-
1
-
-
62249142791
-
Effects of temperature and substrate concentration on biological hydrogen production from starch
-
Akutsu Y., Li Y.Y., Harada H., Yu H.Q. Effects of temperature and substrate concentration on biological hydrogen production from starch. Int. J. Hydrogen Energy 2009, 34:2558-2566.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 2558-2566
-
-
Akutsu, Y.1
Li, Y.Y.2
Harada, H.3
Yu, H.Q.4
-
2
-
-
84984082223
-
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates
-
Andrews J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotech. Bioeng. 1968, 10:707-723.
-
(1968)
Biotech. Bioeng.
, vol.10
, pp. 707-723
-
-
Andrews, J.F.1
-
3
-
-
49549121831
-
Biohydrogen and methane production from cheese whey in a two-stage anaerobic process
-
Antonopoulou G., Stamatelatou K., Venetsaneas N., Kornaros M., Lyberatos G. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind. Eng. Chem. Res. 2008, 47:5227-5233.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 5227-5233
-
-
Antonopoulou, G.1
Stamatelatou, K.2
Venetsaneas, N.3
Kornaros, M.4
Lyberatos, G.5
-
4
-
-
55049085731
-
Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations
-
Argun H., Kargi F., Kapdan I.K., Oztekin R. Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentrations. Int. J. Hydrogen Energy 2008, 33:6109-6115.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 6109-6115
-
-
Argun, H.1
Kargi, F.2
Kapdan, I.K.3
Oztekin, R.4
-
5
-
-
68349152825
-
Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions
-
Azbar N., Dokgoz F.T.C., Keskin T., Korkmaz K.S., Syed H.M. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 2011, 34:7441-7447.
-
(2011)
Int. J. Hydrogen Energy
, vol.34
, pp. 7441-7447
-
-
Azbar, N.1
Dokgoz, F.T.C.2
Keskin, T.3
Korkmaz, K.S.4
Syed, H.M.5
-
6
-
-
84862510714
-
Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties
-
Basile M.A., Carfagna C., Cerruti P., D'Ayala G.G., Fontana A., Gambacorta A., Malinconico M., Dipasquale L. Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv. 2012, 2:3611-3614.
-
(2012)
RSC Adv.
, vol.2
, pp. 3611-3614
-
-
Basile, M.A.1
Carfagna, C.2
Cerruti, P.3
D'Ayala, G.G.4
Fontana, A.5
Gambacorta, A.6
Malinconico, M.7
Dipasquale, L.8
-
7
-
-
84865183617
-
Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains
-
Cappelletti M., Bucchi G., Mendes J.D.S., Alberini A., Fedi S., Bertin L., Frascari D. Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains. J. Chem. Technol. Biotechnol. 2012, 87:1291-1301.
-
(2012)
J. Chem. Technol. Biotechnol.
, vol.87
, pp. 1291-1301
-
-
Cappelletti, M.1
Bucchi, G.2
Mendes, J.D.S.3
Alberini, A.4
Fedi, S.5
Bertin, L.6
Frascari, D.7
-
8
-
-
0034789484
-
Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate
-
Chen C.-C., Lin C.-Y., Chang J.-S. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 2001, 57:56-64.
-
(2001)
Appl. Microbiol. Biotechnol.
, vol.57
, pp. 56-64
-
-
Chen, C.-C.1
Lin, C.-Y.2
Chang, J.-S.3
-
9
-
-
57049181957
-
Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels
-
Chou C.-J., Jenney F.E., Adams M.W.W., Kelly R.M. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab. Eng. 2008, 10:394-404.
-
(2008)
Metab. Eng.
, vol.10
, pp. 394-404
-
-
Chou, C.-J.1
Jenney, F.E.2
Adams, M.W.W.3
Kelly, R.M.4
-
10
-
-
50849101673
-
Effect of arabinose concentration on biohydrogen production using different mixed cultures
-
Danko A.S., Abreu A.A., Alves M.M. Effect of arabinose concentration on biohydrogen production using different mixed cultures. Int. J. Hydrogen Energy 2008, 33:4527-4532.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 4527-4532
-
-
Danko, A.S.1
Abreu, A.A.2
Alves, M.M.3
-
11
-
-
0037313237
-
Understanding biofilm resistance to antibacterial agents
-
Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2:114-122.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 114-122
-
-
Davies, D.1
-
12
-
-
65949085836
-
Continuous biohydrogen production using cheese whey: improving the hydrogen production rate
-
Davila-Vazquez G., Cota-Navarro C.B., Rosales-Colunga L.M., de Leon- Rodriguez A., Razo-Flores E. Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. Int. J. Hydrogen Energy 2009, 34:4296-4304.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 4296-4304
-
-
Davila-Vazquez, G.1
Cota-Navarro, C.B.2
Rosales-Colunga, L.M.3
de Leon-Rodriguez, A.4
Razo-Flores, E.5
-
13
-
-
67649795292
-
Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
-
de Vrije T., Bakker R.R., Budde M.A.W., Lai M.H., Mars A.E., Claassen P.A.M. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2009, 2:12-27.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 12-27
-
-
de Vrije, T.1
Bakker, R.R.2
Budde, M.A.W.3
Lai, M.H.4
Mars, A.E.5
Claassen, P.A.M.6
-
14
-
-
76749141273
-
Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana
-
D'Ippolito G., Dipasquale L., Vella F.M., Romano I., Gambacorta A., Cutignano A., Fontana A. Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35:2290-2295.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 2290-2295
-
-
D'Ippolito, G.1
Dipasquale, L.2
Vella, F.M.3
Romano, I.4
Gambacorta, A.5
Cutignano, A.6
Fontana, A.7
-
15
-
-
36649011956
-
Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana
-
Eriksen N.T., Nielsen T.M., Iversen N. Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol. Lett. 2008, 30:103-109.
-
(2008)
Biotechnol. Lett.
, vol.30
, pp. 103-109
-
-
Eriksen, N.T.1
Nielsen, T.M.2
Iversen, N.3
-
16
-
-
34250810355
-
Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1
-
Frascari D., Pinelli D., Nocentini M., Pii Y., Fedi S., Zannoni D. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl. Microbiol. Biotechnol. 2006, 73:421-428.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 421-428
-
-
Frascari, D.1
Pinelli, D.2
Nocentini, M.3
Pii, Y.4
Fedi, S.5
Zannoni, D.6
-
17
-
-
0026062277
-
A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors
-
Karamanev D.G., Nikolov L.N. A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors. Bioprocess Biosyst. Eng. 1991, 6:127-130.
-
(1991)
Bioprocess Biosyst. Eng.
, vol.6
, pp. 127-130
-
-
Karamanev, D.G.1
Nikolov, L.N.2
-
18
-
-
0031684658
-
Membrane-associated redox activities in Thermotoga neapolitana
-
Käslin S.A., Childers S.E., Noll K.M. Membrane-associated redox activities in Thermotoga neapolitana. Arch. Microbiol. 1998, 170:297-303.
-
(1998)
Arch. Microbiol.
, vol.170
, pp. 297-303
-
-
Käslin, S.A.1
Childers, S.E.2
Noll, K.M.3
-
19
-
-
35248835972
-
Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)
-
Li J.Z., Li B.K., Zhu G.F., Ren N.Q., Bo L.X., He J.G. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy 2007, 32:3274-3283.
-
(2007)
Int. J. Hydrogen Energy
, vol.32
, pp. 3274-3283
-
-
Li, J.Z.1
Li, B.K.2
Zhu, G.F.3
Ren, N.Q.4
Bo, L.X.5
He, J.G.6
-
20
-
-
0034125654
-
Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
-
Mata-Alvarez J., Macé S., Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74:3-16.
-
(2000)
Bioresour. Technol.
, vol.74
, pp. 3-16
-
-
Mata-Alvarez, J.1
Macé, S.2
Llabrés, P.3
-
21
-
-
0034190805
-
Enhancement of hydrogen production from glucose by nitrogen gas sparging
-
Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 2000, 73:59-65.
-
(2000)
Bioresour. Technol.
, vol.73
, pp. 59-65
-
-
Mizuno, O.1
Dinsdale, R.2
Hawkes, F.R.3
Hawkes, D.L.4
Noike, T.5
-
22
-
-
70350068450
-
Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition
-
Nguyen T.A.D., Han S.J., Kim J.P., Kim M.S., Sim S.J. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour. Technol. 2010, 101:S38-S41.
-
(2010)
Bioresour. Technol.
, vol.101
-
-
Nguyen, T.A.D.1
Han, S.J.2
Kim, J.P.3
Kim, M.S.4
Sim, S.J.5
-
24
-
-
8144228289
-
Transcriptional analysis of biofilm formation process in the anaerobic, hyperthermophilic bacterium Thermotoga maritima
-
Pysz M.A., Conners S.B., Montero C.I., Shockley K.R., Johnson M.R., Ward D.E., Kelly R.M. Transcriptional analysis of biofilm formation process in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 2004, 70:6098-6112.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 6098-6112
-
-
Pysz, M.A.1
Conners, S.B.2
Montero, C.I.3
Shockley, K.R.4
Johnson, M.R.5
Ward, D.E.6
Kelly, R.M.7
-
25
-
-
77951024480
-
Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth
-
Ren N.Q., Tang J., Liu B.F., Guo W.Q. Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth. Int. J. Hydrogen Energy 2010, 35:2807-2813.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 2807-2813
-
-
Ren, N.Q.1
Tang, J.2
Liu, B.F.3
Guo, W.Q.4
-
26
-
-
78449233657
-
Mechanism of glucose isomerization using a solid Lewis acid catalyst in water
-
Román-Leshkov Y., Moliner M., Labinger J.A., Davis M.E. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew. Chem. Int. Ed. 2010, 49:8954-8957.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 8954-8957
-
-
Román-Leshkov, Y.1
Moliner, M.2
Labinger, J.A.3
Davis, M.E.4
-
28
-
-
0026083153
-
Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus
-
Schäfer T., Schönheit P. Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Arch. Microbiol. 1991, 155:366-377.
-
(1991)
Arch. Microbiol.
, vol.155
, pp. 366-377
-
-
Schäfer, T.1
Schönheit, P.2
-
29
-
-
0028356024
-
2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime -involvement of the Embden-Meyerhof pathway
-
2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime -involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 1994, 161:460-470.
-
(1994)
Arch. Microbiol.
, vol.161
, pp. 460-470
-
-
Schröder, C.1
Selig, M.2
Schönheit, P.3
-
30
-
-
0017343370
-
Energy conservation in chemotropic anaerobic bacteria
-
Thauer R.K., Jungermann K., Decker K. Energy conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 1977, 41:100-180.
-
(1977)
Bacteriol. Rev.
, vol.41
, pp. 100-180
-
-
Thauer, R.K.1
Jungermann, K.2
Decker, K.3
-
31
-
-
12244253037
-
Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus
-
van Niel E.W.J., Claassen P.A.M., Stams A.J.M. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 2003, 81:255-262.
-
(2003)
Biotechnol. Bioeng.
, vol.81
, pp. 255-262
-
-
van Niel, E.W.J.1
Claassen, P.A.M.2
Stams, A.J.M.3
-
32
-
-
13544259604
-
H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions
-
Van Ooteghem S.A., Jones A., Van Der Lelie D., Dong B., Mahajan D. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 2004, 26:1223-1232.
-
(2004)
Biotechnol. Lett.
, vol.26
, pp. 1223-1232
-
-
Van Ooteghem, S.A.1
Jones, A.2
Van Der Lelie, D.3
Dong, B.4
Mahajan, D.5
-
33
-
-
0030053953
-
Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP
-
Vargas M., Noll K.M. Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP. Microbiology (UK) 1996, 142:139-144.
-
(1996)
Microbiology (UK)
, vol.142
, pp. 139-144
-
-
Vargas, M.1
Noll, K.M.2
-
34
-
-
83755187898
-
Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus
-
Willquist K., Pawar S.S., van Niel E.W. Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus. Microb. Cell Fact. 2011, 10:111-122.
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 111-122
-
-
Willquist, K.1
Pawar, S.S.2
van Niel, E.W.3
-
35
-
-
34247863804
-
Characterization of an exceedingly active NADH oxidase from the anearobic hyperthermophilic bacterium Thermotoga maritima
-
Yang X., Ma K. Characterization of an exceedingly active NADH oxidase from the anearobic hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 2007, 189:3312-3317.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 3312-3317
-
-
Yang, X.1
Ma, K.2
|