메뉴 건너뛰기




Volumn 107, Issue 500, 2012, Pages 1518-1532

Spike-and-slab priors for function selection in structured additive regression models

Author keywords

Generalized additive mixed models; Parameter expansion; Penalized splines; Spatial regression; Stochastic search variable selection

Indexed keywords


EID: 84871993172     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2012.737742     Document Type: Article
Times cited : (127)

References (52)
  • 1
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierar-chical bayesian model
    • Bae, K., and Mallick, B. (2004), "Gene Selection Using a Two-Level Hierar-chical Bayesian Model," Bioinformatics, 20, 3423-3430.
    • (2004) Bioinformatics , vol.20 , pp. 3423-3430
    • Bae, K.1    Mallick, B.2
  • 2
    • 33244482488 scopus 로고    scopus 로고
    • Augmented implicitly restarted lanczos bidiagonalization methods
    • Baglama, J., and Reichel, L. (2006), "Augmented Implicitly Restarted Lanczos Bidiagonalization Methods," SIAM Journal on Scientific Computing, 27, 19-42.
    • (2006) SIAM Journal on Scientific Computing , vol.27 , pp. 19-42
    • Baglama, J.1    Reichel, L.2
  • 4
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri, M., and Berger, J. (2004), "Optimal Predictive Model Selection," The Annals of Statistics, 32, 870-897.
    • (2004) The Annals of Statistics , vol.32 , pp. 870-897
    • Barbieri, M.1    Berger, J.2
  • 5
    • 26444547624 scopus 로고    scopus 로고
    • Generalized structured additive regression based on bayesian p-splines
    • Brezger, A., and Lang, S. (2006), "Generalized Structured Additive Regression Based on Bayesian P-Splines," Computational Statistics & Data Analysis, 50, 967-991.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 6
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Bühlmann, P., and Hothorn, T. (2007), "Boosting Algorithms: Regularization, Prediction and Model Fitting," Statistical Science, 22, 477-505.
    • (2007) Statistical Science , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 7
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho, C., Polson, N., and Scott, J. (2010), "The Horseshoe Estimator for Sparse Signals," Biometrika, 97, 465-480.
    • (2010) Biometrika , vol.97 , pp. 465-480
    • Carvalho, C.1    Polson, N.2    Scott, J.3
  • 9
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection andm odelaverag-ing in semiparametric overdispersed generalized linear models
    • Cottet, R., Kohn, R., andNott, D. (2008), "VariableSelectionandModelAverag-ing in Semiparametric Overdispersed Generalized Linear Models," Journal of the American Statistical Association, 103, 661-671.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 661-671
    • Cottet, R.1    Kohn, R.2    Andnott, D.3
  • 10
    • 15844423998 scopus 로고    scopus 로고
    • Ex-act likelihood ratio tests for penalised splines
    • Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. P. (2005), "Ex-act Likelihood Ratio Tests for Penalised Splines," Biometrika, 92, 91-103.
    • (2005) Biometrika , vol.92 , pp. 91-103
    • Crainiceanu, C.1    Ruppert, D.2    Claeskens, G.3    Wand, M.P.4
  • 13
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • Dimatteo, I., Genovese, C. R., and Kass, R. E. (2001), "Bayesian Curve-fitting With Free-Knot Splines," Biometrika, 88, 1055-1071.
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Dimatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 14
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for space-time data: A bayesian perspective
    • Fahrmeir, L., Kneib, T., and Lang, S. (2004), "Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective," Statistica Sinica, 14, 731-761.
    • (2004) Statistica Sinica , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 19
    • 78651380685 scopus 로고    scopus 로고
    • Building cox-type structured hazard regression models with time-varying effects
    • Hofner, B., Kneib, T., Hartl, W., and Küchenhoff, H. (2011), "Building Cox-Type Structured Hazard Regression Models With Time-Varying Effects," Statistical Modelling, 11, 3-24.
    • (2011) Statistical Modelling , vol.11 , pp. 3-24
    • Hofner, B.1    Kneib, T.2    Hartl, W.3    Küchenhoff, H.4
  • 21
    • 77955145935 scopus 로고    scopus 로고
    • Variable selection in non-parametric additive models
    • Huang, J., Horowitz, J., and Wei, F. (2010), "Variable Selection in Non-parametric Additive Models," The Annals of Statistics, 38, 2282-2313.
    • (2010) The Annals of Statistics , vol.38 , pp. 2282-2313
    • Huang, J.1    Horowitz, J.2    Wei, F.3
  • 22
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Fre-quentist and bayesian strategies
    • Ishwaran, H., and Rao, J. (2005), "Spike and Slab Variable Selection: Fre-quentist and Bayesian Strategies," The Annals of Statistics, 33, 730-773.
    • (2005) The Annals of Statistics , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.2
  • 26
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multi-variate nonparametric regression
    • Lin, Y., and Zhang, H. (2006), "Component Selection and Smoothing in Multi-variate Nonparametric Regression," The Annals of Statistics, 34, 2272-2297.
    • (2006) The Annals of Statistics , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.2
  • 27
    • 79953654016 scopus 로고    scopus 로고
    • Practical variable selection for general-ized additive models
    • Marra, G., and Wood, S. (2011), "Practical Variable Selection for General-ized Additive Models," Computational Statistics and Data Analysis, 55, 2372-2387.
    • (2011) Computational Statistics and Data Analysis , vol.55 , pp. 2372-2387
    • Marra, G.1    Wood, S.2
  • 29
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer, D., Leisch, F., and Hornik, K. (2003), "The Support Vector Machine Under Test," Neurocomputing, 55, 169-186.
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 32
    • 69249230467 scopus 로고    scopus 로고
    • A review of bayesian variable selection methods: What, how, and which?
    • O'Hara, R., and Sillanpää, M. (2009), "A Review of Bayesian Variable Selection Methods: What, How, and Which?," Bayesian Analysis, 4, 85-118.
    • (2009) Bayesian Analysis , vol.4 , pp. 85-118
    • O'Hara, R.1    Sillanpää, M.2
  • 33
    • 39149101409 scopus 로고    scopus 로고
    • Bayesian identification, se-lection and estimation of semiparametric functions in high-dimensional additive models
    • Panagiotelis, A., and Smith, M. (2008), "Bayesian Identification, Se-lection and Estimation of Semiparametric Functions in High-Dimensional Additive Models," Journal of Econometrics, 143, 291-316.
    • (2008) Journal of Econometrics , vol.143 , pp. 291-316
    • Panagiotelis, A.1    Smith, M.2
  • 34
    • 79957438558 scopus 로고    scopus 로고
    • Shrink globally, act locally: Sparse bayesian regularization and prediction
    • eds. J. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Oxford University Press
    • Polson, N., and Scott, J. (2010), "Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction," in Bayesian Statistics 9, eds. J. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Oxford University Press, pp. 76-106.
    • (2010) Bayesian Statistics 9 , pp. 76-106
    • Polson, N.1    Scott, J.2
  • 36
    • 65349194393 scopus 로고    scopus 로고
    • Variable selection in bayesian smoothing spline anova models: Application to deterministic computer codes
    • Reich, B., Storlie, C., and Bondell, H. (2009), "Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes," Technometrics, 51, 110-120.
    • (2009) Technometrics , vol.51 , pp. 110-120
    • Reich, B.1    Storlie, C.2    Bondell, H.3
  • 39
    • 82455175692 scopus 로고    scopus 로고
    • Hyper-g priors for generalized linear models
    • Sabanés Bové, D., and Held, L. (2011), "Hyper-g Priors for Generalized Linear Models," Bayesian Analysis, 6, 1-24.
    • (2011) Bayesian Analysis , vol.6 , pp. 1-24
    • Sabanés Bové, D.1    Held, L.2
  • 43
    • 80052986293 scopus 로고    scopus 로고
    • SpikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R
    • Scheipl, F. (2011b, 9), "SpikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, 43, 1-24.
    • Journal of Statistical Software , vol.43 , pp. 1-24
    • Scheipl, F.1
  • 45
    • 40249103367 scopus 로고    scopus 로고
    • Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
    • Scheipl, F., Greven, S., and Küchenhoff, H. (2008), "Size and Power of Tests for a Zero Random Effect Variance or Polynomial Regression in Additive and Linear Mixed Models," Computational Statistics & Data Analysis, 52, 3283-3299.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 3283-3299
    • Scheipl, F.1    Greven, S.2    Küchenhoff, H.3
  • 46
    • 84871981874 scopus 로고    scopus 로고
    • Penalized likelihood and bayesian function selection in regression models
    • (in press)
    • Scheipl, F., Kneib, T., and Fahrmeir, L. (in press), "Penalized Likelihood and Bayesian Function Selection in Regression Models," Advances in Statistical Analysis.
    • Advances in Statistical Analysis
    • Scheipl, F.1    Kneib, T.2    Fahrmeir, L.3
  • 47
    • 78650732213 scopus 로고    scopus 로고
    • The adaptive cosso for nonparametric surface estimation and model selection
    • Storlie, C., Bondell, H., Reich, B., and Zhang, H. (2011), "The Adaptive COSSO for Nonparametric Surface Estimation and Model Selection," Statistica Sinica, 21, 679-705.
    • (2011) Statistica Sinica , vol.21 , pp. 679-705
    • Storlie, C.1    Bondell, H.2    Reich, B.3    Zhang, H.4
  • 48
    • 0034555628 scopus 로고    scopus 로고
    • A comparison of regression spline smoothing proce-dures
    • Wand, M. P. (2000), "A Comparison of Regression Spline Smoothing Proce-dures," Computational Statistics, 15, 443-462.
    • (2000) Computational Statistics , vol.15 , pp. 443-462
    • Wand, M.P.1
  • 50
    • 0037352633 scopus 로고    scopus 로고
    • Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    • Yau, P., Kohn, R., and Wood, S. (2003), "Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression," Journal of Computational and Graphical Statistics, 12, 23-54.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 23-54
    • Yau, P.1    Kohn, R.2    Wood, S.3
  • 51
    • 80054702555 scopus 로고    scopus 로고
    • Robust, adaptive functional re-gression in functional mixed model framework
    • Zhu, H., Brown, P., and Morris, J. S. (2011), "Robust, Adaptive Functional Re-gression in Functional Mixed Model Framework," Journal of the American Statistical Association, 106, 1167-1179.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1167-1179
    • Zhu, H.1    Brown, P.2    Morris, J.S.3
  • 52
    • 77952974130 scopus 로고    scopus 로고
    • A bayesian hierarchical model for classification with selection of functional predictors
    • Zhu, H., Vannucci, M., and Cox, D. (2010), "A Bayesian Hierarchical Model for Classification With Selection of Functional Predictors," Biometrics, 66, 463-473.
    • (2010) Biometrics , vol.66 , pp. 463-473
    • Zhu, H.1    Vannucci, M.2    Cox, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.