메뉴 건너뛰기




Volumn 5139 LNAI, Issue , 2008, Pages 733-740

Mining concept-drifting data streams with multiple semi-random decision trees

Author keywords

Classification; Concept Drift; Data Streams; Random Decision Trees

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STREAMS; DECISION TREES; NOISE POLLUTION; TREES (MATHEMATICS);

EID: 68749105782     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-88192-6_78     Document Type: Conference Paper
Times cited : (20)

References (12)
  • 1
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69-101 (1996)
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 3
    • 68749094754 scopus 로고    scopus 로고
    • Fan, W.: StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams. In: 30th VLDB Conference, Toronto, Canada (2004)
    • Fan, W.: StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams. In: 30th VLDB Conference, Toronto, Canada (2004)
  • 4
    • 33749587572 scopus 로고    scopus 로고
    • An automatic construction and organization strategy for ensemble learning on data streams
    • Zhang, Y., Jin, X.: An automatic construction and organization strategy for ensemble learning on data streams. In: ACM SIGMOD Record, pp. 28-33 (2006)
    • (2006) ACM SIGMOD Record , pp. 28-33
    • Zhang, Y.1    Jin, X.2
  • 5
    • 34548766695 scopus 로고    scopus 로고
    • A Semi-Random Multiple Decision-Tree Algorithm for Mining Data Streams
    • Hu, X., Li, P., Wu, X., Wu, G.: A Semi-Random Multiple Decision-Tree Algorithm for Mining Data Streams. Journal of Computer Science and Technology 22, 711-724 (2007)
    • (2007) Journal of Computer Science and Technology , vol.22 , pp. 711-724
    • Hu, X.1    Li, P.2    Wu, X.3    Wu, G.4
  • 6
  • 7
    • 4644256188 scopus 로고    scopus 로고
    • The UCI KDD Archive, http://kdd.ics.uci.edu//databases/kddcup99/kddcup99. html
    • The UCI KDD Archive
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 22544451786 scopus 로고    scopus 로고
    • Learning concept drift with a committee of decision trees
    • Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin
    • Stanley, K.O.: Learning concept drift with a committee of decision trees. Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin (2003)
    • (2003)
    • Stanley, K.O.1
  • 11
    • 0031070068 scopus 로고    scopus 로고
    • Tolerating concept and sampling shift in lazy learning using prediction error context switching
    • Salganicoff, M.: Tolerating concept and sampling shift in lazy learning using prediction error context switching. Artificial Intelligence 11, 133-155 (1997)
    • (1997) Artificial Intelligence , vol.11 , pp. 133-155
    • Salganicoff, M.1
  • 12
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic Weighted majority: A new Ensemble Method for Tracking Concept Drift
    • Melbourne, Florida, USA, pp
    • Kolrer, J.Z., Marcus, A.: Dynamic Weighted majority: A new Ensemble Method for Tracking Concept Drift. In: 3rd International IEEE Conference on Data Mining, Melbourne, Florida, USA, pp. 123-130 (2003)
    • (2003) 3rd International IEEE Conference on Data Mining , pp. 123-130
    • Kolrer, J.Z.1    Marcus, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.