-
3
-
-
70350700681
-
New ensemble methods for evolving data streams
-
June/July
-
A. Bifet, G. Holmes, G. Pfahringer, R. Kirkby, and R. Gavalda, "New Ensemble Methods for Evolving Data Streams," Proc. 15th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '09), June/July 2009.
-
(2009)
Proc. 15th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD '09)
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, G.3
Kirkby, R.4
Gavalda, R.5
-
7
-
-
19544387592
-
Decision tree evolution using limited number of labeled data items from drifting data streams
-
Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004
-
W. Fan, Y. Huang, and P.S. Yu, "Decision Tree Evolution using Limited Number of Labeled Data Items from Drifting Data Streams," Proc. IEEE Fourth Int'l Conf. Data Mining, pp. 379-382, 2004. (Pubitemid 40731062)
-
(2004)
Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004
, pp. 379-382
-
-
Fan, W.1
Huang, Y.-A.2
Yu, P.S.3
-
8
-
-
24344498330
-
Mining data streams: A review
-
DOI 10.1145/1083784.1083789
-
M.M Gaber, A. Zaslavsky, and S. Krishnaswamy, "Mining Data Streams: A Review," ACM SIGMOD Record, vol. 34, no. 2, pp. 18-26, June 2005. (Pubitemid 41260006)
-
(2005)
SIGMOD Record
, vol.34
, Issue.2
, pp. 18-26
-
-
Gaber, M.M.1
Zaslavsky, A.2
Krishnaswamy, S.3
-
9
-
-
33749419375
-
Decision trees for mining data streams
-
Mar.
-
J. Gama, R. Fernandes, and R. Rocha, "Decision Trees for Mining Data Streams," Intelligent Data Analysis, vol. 10, no. 1, pp. 23-45, Mar. 2006.
-
(2006)
Intelligent Data Analysis
, vol.10
, Issue.1
, pp. 23-45
-
-
Gama, J.1
Fernandes, R.2
Rocha, R.3
-
11
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
Mar
-
W. Hoeffding, "Probability Inequalities for Sums of Bounded Random Variables," J. Am. Statistical Assoc., vol. 58, no. 301, pp. 13-30, Mar. 1963.
-
(1963)
J. Am. Statistical Assoc.
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
12
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, and P. Domingos, "Mining Time-Changing Data Streams," Proc. Seventh ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 97-106, 2001.
-
(2001)
Proc. Seventh ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
13
-
-
58349084016
-
-
PhD dissertation Univ. of Waikato, Hamilton
-
R. Kirkby, "Improving Hoeffding Trees," PhD dissertation, Univ. of Waikato, Hamilton, 2007.
-
(2007)
Improving Hoeffding Trees
-
-
Kirkby, R.1
-
14
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
J.Z. Kolter and M.A. Maloof, "Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift," Proc. IEEE Third Int'l Conf. Data Mining, pp. 123-130, 2003.
-
(2003)
Proc. IEEE Third Int'l Conf. Data Mining
, pp. 123-130
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
16
-
-
38349041037
-
Collaborative filtering on streaming data with interest-drifting
-
X. Li, J.M. Barajas, and Y. Ding, "Collaborative Filtering On Streaming Data With Interest-Drifting," Int'l Intelligent Data Analysis, vol. 11, no. 1, pp. 75-87, 2007.
-
(2007)
Int'l Intelligent Data Analysis
, vol.11
, Issue.1
, pp. 75-87
-
-
Li, X.1
Barajas, J.M.2
Ding, Y.3
-
17
-
-
70349145363
-
Ambiguous decision trees for mining concept-drifting data streams
-
Nov.
-
J. Liu, X. Li, and W. Hong, "Ambiguous Decision Trees for Mining Concept-Drifting Data Streams," Pattern Recognition Letters, vol. 30, no. 15, pp. 1347-1355, Nov. 2009.
-
(2009)
Pattern Recognition Letters
, vol.30
, Issue.15
, pp. 1347-1355
-
-
Liu, J.1
Li, X.2
Hong, W.3
-
18
-
-
0001035413
-
-
J. Siemons, ed. Cambridge Univ. Press
-
C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics, J. Siemons, ed., pp. 148-188, Cambridge Univ. Press, 1989.
-
(1989)
On the Method of Bounded Differences, Surveys in Combinatorics
, pp. 148-188
-
-
McDiarmid, C.1
-
19
-
-
38349133427
-
New options for hoeffding trees
-
B. Pfahringer, G. Holmes, and R. Kirkby, "New Options for Hoeffding Trees," Proc. 20th Australian Joint Conf. Advances in Artificial Intelligence, pp. 90-99, 2007.
-
(2007)
Proc. 20th Australian Joint Conf. Advances in Artificial Intelligence
, pp. 90-99
-
-
Pfahringer, B.1
Holmes, G.2
Kirkby, R.3
-
20
-
-
0001857179
-
Learning efficient classification procedures and their application to chess end games
-
J.R. Quinlan, "Learning Efficient Classification Procedures and Their Application to Chess End Games," Machine Learning: An Artificial Intelligence Approach, vol. 1, pp. 463-482, 1983.
-
Machine Learning: An Artificial Intelligence Approach
, vol.1
, Issue.1983
, pp. 463-482
-
-
Quinlan, J.R.1
-
24
-
-
2542525075
-
Adaptive probabilistic neural-networks for pattern classification in time-varying environment
-
July
-
L. Rutkowski, "Adaptive Probabilistic Neural-Networks for Pattern Classification in Time-Varying Environment," IEEE Trans. Neural Networks, vol. 15, no. 4, pp. 811-827, July 2004.
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.4
, pp. 811-827
-
-
Rutkowski, L.1
-
25
-
-
2542511591
-
Generalized regression neural networks in time-varying environment
-
May
-
L. Rutkowski, "Generalized Regression Neural Networks in Time-Varying Environment," IEEE Trans. Neural Networks, vol. 15, no. 3, pp. 576-596, May 2004.
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.3
, pp. 576-596
-
-
Rutkowski, L.1
-
26
-
-
26444562687
-
-
Technical Report TCD-CS-2004-2015, Computer Science Department, Trinity College Dublin, Apr.
-
A. Tsymbal, "The Problem of Concept Drift: Definitions and Related Work," Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin, Apr. 2004.
-
(2004)
The Problem of Concept Drift: Definitions and Related Work
-
-
Tsymbal, A.1
-
27
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P.S. Yu, and J. Han, "Mining Concept-Drifting Data Streams Using Ensemble Classifiers," Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 226-235, 2003.
-
(2003)
Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
|