (2012) Indian J Microbiol , vol.52 , pp. 122-130
    • Saritha, M.1    Arora, A.2
  • 80
    • 53549084887 scopus 로고    scopus 로고
    • Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review
    • Taherzadeh M.J., Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 2008.
    • (2008) Int J Mol Sci
    • Taherzadeh, M.J.1    Karimi, K.2
  • 81
    • 48049095223 scopus 로고    scopus 로고
    • Livestock waste-to-bioenergy generation opportunities
    • Cantrell K.B., Ducey T., Ro K.S., Hunt P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 2008, 99:7941-7953.
    • (2008) Bioresour Technol , vol.99 , pp. 7941-7953
    • Cantrell, K.B.1    Ducey, T.2    Ro, K.S.3    Hunt, P.G.4
  • 82
    • 68749110474 scopus 로고    scopus 로고
    • Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor
    • Wu X., Zhu J., Dong C., Miller C., Li Y., Wang L., et al. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int J Hydrogen Energy 2009, 34:6636-6645.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 6636-6645
    • Wu, X.1    Zhu, J.2    Dong, C.3    Miller, C.4    Li, Y.5    Wang, L.6
  • 83
    • 77449140678 scopus 로고    scopus 로고
    • Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation
    • Xing Y., Li Z., Fan Y., Hou H. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int 2010, 17:392-399.
    • (2010) Environ Sci Pollut Res Int , vol.17 , pp. 392-399
    • Xing, Y.1    Li, Z.2    Fan, Y.3    Hou, H.4
  • 84
    • 33749001158 scopus 로고    scopus 로고
    • Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge
    • Cheong D.-Y., Hansen C.L. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 2006, 72:635-643.
    • (2006) Appl Microbiol Biotechnol , vol.72 , pp. 635-643
    • Cheong, D.-Y.1    Hansen, C.L.2
  • 85
    • 84902477681 scopus 로고    scopus 로고
    • Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition
    • Yin D., Liu W., Zhai N., Yang G., Wang X., Feng Y., et al. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition. Bioresour Technol 2014, 166:373-380.
    • (2014) Bioresour Technol , vol.166 , pp. 373-380
    • Yin, D.1    Liu, W.2    Zhai, N.3    Yang, G.4    Wang, X.5    Feng, Y.6
  • 86
    • 0036148701 scopus 로고    scopus 로고
    • Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure
    • Callaghan F.J., Wase D.A.J., Thayanithy K., Forster C.F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 2002, 27:71-77.
    • (2002) Biomass Bioenergy , vol.27 , pp. 71-77
    • Callaghan, F.J.1    Wase, D.A.J.2    Thayanithy, K.3    Forster, C.F.4
  • 87
    • 33644871025 scopus 로고    scopus 로고
    • Inhibition of biohydrogen production by ammonia
    • Salerno M.B., Park W., Zuo Y., Logan B.E. Inhibition of biohydrogen production by ammonia. Water Res 2006, 40:1167-1172.
    • (2006) Water Res , vol.40 , pp. 1167-1172
    • Salerno, M.B.1    Park, W.2    Zuo, Y.3    Logan, B.E.4
  • 88
    • 84863628434 scopus 로고    scopus 로고
    • Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience
    • Cavinato C., Giuliano a., Bolzonella D., Pavan P., Cecchi F. Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrogen Energy 2012, 37:11549-11555.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 11549-11555
    • Cavinato, C.1    Giuliano, A.2    Bolzonella, D.3    Pavan, P.4    Cecchi, F.5
  • 89
    • 39849103268 scopus 로고    scopus 로고
    • Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge
    • O-Thong S., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N.-K. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int J Hydrogen Energy 2008, 33:1221-1231.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 1221-1231
    • O-Thong, S.1    Prasertsan, P.2    Intrasungkha, N.3    Dhamwichukorn, S.4    Birkeland, N.-K.5
  • 90
    • 79959968013 scopus 로고    scopus 로고
    • Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent
    • Mohammadi P., Ibrahim S., Mohamad Annuar M.S., Law S. Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod 2011, 19:1654-1658.
    • (2011) J Clean Prod , vol.19 , pp. 1654-1658
    • Mohammadi, P.1    Ibrahim, S.2    Mohamad Annuar, M.S.3    Law, S.4
  • 91
    • 67749102380 scopus 로고    scopus 로고
    • PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent
    • Tabatabaei M., Zakaria M.R., Rahim R.A., Wright A.G., Shirai Y., Abdullah N., et al. PCR-based DGGE and FISH analysis of methanogens in an anaerobic closed digester tank for treating palm oil mill effluent. Electron J Biotechnol 2009, 12.
    • (2009) Electron J Biotechnol , pp. 12
    • Tabatabaei, M.1    Zakaria, M.R.2    Rahim, R.A.3    Wright, A.G.4    Shirai, Y.5    Abdullah, N.6
  • 92
    • 34547595881 scopus 로고    scopus 로고
    • Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor
    • O-Thong S., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N.-K. Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 2007, 41:583-590.
    • (2007) Enzyme Microb Technol , vol.41 , pp. 583-590
    • O-Thong, S.1    Prasertsan, P.2    Intrasungkha, N.3    Dhamwichukorn, S.4    Birkeland, N.-K.5
  • 93
    • 33747113957 scopus 로고    scopus 로고
    • Biological hydrogen production from olive mill wastewater with two-stage processes
    • Eroglu E., Eroglu I., Gunduz U., Turker L., Yucel M. Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy 2006, 31:1527-1535.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1527-1535
    • Eroglu, E.1    Eroglu, I.2    Gunduz, U.3    Turker, L.4    Yucel, M.5
  • 95
    • 34848880157 scopus 로고    scopus 로고
    • Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate
    • Venkata Mohan S., Lalit Babu V., Sarma P.N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 2008, 99:59-67.
    • (2008) Bioresour Technol , vol.99 , pp. 59-67
    • Venkata Mohan, S.1    Lalit Babu, V.2    Sarma, P.N.3
  • 96
    • 84877716029 scopus 로고    scopus 로고
    • Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach
    • Gadhe A., Sonawane S.S., Varma M.N. Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int J Hydrogen Energy 2013, 38:6607-6617.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 6607-6617
    • Gadhe, A.1    Sonawane, S.S.2    Varma, M.N.3
  • 97
    • 84855823684 scopus 로고    scopus 로고
    • Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation
    • Kargi F., Eren N.S., Ozmihci S. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int J Hydrogen Energy 2012, 37:2260-2266.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 2260-2266
    • Kargi, F.1    Eren, N.S.2    Ozmihci, S.3
  • 98
    • 67650753517 scopus 로고    scopus 로고
    • Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance
    • Castelló E., García y Santos C., Iglesias T., Paolino G., Wenzel J., Borzacconi L., et al. Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrogen Energy 2009, 34:5674-5682.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 5674-5682
    • Castelló, E.1    Garcíay Santos, C.2    Iglesias, T.3    Paolino, G.4    Wenzel, J.5    Borzacconi, L.6
  • 99
    • 33750997299 scopus 로고    scopus 로고
    • Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system
    • Ren N., Li J., Li B., Wang Y., Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 2006, 31:2147-2157.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 2147-2157
    • Ren, N.1    Li, J.2    Li, B.3    Wang, Y.4    Liu, S.5
  • 100
    • 65549168727 scopus 로고    scopus 로고
    • Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches
    • Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 2009, 100:3713-3717.
    • (2009) Bioresour Technol , vol.100 , pp. 3713-3717
    • Venetsaneas, N.1    Antonopoulou, G.2    Stamatelatou, K.3    Kornaros, M.4    Lyberatos, G.5
  • 101
    • 84899452116 scopus 로고    scopus 로고
    • Bio-hydrogen production from cheese whey by dark fermentation
    • Teli A., Ficara E., Malpei F. Bio-hydrogen production from cheese whey by dark fermentation. Chem Eng Trans 2014, 37:613-618.
    • (2014) Chem Eng Trans , vol.37 , pp. 613-618
    • Teli, A.1    Ficara, E.2    Malpei, F.3
  • 102
    • 84880128676 scopus 로고    scopus 로고
    • Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate
    • Jiang J., Zhang Y., Li K., Wang Q., Gong C., Li M. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 2013, 143:525-530.
    • (2013) Bioresour Technol , vol.143 , pp. 525-530
    • Jiang, J.1    Zhang, Y.2    Li, K.3    Wang, Q.4    Gong, C.5    Li, M.6
  • 104
    • 56449128396 scopus 로고    scopus 로고
    • Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation
    • Pan J., Zhang R., Elmashad H., Sun H., Ying Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 2008, 33:6968-6975.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 6968-6975
    • Pan, J.1    Zhang, R.2    Elmashad, H.3    Sun, H.4    Ying, Y.5
  • 105
    • 77957711577 scopus 로고    scopus 로고
    • Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation
    • Lee Y.-W., Chung J. Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrogen Energy 2010, 35:11746-11755.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 11746-11755
    • Lee, Y.-W.1    Chung, J.2
  • 106
    • 52749098172 scopus 로고    scopus 로고
    • Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785
    • Kim J.K., Nhat L., Chun Y.N., Kim S.W. Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol Bioprocess Eng 2008, 13:499-504.
    • (2008) Biotechnol Bioprocess Eng , vol.13 , pp. 499-504
    • Kim, J.K.1    Nhat, L.2    Chun, Y.N.3    Kim, S.W.4
  • 107
  • 108
    • 2542475128 scopus 로고    scopus 로고
    • Enhanced biohydrogen production from sewage sludge with alkaline pretreatment
    • Cai M., Liu J., Wei Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 2004, 38:3195-3202.
    • (2004) Environ Sci Technol , vol.38 , pp. 3195-3202
    • Cai, M.1    Liu, J.2    Wei, Y.3
  • 109
    • 33646908831 scopus 로고    scopus 로고
    • Hydrogen and methane production from household solid waste in the two-stage fermentation process
    • Liu D., Liu D., Zeng R.J., Angelidaki I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 2006, 40:2230-2236.
    • (2006) Water Res , vol.40 , pp. 2230-2236
    • Liu, D.1    Liu, D.2    Zeng, R.J.3    Angelidaki, I.4
  • 110
    • 80051691329 scopus 로고    scopus 로고
    • Dark fermentation on biohydrogen production: pure culture
    • Lee D.-J., Show K.-Y., Su A. Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 2011, 102:8393-8402.
    • (2011) Bioresour Technol , vol.102 , pp. 8393-8402
    • Lee, D.-J.1    Show, K.-Y.2    Su, A.3
  • 111
    • 84875744057 scopus 로고    scopus 로고
    • A critical literature review on biohydrogen production by pure cultures
    • Elsharnouby O., Hafez H., Nakhla G., El Naggar M.H. A critical literature review on biohydrogen production by pure cultures. Int J Hydrogen Energy 2013, 38:4945-4966.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 4945-4966
    • Elsharnouby, O.1    Hafez, H.2    Nakhla, G.3    El Naggar, M.H.4
  • 112
    • 0008374127 scopus 로고    scopus 로고
    • Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08
    • Kumar N., Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 2000, 35:589-593.
    • (2000) Process Biochem , vol.35 , pp. 589-593
    • Kumar, N.1    Das, D.2
  • 113
    • 3843062289 scopus 로고    scopus 로고
    • Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose
    • Collet C., Adler N., Schwitzguebel J.-P., Peringer P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 2004, 29:1479-1485.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1479-1485
    • Collet, C.1    Adler, N.2    Schwitzguebel, J.-P.3    Peringer, P.4
  • 115
    • 77955515166 scopus 로고    scopus 로고
    • Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • Mars A.E., Veuskens T., Budde M.a.W., van Doeveren P.F.N.M., Lips S.J., Bakker R.R., et al. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrogen Energy 2010, 35:7730-7737.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 7730-7737
    • Mars, A.E.1    Veuskens, T.2    Budde, M.3    van Doeveren, P.F.N.M.4    Lips, S.J.5    Bakker, R.R.6
  • 116
    • 76749100206 scopus 로고    scopus 로고
    • Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium
    • Geng A., He Y., Qian C., Yan X., Zhou Z. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour Technol 2010, 101:4029-4033.
    • (2010) Bioresour Technol , vol.101 , pp. 4029-4033
    • Geng, A.1    He, Y.2    Qian, C.3    Yan, X.4    Zhou, Z.5
  • 117
    • 79955424834 scopus 로고    scopus 로고
    • Hydrogen production via thermophilic fermentation of cornstalk by Clostridium thermocellum
    • Cheng X.-Y., Liu C.-Z. Hydrogen production via thermophilic fermentation of cornstalk by Clostridium thermocellum. Energy Fuels 2011, 25:1714-1720.
    • (2011) Energy Fuels , vol.25 , pp. 1714-1720
    • Cheng, X.-Y.1    Liu, C.-Z.2
  • 118
    • 84882582421 scopus 로고    scopus 로고
    • Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scaleup
    • Faloye F.D., Kana E.B.G., Schmidt S. Optimization of hybrid inoculum development techniques for biohydrogen production and preliminary scaleup. Int J Hydrogen Energy 2013, 38:11765-11773.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 11765-11773
    • Faloye, F.D.1    Kana, E.B.G.2    Schmidt, S.3
  • 119
    • 44749093533 scopus 로고    scopus 로고
    • Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge
    • Wang J., Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 2008, 33:2934-2941.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 2934-2941
    • Wang, J.1    Wan, W.2
  • 120
    • 33748444167 scopus 로고    scopus 로고
    • Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge
    • Zhu H., Beland M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 2006, 31:1980-1988.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1980-1988
    • Zhu, H.1    Beland, M.2
  • 121
    • 53749091245 scopus 로고    scopus 로고
    • Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis
    • O-Thong S., Prasertsan P., Birkeland N.-K. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 2009, 100:909-918.
    • (2009) Bioresour Technol , vol.100 , pp. 909-918
    • O-Thong, S.1    Prasertsan, P.2    Birkeland, N.-K.3
  • 122
    • 79251643813 scopus 로고    scopus 로고
    • Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose
    • Wang Y.-Y., Ai P., Hu C.-X., Zhang Y.-L. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. Int J Hydrogen Energy 2011, 36:390-396.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 390-396
    • Wang, Y.-Y.1    Ai, P.2    Hu, C.-X.3    Zhang, Y.-L.4
  • 123
    • 79551680628 scopus 로고    scopus 로고
    • Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process
    • Giordano A., Cantù C., Spagni A. Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process. Bioresour Technol 2011, 102:4474-4479.
    • (2011) Bioresour Technol , vol.102 , pp. 4474-4479
    • Giordano, A.1    Cantù, C.2    Spagni, A.3
  • 124
    • 70450153935 scopus 로고    scopus 로고
    • Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage
    • Luo G., Xie L., Zou Z., Wang W., Zhou Q. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 2010, 101:959-964.
    • (2010) Bioresour Technol , vol.101 , pp. 959-964
    • Luo, G.1    Xie, L.2    Zou, Z.3    Wang, W.4    Zhou, Q.5
  • 125
    • 0142226934 scopus 로고    scopus 로고
    • Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost
    • Fan Y., Li C., Lay J.-J., Hou H., Zhang G. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour Technol 2004, 91:189-193.
    • (2004) Bioresour Technol , vol.91 , pp. 189-193
    • Fan, Y.1    Li, C.2    Lay, J.-J.3    Hou, H.4    Zhang, G.5
  • 126
    • 55549111564 scopus 로고    scopus 로고
    • Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation
    • Lee M.-J., Song J.-H., Hwang S.-J. Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresour Technol 2009, 100:1491-1493.
    • (2009) Bioresour Technol , vol.100 , pp. 1491-1493
    • Lee, M.-J.1    Song, J.-H.2    Hwang, S.-J.3
  • 127
    • 79959215089 scopus 로고    scopus 로고
    • Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production
    • Luo G., Karakashev D., Xie L., Zhou Q., Angelidaki I. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 2011, 108:1816-1827.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 1816-1827
    • Luo, G.1    Karakashev, D.2    Xie, L.3    Zhou, Q.4    Angelidaki, I.5
  • 128
    • 35248812885 scopus 로고    scopus 로고
    • Pretreatment of methanogenic granules for immobilized hydrogen fermentation
    • Hu B., Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy 2007, 32:3266-3273.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 3266-3273
    • Hu, B.1    Chen, S.2
  • 129
    • 84859211183 scopus 로고    scopus 로고
    • Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation
    • Song Z.-X., Wang Z.-Y., Wu L.-Y., Fan Y.-T., Hou H.-W. Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrogen Energy 2012, 37:6554-6561.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 6554-6561
    • Song, Z.-X.1    Wang, Z.-Y.2    Wu, L.-Y.3    Fan, Y.-T.4    Hou, H.-W.5
  • 130
    • 70349437184 scopus 로고    scopus 로고
    • Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat
    • Argun H., Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrogen Energy 2009, 34:8543-8548.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 8543-8548
    • Argun, H.1    Kargi, F.2
  • 131
    • 67650697750 scopus 로고    scopus 로고
    • Hydrogen fermentation of food waste without inoculum addition
    • Kim D.-H., Kim S.-H., Shin H.-S. Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 2009, 45:181-187.
    • (2009) Enzyme Microb Technol , vol.45 , pp. 181-187
    • Kim, D.-H.1    Kim, S.-H.2    Shin, H.-S.3
  • 132
    • 84882638420 scopus 로고    scopus 로고
    • Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste
    • Favaro L., Alibardi L., Cristina M., Casella S., Basaglia M. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int J Hydrogen Energy 2013, 38:11774-11779.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 11774-11779
    • Favaro, L.1    Alibardi, L.2    Cristina, M.3    Casella, S.4    Basaglia, M.5
  • 133
    • 84887588142 scopus 로고    scopus 로고
    • Dark fermentation from real solid waste. Evolution of microbial community
    • Zahedi S., Sales D., Romero L.I., Solera R. Dark fermentation from real solid waste. Evolution of microbial community. Bioresour Technol 2014, 151:221-226.
    • (2014) Bioresour Technol , vol.151 , pp. 221-226
    • Zahedi, S.1    Sales, D.2    Romero, L.I.3    Solera, R.4
  • 134
    • 0036138487 scopus 로고    scopus 로고
    • Effect of pH on hydrogen production from glucose by a mixed culture
    • Fang H.H.P., Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 2002, 82:87-93.
    • (2002) Bioresour Technol , vol.82 , pp. 87-93
    • Fang, H.H.P.1    Liu, H.2
  • 135
    • 52049118750 scopus 로고    scopus 로고
    • Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition
    • Lee Z.-K., Li S.-L., Lin J.-S., Wang Y.-H., Kuo P.-C., Cheng S.-S. Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrogen Energy 2008, 33:5234-5241.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5234-5241
    • Lee, Z.-K.1    Li, S.-L.2    Lin, J.-S.3    Wang, Y.-H.4    Kuo, P.-C.5    Cheng, S.-S.6
  • 137
    • 33746089927 scopus 로고    scopus 로고
    • Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany
    • Weiland P. Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 2006, 6:302-309.
    • (2006) Eng Life Sci , vol.6 , pp. 302-309
    • Weiland, P.1
  • 138
    • 84903516340 scopus 로고    scopus 로고
    • Total solid content drives hydrogen production through microbial selection during thermophilic fermentation
    • Motte J.-C., Trably E., Hamelin J., Escudié R., Bonnafous A., Steyer J.-P., et al. Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresour Technol 2014, 166:610-615.
    • (2014) Bioresour Technol , vol.166 , pp. 610-615
    • Motte, J.-C.1    Trably, E.2    Hamelin, J.3    Escudié, R.4    Bonnafous, A.5    Steyer, J.-P.6
  • 141
    • 40749114267 scopus 로고    scopus 로고
    • Biohydrogen production with anaerobic fluidized bed reactors-a comparison of biofilm-based and granule-based systems
    • Zhang Z., Show K., Tay J., Liang D., Lee D. Biohydrogen production with anaerobic fluidized bed reactors-a comparison of biofilm-based and granule-based systems. Int J Hydrogen Energy 2008, 33:1559-1564.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 1559-1564
    • Zhang, Z.1    Show, K.2    Tay, J.3    Liang, D.4    Lee, D.5
  • 142
    • 78049471874 scopus 로고    scopus 로고
    • Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater
    • Show K., Zhang Z., Tay J., Tee D., Lee D., Ren N., et al. Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater. Int J Hydrogen Energy 2010, 35:13350-13355.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 13350-13355
    • Show, K.1    Zhang, Z.2    Tay, J.3    Tee, D.4    Lee, D.5    Ren, N.6
  • 143
    • 33646476756 scopus 로고    scopus 로고
    • Biological hydrogen production in suspended and attached growth anaerobic reactor systems
    • Gavala H., Skiadas I., Ahring B. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 2006, 31:1164-1175.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1164-1175
    • Gavala, H.1    Skiadas, I.2    Ahring, B.3
  • 144
    • 33751218900 scopus 로고    scopus 로고
    • Effects of temperature and hydraulic retention time on anaerobic digestion of food waste
    • Kim J.K., Oh B.R., Chun Y.N., Kim S.W. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 2006, 102:328-332.
    • (2006) J Biosci Bioeng , vol.102 , pp. 328-332
    • Kim, J.K.1    Oh, B.R.2    Chun, Y.N.3    Kim, S.W.4
  • 145
    • 48649109738 scopus 로고    scopus 로고
    • Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C)
    • Liu D., Zeng R.J., Angelidaki I. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C). Biotechnol Bioeng 2008, 100:1108-1114.
    • (2008) Biotechnol Bioeng , vol.100 , pp. 1108-1114
    • Liu, D.1    Zeng, R.J.2    Angelidaki, I.3
  • 146
    • 80052377734 scopus 로고    scopus 로고
    • The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR
    • Pakarinen O., Kaparaju P., Rintala J. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR. Bioresour Technol 2011, 102:8952-8957.
    • (2011) Bioresour Technol , vol.102 , pp. 8952-8957
    • Pakarinen, O.1    Kaparaju, P.2    Rintala, J.3
  • 147
    • 79960984402 scopus 로고    scopus 로고
    • Effect of upflow velocity and hydraulic retention time in anaerobic fluidized-bed reactors used for hydrogen production
    • Dos Reis C.M., Silva E.L. Effect of upflow velocity and hydraulic retention time in anaerobic fluidized-bed reactors used for hydrogen production. Chem Eng J 2011, 172:28-36.
    • (2011) Chem Eng J , vol.172 , pp. 28-36
    • Dos Reis, C.M.1    Silva, E.L.2
  • 148
    • 16644362376 scopus 로고    scopus 로고
    • Thermophilic biohydrogen production from glucose with trickling biofilter
    • Oh Y.-K., Kim S.H., Kim M.-S., Park S. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 2004, 88:690-698.
    • (2004) Biotechnol Bioeng , vol.88 , pp. 690-698
    • Oh, Y.-K.1    Kim, S.H.2    Kim, M.-S.3    Park, S.4
  • 149
    • 15944375515 scopus 로고    scopus 로고
    • Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes
    • Hu Z.-H., Yu H.-Q., Zhu R.-F. Influence of particle size and pH on anaerobic degradation of cellulose by ruminal microbes. Int Biodeterior Biodegradat 2005, 55:233-238.
    • (2005) Int Biodeterior Biodegradat , vol.55 , pp. 233-238
    • Hu, Z.-H.1    Yu, H.-Q.2    Zhu, R.-F.3
  • 150
    • 0026554422 scopus 로고
    • Parameters affecting solvent production by Clostridium pasteurianum
    • Dabrock B., Bahl H., Gottschalk G. Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 1992, 58:1233-1239.
    • (1992) Appl Environ Microbiol , vol.58 , pp. 1233-1239
    • Dabrock, B.1    Bahl, H.2    Gottschalk, G.3
  • 152
    • 77955665569 scopus 로고    scopus 로고
    • Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH
    • Luo G., Xie L., Zou Z., Zhou Q., Wang J.-Y. Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl Energy 2010, 87:3710-3717.
    • (2010) Appl Energy , vol.87 , pp. 3710-3717
    • Luo, G.1    Xie, L.2    Zou, Z.3    Zhou, Q.4    Wang, J.-Y.5
  • 154
    • 28444497004 scopus 로고    scopus 로고
    • Inhibition of biohydrogen production by undissociated acetic and butyric acids
    • Van Ginkel S., Logan B.E. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 2005, 39:9351-9356.
    • (2005) Environ Sci Technol , vol.39 , pp. 9351-9356
    • Van Ginkel, S.1    Logan, B.E.2
  • 155
    • 48449107041 scopus 로고    scopus 로고
    • Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH
    • Tang G.-L., Huang J., Sun Z.-J., Tang Q.-Q., Yan C.-H., Liu G.-Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 2008, 106:80-87.
    • (2008) J Biosci Bioeng , vol.106 , pp. 80-87
    • Tang, G.-L.1    Huang, J.2    Sun, Z.-J.3    Tang, Q.-Q.4    Yan, C.-H.5    Liu, G.-Q.6
  • 156
    • 77954311113 scopus 로고    scopus 로고
    • Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration
    • Kongjan P., Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 2010, 101:7789-7796.
    • (2010) Bioresour Technol , vol.101 , pp. 7789-7796
    • Kongjan, P.1    Angelidaki, I.2
  • 157
    • 55049125741 scopus 로고    scopus 로고
    • Enrichment and adaptation of extreme-thermophilic (70 °C) hydrogen producing bacteria to organic household solid waste by repeated batch cultivation
    • Liu D., Zeng R., Angelidaki I. Enrichment and adaptation of extreme-thermophilic (70 °C) hydrogen producing bacteria to organic household solid waste by repeated batch cultivation. Int J Hydrogen Energy 2008, 33:6492-6497.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 6492-6497
    • Liu, D.1    Zeng, R.2    Angelidaki, I.3
  • 158
    • 79961128538 scopus 로고    scopus 로고
    • Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge
    • Wang J., Wan W. Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge. Biomass Bioenergy 2011, 35:3896-3901.
    • (2011) Biomass Bioenergy , vol.35 , pp. 3896-3901
    • Wang, J.1    Wan, W.2
  • 159
    • 79956281139 scopus 로고    scopus 로고
    • Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances
    • Foglia D., Wukovits W., Friedl A., De Vrije T., Pieternel A.M. Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chem Eng Trans 2006, 2:815-820.
    • (2006) Chem Eng Trans , vol.2 , pp. 815-820
    • Foglia, D.1    Wukovits, W.2    Friedl, A.3    De Vrije, T.4    Pieternel, A.M.5
  • 161
    • 84866468669 scopus 로고    scopus 로고
    • Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy
    • Lee K.-S., Tseng T.-S., Liu Y.-W., Hsiao Y.-D. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrogen Energy 2012, 37:15556-15562.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 15556-15562
    • Lee, K.-S.1    Tseng, T.-S.2    Liu, Y.-W.3    Hsiao, Y.-D.4
  • 162
    • 80051703416 scopus 로고    scopus 로고
    • Bioreactor design for continuous dark fermentative hydrogen production
    • Jung K.-W., Kim D.-H., Kim S.-H., Shin H.-S. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 2011, 102:8612-8620.
    • (2011) Bioresour Technol , vol.102 , pp. 8612-8620
    • Jung, K.-W.1    Kim, D.-H.2    Kim, S.-H.3    Shin, H.-S.4
  • 163
    • 36549071585 scopus 로고    scopus 로고
    • Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor
    • Show K., Zhang Z., Tay J., Teeliang D., Lee D., Jiang W. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. Int J Hydrogen Energy 2007, 32:4744-4753.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 4744-4753
    • Show, K.1    Zhang, Z.2    Tay, J.3    Teeliang, D.4    Lee, D.5    Jiang, W.6
  • 164
  • 165
    • 84897118422 scopus 로고    scopus 로고
    • Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads
    • Pasupuleti S.B., Sarkar O., Venkata Mohan S. Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads. Int J Hydrogen Energy 2014, 39:7587-7596.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 7587-7596
    • Pasupuleti, S.B.1    Sarkar, O.2    Venkata Mohan, S.3
  • 166
    • 74449093657 scopus 로고    scopus 로고
    • Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste
    • Kim D.-H., Kim S.-H., Kim K.-Y., Shin H.-S. Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. Int J Hydrogen Energy 2010, 35:1590-1594.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 1590-1594
    • Kim, D.-H.1    Kim, S.-H.2    Kim, K.-Y.3    Shin, H.-S.4
  • 167
    • 77955661708 scopus 로고    scopus 로고
    • Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time
    • Buitrón G., Carvajal C. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 2010, 101:9071-9077.
    • (2010) Bioresour Technol , vol.101 , pp. 9071-9077
    • Buitrón, G.1    Carvajal, C.2
  • 168
    • 71549164652 scopus 로고    scopus 로고
    • Bio hydrogen generation from kitchen waste in an inclined plug flow reactor
    • Jayalakshmi S., Joseph K., Sukumaran V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int J Hydrogen Energy 2009, 34:8854-8858.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 8854-8858
    • Jayalakshmi, S.1    Joseph, K.2    Sukumaran, V.3
  • 169
    • 3042855672 scopus 로고    scopus 로고
    • Biological hydrogen production using a membrane bioreactor
    • Oh S.-E., Iyer P., Bruns M.A., Logan B.E. Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 2004, 87:119-127.
    • (2004) Biotechnol Bioeng , vol.87 , pp. 119-127
    • Oh, S.-E.1    Iyer, P.2    Bruns, M.A.3    Logan, B.E.4
  • 170
    • 60649122011 scopus 로고    scopus 로고
    • Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review
    • Saratale G.D., Chen S., Lo Y., Saratale R.G., Chang J. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. J Sci Ind Res 2008, 67:962-979.
    • (2008) J Sci Ind Res , vol.67 , pp. 962-979
    • Saratale, G.D.1    Chen, S.2    Lo, Y.3    Saratale, R.G.4    Chang, J.5
  • 172
    • 77951025629 scopus 로고    scopus 로고
    • Bioconversion of corncob to hydrogen using anaerobic mixed microflora
    • Pan C., Zhang S., Fan Y., Hou H. Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy 2010, 35:2663-2669.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 2663-2669
    • Pan, C.1    Zhang, S.2    Fan, Y.3    Hou, H.4
  • 173
    • 78650743391 scopus 로고    scopus 로고
    • Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor
    • Esposito G., Frunzo L., Panico A., Pirozzi F. Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 2011, 46:557-565.
    • (2011) Process Biochem , vol.46 , pp. 557-565
    • Esposito, G.1    Frunzo, L.2    Panico, A.3    Pirozzi, F.4
  • 174
    • 57149094235 scopus 로고    scopus 로고
    • Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge
    • Esposito G., Frunzo L., Panico A., d'Antonio G. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge. Water Sci Technol 2008, 58:1513-1519.
    • (2008) Water Sci Technol , vol.58 , pp. 1513-1519
    • Esposito, G.1    Frunzo, L.2    Panico, A.3    d'Antonio, G.4
  • 175
    • 80054874817 scopus 로고    scopus 로고
    • Model calibration and validation for OFMSW and sewage sludge co-digestion reactors
    • Esposito G., Frunzo L., Panico A., Pirozzi F. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors. Waste Manage 2011, 31:2527-2535.
    • (2011) Waste Manage , vol.31 , pp. 2527-2535
    • Esposito, G.1    Frunzo, L.2    Panico, A.3    Pirozzi, F.4
  • 176
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 2000, 74:25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 177
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review
    • Parawira W., Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 2011, 31:20-31.
    • (2011) Crit Rev Biotechnol , vol.31 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 179
    • 84883812325 scopus 로고    scopus 로고
    • Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment ofsunflower stalks
    • Monlau F., Aemig Q., Trably E., Hamelin J., Steyer J.-P., Carrere H. Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment ofsunflower stalks. Int J Hydrogen Energy 2013, 38:12273-12282.
    • (2013) Int J Hydrogen Energy , vol.38 , pp. 12273-12282
    • Monlau, F.1    Aemig, Q.2    Trably, E.3    Hamelin, J.4    Steyer, J.-P.5    Carrere, H.6
  • 180
    • 84887933665 scopus 로고    scopus 로고
    • Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks
    • Monlau F., Trably E., Barakat A., Hamelin J., Steyer J.-P., Carrere H. Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ Sci Technol 2013, 47:12591-12599.
    • (2013) Environ Sci Technol , vol.47 , pp. 12591-12599
    • Monlau, F.1    Trably, E.2    Barakat, A.3    Hamelin, J.4    Steyer, J.-P.5    Carrere, H.6
  • 181
    • 80052387209 scopus 로고    scopus 로고
    • Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence
    • Yuan X., Shi X., Zhang P., Wei Y., Guo R., Wang L. Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol 2011, 102:9007-9012.
    • (2011) Bioresour Technol , vol.102 , pp. 9007-9012
    • Yuan, X.1    Shi, X.2    Zhang, P.3    Wei, Y.4    Guo, R.5    Wang, L.6
  • 182
    • 34248637324 scopus 로고    scopus 로고
    • Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process
    • Datar R., Huang J., Maness P., Mohagheghi a., Czernik S., Chornet E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 2007, 32:932-939.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 932-939
    • Datar, R.1    Huang, J.2    Maness, P.3    Mohagheghi, A.4    Czernik, S.5    Chornet, E.6
  • 183
    • 79251638160 scopus 로고    scopus 로고
    • Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield
    • Ozkan L., Erguder T.H., Demirer G.N. Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int J Hydrogen Energy 2011, 36:382-389.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 382-389
    • Ozkan, L.1    Erguder, T.H.2    Demirer, G.N.3
  • 184
    • 84655162325 scopus 로고    scopus 로고
    • Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation
    • Cui M., Shen J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 2012, 37:1120-1124.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 1120-1124
    • Cui, M.1    Shen, J.2
  • 185
    • 79953649175 scopus 로고    scopus 로고
    • Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation
    • Pan C.-M., Ma H.-C., Fan Y.-T., Hou H.-W. Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int J Hydrogen Energy 2011, 36:4852-4862.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 4852-4862
    • Pan, C.-M.1    Ma, H.-C.2    Fan, Y.-T.3    Hou, H.-W.4
  • 186
    • 41549167180 scopus 로고    scopus 로고
    • Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate
    • Argun H., Kargi F., Kapdan I., Oztekin R. Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energy 2008, 33:1813-1819.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 1813-1819
    • Argun, H.1    Kargi, F.2    Kapdan, I.3    Oztekin, R.4
  • 187
    • 0344033688 scopus 로고    scopus 로고
    • Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora
    • Lin C.-Y., Lay C.H. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 2004, 29:275-281.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 275-281
    • Lin, C.-Y.1    Lay, C.H.2
  • 188
    • 11344289815 scopus 로고    scopus 로고
    • A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora
    • Lin C., Lay C. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 2005, 30:285-292.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 285-292
    • Lin, C.1    Lay, C.2
  • 189
    • 0344118745 scopus 로고    scopus 로고
    • Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora
    • Lin C.Y.C.-Y., Lay C.H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 2004, 29:41-45.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 41-45
    • Lin, C.Y.C.-Y.1    Lay, C.H.2
  • 190
    • 80051691501 scopus 로고    scopus 로고
    • Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control
    • Tenca A., Schievano A., Perazzolo F., Adani F., Oberti R. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 2011, 102:8582-8588.
    • (2011) Bioresour Technol , vol.102 , pp. 8582-8588
    • Tenca, A.1    Schievano, A.2    Perazzolo, F.3    Adani, F.4    Oberti, R.5
  • 191
    • 84893657022 scopus 로고    scopus 로고
    • Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis
    • Xia A., Cheng J., Ding L., Lin R., Song W., Zhou J., et al. Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl Energy 2014, 120:23-30.
    • (2014) Appl Energy , vol.120 , pp. 23-30
    • Xia, A.1    Cheng, J.2    Ding, L.3    Lin, R.4    Song, W.5    Zhou, J.6
  • 192
    • 38849120692 scopus 로고    scopus 로고
    • Heavy metal effects on fermentative hydrogen production using natural mixed microflora
    • Lin C.-Y., Shei S.-H. Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int J Hydrogen Energy 2008, 33:587-593.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 587-593
    • Lin, C.-Y.1    Shei, S.-H.2
  • 193
    • 33846246288 scopus 로고    scopus 로고
    • Inhibition of heavy metals on fermentative hydrogen production by granular sludge
    • Li C., Fang H.H.P. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 2007, 67:668-673.
    • (2007) Chemosphere , vol.67 , pp. 668-673
    • Li, C.1    Fang, H.H.P.2
  • 194
    • 77957367401 scopus 로고    scopus 로고
    • Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor
    • Karadag D., Puhakka J.a. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int J Hydrogen Energy 2010, 35:8554-8560.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8554-8560
    • Karadag, D.1    Puhakka, J.2
  • 195
    • 57649244946 scopus 로고    scopus 로고
    • Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge
    • Altaş L. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 2009, 162:1551-1556.
    • (2009) J Hazard Mater , vol.162 , pp. 1551-1556
    • Altaş, L.1
  • 196
    • 71549121084 scopus 로고    scopus 로고
    • Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency
    • Su H., Cheng J., Zhou J., Song W., Cen K. Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrogen Energy 2009, 34:1780-1786.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 1780-1786
    • Su, H.1    Cheng, J.2    Zhou, J.3    Song, W.4    Cen, K.5
  • 197
    • 59649094082 scopus 로고    scopus 로고
    • Improving hydrogen production from cassava starch by combination of dark and photo fermentation
    • Su H., Cheng J., Zhou J., Song W., Cen K. Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 2009, 34:1780-1786.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 1780-1786
    • Su, H.1    Cheng, J.2    Zhou, J.3    Song, W.4    Cen, K.5
  • 198
    • 77956379973 scopus 로고    scopus 로고
    • Hydrogen production from water hyacinth through dark- and photo-fermentation
    • Su H., Cheng J., Zhou J., Song W., Cen K. Hydrogen production from water hyacinth through dark- and photo-fermentation. Int J Hydrogen Energy 2010, 35:8929-8937.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 8929-8937
    • Su, H.1    Cheng, J.2    Zhou, J.3    Song, W.4    Cen, K.5
  • 199
    • 84887988214 scopus 로고    scopus 로고
    • Production of clean fuel from waste biomass using combined dark and photofermentation
    • Hema R., Agrawal P. Production of clean fuel from waste biomass using combined dark and photofermentation. IOSR J Comput Eng 2012, 1:39-47.
    • (2012) IOSR J Comput Eng , vol.1 , pp. 39-47
    • Hema, R.1    Agrawal, P.2
  • 200
    • 33746884626 scopus 로고    scopus 로고
    • A two-stage, two-organism process for biohydrogen from glucose
    • Redwood M., Macaskie L. A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energy 2006, 31:1514-1521.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 1514-1521
    • Redwood, M.1    Macaskie, L.2
  • 201
    • 51349112793 scopus 로고    scopus 로고
    • Biohydrogen production using sequential two-stage dark and photo fermentation processes
    • Chen C.-Y., Yang M.-H., Yeh K.-L., Liu C.-H., Chang J.-S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy 2008, 33:4755-4762.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 4755-4762
    • Chen, C.-Y.1    Yang, M.-H.2    Yeh, K.-L.3    Liu, C.-H.4    Chang, J.-S.5
  • 202
    • 27644512735 scopus 로고    scopus 로고
    • Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11
    • Nath K., Kumar A., Das D. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 2005, 68:533-541.
    • (2005) Appl Microbiol Biotechnol , vol.68 , pp. 533-541
    • Nath, K.1    Kumar, A.2    Das, D.3
  • 203
    • 74449089425 scopus 로고    scopus 로고
    • Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: effects of light source and light intensity
    • Argun H., Kargi F. Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: effects of light source and light intensity. Int J Hydrogen Energy 2010, 35:1595-1603.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 1595-1603
    • Argun, H.1    Kargi, F.2
  • 205
    • 84865446929 scopus 로고    scopus 로고
    • Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge
    • Liu W., Huang S., Zhou A., Zhou G., Ren N., Wang A., et al. Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge. Int J Hydrogen Energy 2012, 37:13859-13864.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 13859-13864
    • Liu, W.1    Huang, S.2    Zhou, A.3    Zhou, G.4    Ren, N.5    Wang, A.6
  • 206
    • 79151470397 scopus 로고    scopus 로고
    • Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
    • Wang A., Sun D., Cao G., Wang H., Ren N., Wu W.-M., et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 2011, 102:4137-4143.
    • (2011) Bioresour Technol , vol.102 , pp. 4137-4143
    • Wang, A.1    Sun, D.2    Cao, G.3    Wang, H.4    Ren, N.5    Wu, W.-M.6
  • 207
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng S., Logan B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 2007, 104:18871-18873.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 208
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • Liu H., Grot S., Logan B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 2005, 39:4317-4320.
    • (2005) Environ Sci Technol , vol.39 , pp. 4317-4320
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 209
    • 80051689040 scopus 로고    scopus 로고
    • Bio-hythane production by thermophilic two-phase anaerobic digestion of organic fraction of municipal solid waste: preliminary results
    • Cavinato C., Bolzonella D., Eusebi A.L., Pavan P. Bio-hythane production by thermophilic two-phase anaerobic digestion of organic fraction of municipal solid waste: preliminary results. AIDIC Conf Ser 2009, 9:61-66.
    • (2009) AIDIC Conf Ser , vol.9 , pp. 61-66
    • Cavinato, C.1    Bolzonella, D.2    Eusebi, A.L.3    Pavan, P.4
  • 210
    • 84876466274 scopus 로고    scopus 로고
    • States and challenges for high-value biohythane production from waste biomass by dark fermentation technology
    • Liu Z., Zhang C., Lu Y., Wu X., Wang L.L., Han B., et al. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 2013, 135:292-303.
    • (2013) Bioresour Technol , vol.135 , pp. 292-303
    • Liu, Z.1    Zhang, C.2    Lu, Y.3    Wu, X.4    Wang, L.L.5    Han, B.6
  • 211
    • 77957255294 scopus 로고    scopus 로고
    • Energy balance of dark anaerobic fermentation as a tool for sustainability analysis
    • Ruggeri B., Tommasi T., Sassi G. Energy balance of dark anaerobic fermentation as a tool for sustainability analysis. Int J Hydrogen Energy 2010, 35:10202-10211.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 10202-10211
    • Ruggeri, B.1    Tommasi, T.2    Sassi, G.3
  • 212
    • 84887104936 scopus 로고    scopus 로고
    • Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic e thermophilic anaerobic co-digestion
    • Lin Y., Wu S., Wang D. Hydrogen-methane production from pulp & paper sludge and food waste by mesophilic e thermophilic anaerobic co-digestion. Int J Hydrogen Energy 2012, 38:15055-15062.
    • (2012) Int J Hydrogen Energy , vol.38 , pp. 15055-15062
    • Lin, Y.1    Wu, S.2    Wang, D.3
  • 213
    • 78049458175 scopus 로고    scopus 로고
    • 2 production using effluents of dark fermentation processes as substrate
    • 2 production using effluents of dark fermentation processes as substrate. Int J Hydrogen Energy 2010, 35:13356-13364.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 13356-13364
    • Chen, C.1    Yeh, K.2    Lo, Y.3    Wang, H.4    Chang, J.5
  • 215
    • 80051688002 scopus 로고    scopus 로고
    • Photobiological hydrogen production: recent advances and state of the art
    • Eroglu E., Melis A. Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 2011, 102:8403-8413.
    • (2011) Bioresour Technol , vol.102 , pp. 8403-8413
    • Eroglu, E.1    Melis, A.2
  • 216
    • 84893766856 scopus 로고    scopus 로고
    • 2 production with anoxygenic photosynthetic bacteria: a review
    • 2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrogen Energy 2014, 39:3127-3141.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 3127-3141
    • Adessi, A.1    De Philippis, R.2
  • 217
    • 64749085304 scopus 로고    scopus 로고
    • Advances in fermentative biohydrogen production: the way forward?
    • Hallenbeck P.C., Ghosh D. Advances in fermentative biohydrogen production: the way forward?. Trends Biotechnol 2009, 27:287-297.
    • (2009) Trends Biotechnol , vol.27 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 218
    • 0035936630 scopus 로고    scopus 로고
    • Acetate as a carbon source for hydrogen production by photosynthetic bacteria
    • Barbosa M.J., Rocha J.M., Tramper J., Wijffels R.H. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 2001, 85:25-33.
    • (2001) J Biotechnol , vol.85 , pp. 25-33
    • Barbosa, M.J.1    Rocha, J.M.2    Tramper, J.3    Wijffels, R.H.4
  • 219
    • 84865046561 scopus 로고    scopus 로고
    • Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV
    • Han H., Liu B., Yang H., Shen J. Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV. Int J Hydrogen Energy 2012, 37:12167-12174.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 12167-12174
    • Han, H.1    Liu, B.2    Yang, H.3    Shen, J.4
  • 220
    • 84865510247 scopus 로고    scopus 로고
    • Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite
    • Cheng J., Xia A., Liu Y., Lin R., Zhou J., Cen K. Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. Int J Hydrogen Energy 2012, 37:13330-13337.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 13330-13337
    • Cheng, J.1    Xia, A.2    Liu, Y.3    Lin, R.4    Zhou, J.5    Cen, K.6
  • 221
    • 38849123583 scopus 로고    scopus 로고
    • Photo-biological hydrogen production by the adopted mixed culture: data enveloping analysis
    • Venkata Mohan S., Srikanth S., Dinakar P., Sarma P.N. Photo-biological hydrogen production by the adopted mixed culture: data enveloping analysis. Int J Hydrogen Energy 2008, 33:559-569.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 559-569
    • Venkata Mohan, S.1    Srikanth, S.2    Dinakar, P.3    Sarma, P.N.4
  • 222
    • 84876697087 scopus 로고    scopus 로고
    • Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass
    • Xia A., Cheng J., Lin R., Lu H., Zhou J., Cen K. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour Technol 2013, 138:204-213.
    • (2013) Bioresour Technol , vol.138 , pp. 204-213
    • Xia, A.1    Cheng, J.2    Lin, R.3    Lu, H.4    Zhou, J.5    Cen, K.6
  • 223
    • 51549120756 scopus 로고    scopus 로고
    • Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE
    • Yanling Y., Zhenmei L.V., Hang M.I.N., Jun C. Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE. J Environ Sci 2008, 20:1118-1125.
    • (2008) J Environ Sci , vol.20 , pp. 1118-1125
    • Yanling, Y.1    Zhenmei, L.V.2    Hang, M.I.N.3    Jun, C.4
  • 224
    • 33846228744 scopus 로고    scopus 로고
    • High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose
    • Tao Y., Chen Y., Wu Y., He Y., Zhou Z. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 2007, 32:200-206.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 200-206
    • Tao, Y.1    Chen, Y.2    Wu, Y.3    He, Y.4    Zhou, Z.5
  • 225
    • 77957252570 scopus 로고    scopus 로고
    • Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production.
    • Dasgupta C.N., Jose Gilbert J., Lindblad P., Heidorn T., Borgvang S.a., Skjanes K., et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy 2010, 35:10218-10238.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 10218-10238
    • Dasgupta, C.N.1    Jose Gilbert, J.2    Lindblad, P.3    Heidorn, T.4    Borgvang, S.5    Skjanes, K.6
  • 227
    • 57549083309 scopus 로고    scopus 로고
    • Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations
    • Argun H., Kargi F., Kapdan I. Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrogen Energy 2008, 33:7405-7412.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 7405-7412
    • Argun, H.1    Kargi, F.2    Kapdan, I.3
  • 228
    • 0037377478 scopus 로고    scopus 로고
    • Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001
    • Koku H., Eroglu I., Gunduz U., Yucel M., Turker L. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 2003, 28:381-388.
    • (2003) Int J Hydrogen Energy , vol.28 , pp. 381-388
    • Koku, H.1    Eroglu, I.2    Gunduz, U.3    Yucel, M.4    Turker, L.5
  • 229
    • 0033066234 scopus 로고    scopus 로고
    • Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor
    • Eroglu I., Aslan K., Gu U. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. Prog Ind Microbiol 1999, 70:103-113.
    • (1999) Prog Ind Microbiol , vol.70 , pp. 103-113
    • Eroglu, I.1    Aslan, K.2    Gu, U.3
  • 230
    • 80051679394 scopus 로고    scopus 로고
    • Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent
    • Lee C.-M., Hung G.-J., Yang C.-F. Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresour Technol 2011, 102:8350-8356.
    • (2011) Bioresour Technol , vol.102 , pp. 8350-8356
    • Lee, C.-M.1    Hung, G.-J.2    Yang, C.-F.3
  • 231
    • 84867395417 scopus 로고    scopus 로고
    • Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion
    • Androga D.D., Özgür E., Eroglu I., Gündüz U., Yücel M. Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion. Int J Hydrogen Energy 2012, 37:16421-16429.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 16421-16429
    • Androga, D.D.1    Özgür, E.2    Eroglu, I.3    Gündüz, U.4    Yücel, M.5
  • 232
    • 84863110511 scopus 로고    scopus 로고
    • An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes
    • Redwood M.D., Orozco R.L., Majewski A.J., Macaskie L.E. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresour Technol 2012, 119:384-392.
    • (2012) Bioresour Technol , vol.119 , pp. 384-392
    • Redwood, M.D.1    Orozco, R.L.2    Majewski, A.J.3    Macaskie, L.E.4
  • 233
    • 0036827180 scopus 로고    scopus 로고
    • Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides
    • Koku H., Eroglu I., Gunduz U., Yucel M., Turker L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 2002, 27:1315-1329.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 1315-1329
    • Koku, H.1    Eroglu, I.2    Gunduz, U.3    Yucel, M.4    Turker, L.5
  • 234
    • 84901191883 scopus 로고    scopus 로고
    • 2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement
    • 2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrogen Energy 2014, 39:8977-8982.
    • (2014) Int J Hydrogen Energy , vol.39 , pp. 8977-8982
    • Li, X.-H.1    Liang, D.-W.2    Bai, Y.-X.3    Fan, Y.-T.4    Hou, H.-W.5
  • 235
    • 67650713527 scopus 로고    scopus 로고
    • Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
    • Lalaurette E., Thammannagowda S., Mohagheghi A., Maness P.-C., Logan B.E. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 2009, 34:6201-6210.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 6201-6210
    • Lalaurette, E.1    Thammannagowda, S.2    Mohagheghi, A.3    Maness, P.-C.4    Logan, B.E.5
  • 236
    • 51349090905 scopus 로고    scopus 로고
    • Hydrogen production using single-chamber membrane-free microbial electrolysis cells
    • Hu H., Fan Y., Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 2008, 42:4172-4178.
    • (2008) Water Res , vol.42 , pp. 4172-4178
    • Hu, H.1    Fan, Y.2    Liu, H.3
  • 237
    • 84904581523 scopus 로고    scopus 로고
    • Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process
    • Wieczorek N., Kucuker M.A., Kuchta K. Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 2014, 132:108-117.
    • (2014) Appl Energy , vol.132 , pp. 108-117
    • Wieczorek, N.1    Kucuker, M.A.2    Kuchta, K.3
  • 238
    • 57949091188 scopus 로고    scopus 로고
    • A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process
    • Wang X., Zhao Y. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 2009, 34:245-254.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 245-254
    • Wang, X.1    Zhao, Y.2
  • 240
    • 84855658776 scopus 로고    scopus 로고
    • Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes
    • Kvesitadze G., Sadunishvili T., Dudauri T., Zakariashvili N., Partskhaladze G., Ugrekhelidze V., et al. Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes. Energy 2011, 37:94-102.
    • (2011) Energy , vol.37 , pp. 94-102
    • Kvesitadze, G.1    Sadunishvili, T.2    Dudauri, T.3    Zakariashvili, N.4    Partskhaladze, G.5    Ugrekhelidze, V.6
  • 241
    • 77955139076 scopus 로고    scopus 로고
    • Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses
    • Jung M., Hye J., Park D., Sung D., Moon J. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 2010, 35:6194-6202.
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 6194-6202
    • Jung, M.1    Hye, J.2    Park, D.3    Sung, D.4    Moon, J.5
  • 242
    • 84897552172 scopus 로고    scopus 로고
    • Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?
    • Schievano A., Tenca A., Lonati S., Manzini E., Adani F. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?. Appl Energy 2014, 124:335-342.
    • (2014) Appl Energy , vol.124 , pp. 335-342
    • Schievano, A.1    Tenca, A.2    Lonati, S.3    Manzini, E.4    Adani, F.5
  • 243
    • 77950874187 scopus 로고    scopus 로고
    • Techno-economic evaluation of a two-step biological process for hydrogen production
    • Ljunggren M., Zacchi G. Techno-economic evaluation of a two-step biological process for hydrogen production. Biotechnol Prog 2009, 26:496-504.
    • (2009) Biotechnol Prog , vol.26 , pp. 496-504
    • Ljunggren, M.1    Zacchi, G.2
  • 244
    • 0033934080 scopus 로고    scopus 로고
    • Volatile fatty acids production from food wastes and its application to biological nutrient removal
    • Lim S.-J., Choi D.W., Lee W.G., Kwon S., Chang H.N. Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng 2000, 22:543-545.
    • (2000) Bioprocess Eng , vol.22 , pp. 543-545
    • Lim, S.-J.1    Choi, D.W.2    Lee, W.G.3    Kwon, S.4    Chang, H.N.5
  • 245
    • 7444228189 scopus 로고    scopus 로고
    • Use of volatile fatty acids from an acid-phase digester for denitrification
    • Elefsiniotis P., Wareham D.G., Smith M.O. Use of volatile fatty acids from an acid-phase digester for denitrification. J Biotechnol 2004, 114:289-297.
    • (2004) J Biotechnol , vol.114 , pp. 289-297
    • Elefsiniotis, P.1    Wareham, D.G.2    Smith, M.O.3
  • 246
    • 0001967434 scopus 로고
    • Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment
    • Sørensen J., Christensen D., Srensen J.A.N., Jrgensen B.O.B. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 1981, 42:6-11.
    • (1981) Appl Environ Microbiol , vol.42 , pp. 6-11
    • Sørensen, J.1    Christensen, D.2    Srensen, J.A.N.3    Jrgensen, B.O.B.4
  • 247
    • 33845614487 scopus 로고    scopus 로고
    • Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard
    • Finke N., Vandieken V., Jørgensen B.B. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol 2007, 59:10-22.
    • (2007) FEMS Microbiol Ecol , vol.59 , pp. 10-22
    • Finke, N.1    Vandieken, V.2    Jørgensen, B.B.3
  • 248
    • 84860428565 scopus 로고    scopus 로고
    • Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica
    • Fontanille P., Kumar V., Christophe G., Nouaille R., Larroche C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 2012, 114:443-449.
    • (2012) Bioresour Technol , vol.114 , pp. 443-449
    • Fontanille, P.1    Kumar, V.2    Christophe, G.3    Nouaille, R.4    Larroche, C.5
  • 249
    • 78751627523 scopus 로고    scopus 로고
    • Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
    • Agler M.T., Wrenn B.a., Zinder S.H., Angenent L.T. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 2011, 29:70-78.
    • (2011) Trends Biotechnol , vol.29 , pp. 70-78
    • Agler, M.T.1    Wrenn, B.2    Zinder, S.H.3    Angenent, L.T.4
  • 250
    • 57949115357 scopus 로고    scopus 로고
    • Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent
    • Tuna E., Kargi F., Argun H. Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent. Int J Hydrogen Energy 2009, 34:262-269.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 262-269
    • Tuna, E.1    Kargi, F.2    Argun, H.3
  • 251
    • 84879486584 scopus 로고    scopus 로고
    • Bacterial bioaugmentation for improving methane and hydrogen production from microalgae
    • Lü F., Ji J., Shao L., He P. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 2013, 6:92.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 92
    • Lü, F.1    Ji, J.2    Shao, L.3    He, P.4
  • 252
    • 67349179146 scopus 로고    scopus 로고
    • 2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
    • 2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 2009, 24:3055-3060.
    • (2009) Biosens Bioelectron , vol.24 , pp. 3055-3060
    • Lu, L.1    Ren, N.2    Xing, D.3    Logan, B.E.4
  • 255
  • 256
    • 64449084684 scopus 로고    scopus 로고
    • Kinetic models for fermentative hydrogen production: a review
    • Wang J., Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy 2009, 34:3313-3323.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 3313-3323
    • Wang, J.1    Wan, W.2
  • 257
    • 77957724082 scopus 로고    scopus 로고
    • Predicting VFA formation by dark fermentation of particulate substrates
    • Arudchelvam Y., Perinpanayagam M., Nirmalakhandan N. Predicting VFA formation by dark fermentation of particulate substrates. Bioresour Technol 2010, 101:7492-7499.
    • (2010) Bioresour Technol , vol.101 , pp. 7492-7499
    • Arudchelvam, Y.1    Perinpanayagam, M.2    Nirmalakhandan, N.3
  • 258
    • 33646398860 scopus 로고    scopus 로고
    • Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures
    • Mu Y., Wang G., Yu H.-Q. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol 2006, 97:1302-1307.
    • (2006) Bioresour Technol , vol.97 , pp. 1302-1307
    • Mu, Y.1    Wang, G.2    Yu, H.-Q.3
  • 260
    • 10944225967 scopus 로고    scopus 로고
    • Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1)
    • Blumensaat F., Keller J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res 2005, 39:171-183.
    • (2005) Water Res , vol.39 , pp. 171-183
    • Blumensaat, F.1    Keller, J.2
  • 262
    • 84863981981 scopus 로고    scopus 로고
    • Energy valorisation of residues of dark anaerobic production of hydrogen
    • Tommasi T., Ruggeri B., Sanfilippo S. Energy valorisation of residues of dark anaerobic production of hydrogen. J Clean Prod 2012, 34:91-97.
    • (2012) J Clean Prod , vol.34 , pp. 91-97
    • Tommasi, T.1    Ruggeri, B.2    Sanfilippo, S.3
  • 263
    • 80051673624 scopus 로고    scopus 로고
    • Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation
    • Cavinato C., Bolzonella D., Fatone F., Cecchi F., Pavan P. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 2011, 102:8605-8611.
    • (2011) Bioresour Technol , vol.102 , pp. 8605-8611
    • Cavinato, C.1    Bolzonella, D.2    Fatone, F.3    Cecchi, F.4    Pavan, P.5
  • 264
    • 78049406009 scopus 로고    scopus 로고
    • Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP)
    • Ochs D., Wukovits W., Ahrer W. Life cycle inventory analysis of biological hydrogen production by thermophilic and photo fermentation of potato steam peels (PSP). J Clean Prod 2010, 18:S88-S94.
    • (2010) J Clean Prod , vol.18 , pp. S88-S94
    • Ochs, D.1    Wukovits, W.2    Ahrer, W.3
  • 265
    • 84881072657 scopus 로고    scopus 로고
    • Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review
    • Karthikeyan O.P., Visvanathan C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Bio/Technology 2012, 12:257-284.
    • (2012) Rev Environ Sci Bio/Technology , vol.12 , pp. 257-284
    • Karthikeyan, O.P.1    Visvanathan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.