메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1255-1260

Learning decision rules from data streams

Author keywords

Data streams; Rule learning

Indexed keywords

DATA MINING TASKS; DATA STREAM; DECISION RULES; EXPERIMENTAL EVALUATION; INTERPRETABILITY; RULE LEARNING; RULE SET; STREAM MINING;

EID: 84863595229     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-213     Document Type: Conference Paper
Times cited : (72)

References (18)
  • 1
    • 77956216759 scopus 로고    scopus 로고
    • The new iris data: Modular data generators
    • Adä, I. and M. R. Berthold (2010). The new iris data: modular data generators. In KDD, pp. 413-422.
    • (2010) KDD , pp. 413-422
    • Adä, I.1    Berthold, M.R.2
  • 2
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and T. Niblett (1989). The CN2 induction algorithm. Machine Learning 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 3
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Morgan Kaufmann
    • Cohen, W. (1995). Fast effective rule induction. In Proceedings of the ICML, 115-123. Morgan Kaufmann.
    • (1995) Proceedings of the ICML , pp. 115-123
    • Cohen, W.1
  • 4
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning 24, 141-168.
    • (1996) Machine Learning , vol.24 , pp. 141-168
    • Domingos, P.1
  • 5
    • 25444465382 scopus 로고    scopus 로고
    • Incremental rule learning and border examples selection from numerical data streams
    • Ferrer, F., J. Aguilar, and J. Riquelme (2005). Incremental rule learning and border examples selection from numerical data streams. Journal of Universal Computer Science 11(8), 1426-1439.
    • (2005) Journal of Universal Computer Science , vol.11 , Issue.8 , pp. 1426-1439
    • Ferrer, F.1    Aguilar, J.2    Riquelme, J.3
  • 6
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • Morgan Kaufmann
    • Frank, E. and I. H. Witten (1998). Generating accurate rule sets without global optimization. In Proceedings of ICML, pp. 144-151. Morgan Kaufmann.
    • (1998) Proceedings of ICML , pp. 144-151
    • Frank, E.1    Witten, I.H.2
  • 8
    • 70350649252 scopus 로고    scopus 로고
    • Accurate decision trees for mining high-speed data streams
    • ACM Press
    • Gama, J., R. Rocha, and P. Medas (2003). Accurate decision trees for mining high-speed data streams. In Proceedings of KDD, pp. 523-528. ACM Press.
    • (2003) Proceedings of KDD , pp. 523-528
    • Gama, J.1    Rocha, R.2    Medas, P.3
  • 9
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithms
    • Gama, J., R. Sebastião, and P. P. Rodrigues (2009). Issues in evaluation of stream learning algorithms. In Proceedings of KDD, pp. 329-338.
    • (2009) Proceedings of KDD , pp. 329-338
    • Gama, J.1    Sebastião, R.2    Rodrigues, P.P.3
  • 10
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • IEEE Computer Society
    • Kolter, J. Z. and M. A. Maloof (2003). Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proceedings of ICDM, pp. 123-130. IEEE Computer Society.
    • (2003) Proceedings of ICDM , pp. 123-130
    • Kolter, J.Z.1    Maloof, M.A.2
  • 11
    • 1242310003 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • Maloof, M. and R. Michalski (2004). Incremental learning with partial instance memory. Artificial Intelligence 154, 95-126.
    • (2004) Artificial Intelligence , vol.154 , pp. 95-126
    • Maloof, M.1    Michalski, R.2
  • 13
    • 1442267080 scopus 로고
    • Learning Decision Lists
    • Rivest, R. (1987). Learning Decision Lists. Machine Learning 2, 229-246.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R.1
  • 14
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer, J. C. and R. H. Granger (1986). Incremental learning from noisy data. Machine Learning 1, 317-354.
    • (1986) Machine Learning , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 15
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm SEA for large-scale classification
    • ACM Press
    • Street, W. N. and Y. Kim (2001). A streaming ensemble algorithm SEA for large-scale classification. In Proceedings KDD, pp. 377-382. ACM Press.
    • (2001) Proceedings KDD , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 16
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • ACM Press
    • Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of KDD, pp. 226-235. ACM Press.
    • (2003) Proceedings of KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 18
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G. and M. Kubat (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69-101. (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.