-
1
-
-
12344304266
-
Gene selection using a two-level hierar-chical bayesian model
-
Bae, K., and Mallick, B. (2004), "Gene Selection Using a Two-Level Hierar-chical Bayesian Model," Bioinformatics, 20, 3423-3430.
-
(2004)
Bioinformatics
, vol.20
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.2
-
2
-
-
33244482488
-
Augmented implicitly restarted lanczos bidiagonalization methods
-
Baglama, J., and Reichel, L. (2006), "Augmented Implicitly Restarted Lanczos Bidiagonalization Methods," SIAM Journal on Scientific Computing, 27, 19-42.
-
(2006)
SIAM Journal on Scientific Computing
, vol.27
, pp. 19-42
-
-
Baglama, J.1
Reichel, L.2
-
3
-
-
20744437726
-
Spatially adaptive bayesian penalized regression splines (p-splines)
-
Baladandayuthapani, V., Mallick, B., andCarroll, R. (2005), "SpatiallyAdaptive Bayesian Penalized Regression Splines (P-Splines)," Journal of Computa-tional and Graphical Statistics, 14, 378-394.
-
(2005)
Journal of Computa-tional and Graphical Statistics
, vol.14
, pp. 378-394
-
-
Baladandayuthapani, V.1
Mallick, B.2
Andcarroll, R.3
-
4
-
-
4043135554
-
Optimal predictive model selection
-
Barbieri, M., and Berger, J. (2004), "Optimal Predictive Model Selection," The Annals of Statistics, 32, 870-897.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 870-897
-
-
Barbieri, M.1
Berger, J.2
-
5
-
-
26444547624
-
Generalized structured additive regression based on bayesian p-splines
-
Brezger, A., and Lang, S. (2006), "Generalized Structured Additive Regression Based on Bayesian P-Splines," Computational Statistics & Data Analysis, 50, 967-991.
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, pp. 967-991
-
-
Brezger, A.1
Lang, S.2
-
6
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
Bühlmann, P., and Hothorn, T. (2007), "Boosting Algorithms: Regularization, Prediction and Model Fitting," Statistical Science, 22, 477-505.
-
(2007)
Statistical Science
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
7
-
-
77952811536
-
The horseshoe estimator for sparse signals
-
Carvalho, C., Polson, N., and Scott, J. (2010), "The Horseshoe Estimator for Sparse Signals," Biometrika, 97, 465-480.
-
(2010)
Biometrika
, vol.97
, pp. 465-480
-
-
Carvalho, C.1
Polson, N.2
Scott, J.3
-
8
-
-
77952543458
-
BART: Bayesian ad-ditive regression trees
-
Chipman, H., George, E., and McCulloch, R. (2010), "BART: Bayesian Ad-ditive Regression Trees," The Annals of Applied Statistics, 4, 266-298.
-
(2010)
The Annals of Applied Statistics
, vol.4
, pp. 266-298
-
-
Chipman, H.1
George, E.2
McCulloch, R.3
-
9
-
-
49549109589
-
Variable selection andm odelaverag-ing in semiparametric overdispersed generalized linear models
-
Cottet, R., Kohn, R., andNott, D. (2008), "VariableSelectionandModelAverag-ing in Semiparametric Overdispersed Generalized Linear Models," Journal of the American Statistical Association, 103, 661-671.
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 661-671
-
-
Cottet, R.1
Kohn, R.2
Andnott, D.3
-
10
-
-
15844423998
-
Ex-act likelihood ratio tests for penalised splines
-
Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. P. (2005), "Ex-act Likelihood Ratio Tests for Penalised Splines," Biometrika, 92, 91-103.
-
(2005)
Biometrika
, vol.92
, pp. 91-103
-
-
Crainiceanu, C.1
Ruppert, D.2
Claeskens, G.3
Wand, M.P.4
-
11
-
-
27544482613
-
Bayesian analysis for penalized spline regression using winbugs
-
Crainiceanu, C. M., Ruppert, D., and Wand, M. P. (2005), "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, 14, 1-24.
-
(2005)
Journal of Statistical Software
, vol.14
, pp. 1-24
-
-
Crainiceanu, C.M.1
Ruppert, D.2
Wand, M.P.3
-
12
-
-
0042878936
-
Bayesian MARS
-
Denison, D., Mallick, B., and Smith, A. (1998), "Bayesian MARS," Statistics and Computing, 8, 337-346.
-
(1998)
Statistics and Computing
, vol.8
, pp. 337-346
-
-
Denison, D.1
Mallick, B.2
Smith, A.3
-
13
-
-
0010045457
-
Bayesian curve-fitting with free-knot splines
-
Dimatteo, I., Genovese, C. R., and Kass, R. E. (2001), "Bayesian Curve-fitting With Free-Knot Splines," Biometrika, 88, 1055-1071.
-
(2001)
Biometrika
, vol.88
, pp. 1055-1071
-
-
Dimatteo, I.1
Genovese, C.R.2
Kass, R.E.3
-
14
-
-
8644257675
-
Penalized structured additive regression for space-time data: A bayesian perspective
-
Fahrmeir, L., Kneib, T., and Lang, S. (2004), "Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective," Statistica Sinica, 14, 731-761.
-
(2004)
Statistica Sinica
, vol.14
, pp. 731-761
-
-
Fahrmeir, L.1
Kneib, T.2
Lang, S.3
-
16
-
-
41949124947
-
Using redun-dant parameterizations to fit hierarchical models
-
Gelman, A., Van Dyk, D., Huang, Z., and Boscardin, J. (2008), "Using Redun-dant Parameterizations to Fit Hierarchical Models," Journal of Computa-tional and Graphical Statistics, 17, 95-122.
-
(2008)
Journal of Computa-tional and Graphical Statistics
, vol.17
, pp. 95-122
-
-
Gelman, A.1
van Dyk, D.2
Huang, Z.3
Boscardin, J.4
-
17
-
-
84893179575
-
Variable selection via gibbs sam-pling
-
George, E., and McCulloch, R. (1993), "Variable Selection via Gibbs Sam-pling," Journal of the American Statistical Association, 88, 881-889.
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 881-889
-
-
George, E.1
McCulloch, R.2
-
18
-
-
64249145967
-
Restricted likelihood ratio testing for zero variance components in linear mixed models
-
Greven, S., Crainiceanu, C., Küchenhoff, H., and Peters, A. (2008), "Restricted Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models," Journal of Computational and Graphical Statistics, 17, 870-891.
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, pp. 870-891
-
-
Greven, S.1
Crainiceanu, C.2
Küchenhoff, H.3
Peters, A.4
-
19
-
-
78651380685
-
Building cox-type structured hazard regression models with time-varying effects
-
Hofner, B., Kneib, T., Hartl, W., and Küchenhoff, H. (2011), "Building Cox-Type Structured Hazard Regression Models With Time-Varying Effects," Statistical Modelling, 11, 3-24.
-
(2011)
Statistical Modelling
, vol.11
, pp. 3-24
-
-
Hofner, B.1
Kneib, T.2
Hartl, W.3
Küchenhoff, H.4
-
20
-
-
84855754000
-
-
R package version 2. 0-0
-
Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., and Hofner, B. (2010), mboost: Model-Based Boosting, R package version 2. 0-0.
-
(2010)
Mboost: Model-Based Boosting
-
-
Hothorn, T.1
Buehlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
21
-
-
77955145935
-
Variable selection in non-parametric additive models
-
Huang, J., Horowitz, J., and Wei, F. (2010), "Variable Selection in Non-parametric Additive Models," The Annals of Statistics, 38, 2282-2313.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 2282-2313
-
-
Huang, J.1
Horowitz, J.2
Wei, F.3
-
22
-
-
22944460748
-
Spike and slab variable selection: Fre-quentist and bayesian strategies
-
Ishwaran, H., and Rao, J. (2005), "Spike and Slab Variable Selection: Fre-quentist and Bayesian Strategies," The Annals of Statistics, 33, 730-773.
-
(2005)
The Annals of Statistics
, vol.33
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.2
-
23
-
-
41949106948
-
Fast adaptive penalized splines
-
Krivobokova, T., Crainiceanu, C. M., andKauermann, G. (2008), "FastAdaptive Penalized Splines," Journal of Computational and Graphical Statistics, 17, 1-20.
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, pp. 1-20
-
-
Krivobokova, T.1
Crainiceanu, C.M.2
Andkauermann, G.3
-
24
-
-
1842591298
-
Bayesian P-Splines
-
Lang, S., and Brezger, A. (2004), "Bayesian P-Splines," Journal of Computa-tional and Graphical Statistics, 13, 183-212.
-
(2004)
Journal of Computa-tional and Graphical Statistics
, vol.13
, pp. 183-212
-
-
Lang, S.1
Brezger, A.2
-
26
-
-
33847350805
-
Component selection and smoothing in multi-variate nonparametric regression
-
Lin, Y., and Zhang, H. (2006), "Component Selection and Smoothing in Multi-variate Nonparametric Regression," The Annals of Statistics, 34, 2272-2297.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.2
-
27
-
-
79953654016
-
Practical variable selection for general-ized additive models
-
Marra, G., and Wood, S. (2011), "Practical Variable Selection for General-ized Additive Models," Computational Statistics and Data Analysis, 55, 2372-2387.
-
(2011)
Computational Statistics and Data Analysis
, vol.55
, pp. 2372-2387
-
-
Marra, G.1
Wood, S.2
-
28
-
-
73949083829
-
High-dimensional additive modeling
-
Meier, L., van der Geer, S., and Bühlmann, P. (2009), "High-Dimensional Additive Modeling," The Annals of Statistics, 37, 3779-3821.
-
(2009)
The Annals of Statistics
, vol.37
, pp. 3779-3821
-
-
Meier, L.1
van der Geer, S.2
Bühlmann, P.3
-
29
-
-
0242288813
-
The support vector machine under test
-
Meyer, D., Leisch, F., and Hornik, K. (2003), "The Support Vector Machine Under Test," Neurocomputing, 55, 169-186.
-
(2003)
Neurocomputing
, vol.55
, pp. 169-186
-
-
Meyer, D.1
Leisch, F.2
Hornik, K.3
-
30
-
-
0000130839
-
Bayesian variable selection in linear regression
-
Mitchell, T., and Beauchamp, J. (1988), "Bayesian Variable Selection in Linear Regression," Journal of the American Statistical Association, 83, 1023-1032.
-
(1988)
Journal of the American Statistical Association
, vol.83
, pp. 1023-1032
-
-
Mitchell, T.1
Beauchamp, J.2
-
31
-
-
33644782020
-
Wavelet-based functional mixed models
-
Morris, J. S., and Carroll, R. J. (2006), "Wavelet-Based Functional Mixed Models," Journal of the Royal Statistical Society, Series B, 68, 179-199.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 179-199
-
-
Morris, J.S.1
Carroll, R.J.2
-
32
-
-
69249230467
-
A review of bayesian variable selection methods: What, how, and which?
-
O'Hara, R., and Sillanpää, M. (2009), "A Review of Bayesian Variable Selection Methods: What, How, and Which?," Bayesian Analysis, 4, 85-118.
-
(2009)
Bayesian Analysis
, vol.4
, pp. 85-118
-
-
O'Hara, R.1
Sillanpää, M.2
-
33
-
-
39149101409
-
Bayesian identification, se-lection and estimation of semiparametric functions in high-dimensional additive models
-
Panagiotelis, A., and Smith, M. (2008), "Bayesian Identification, Se-lection and Estimation of Semiparametric Functions in High-Dimensional Additive Models," Journal of Econometrics, 143, 291-316.
-
(2008)
Journal of Econometrics
, vol.143
, pp. 291-316
-
-
Panagiotelis, A.1
Smith, M.2
-
34
-
-
79957438558
-
Shrink globally, act locally: Sparse bayesian regularization and prediction
-
eds. J. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Oxford University Press
-
Polson, N., and Scott, J. (2010), "Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction," in Bayesian Statistics 9, eds. J. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford: Oxford University Press, pp. 76-106.
-
(2010)
Bayesian Statistics 9
, pp. 76-106
-
-
Polson, N.1
Scott, J.2
-
35
-
-
70350092487
-
Sparse additive models
-
Ravikumar, P., Liu, H., Lafferty, J., and Wasserman, L. (2009), "Sparse Additive Models," Journal of the Royal Statistical Society, Series B, 71, 1009-1030.
-
(2009)
Journal of the Royal Statistical Society, Series B
, vol.71
, pp. 1009-1030
-
-
Ravikumar, P.1
Liu, H.2
Lafferty, J.3
Wasserman, L.4
-
36
-
-
65349194393
-
Variable selection in bayesian smoothing spline anova models: Application to deterministic computer codes
-
Reich, B., Storlie, C., and Bondell, H. (2009), "Variable Selection in Bayesian Smoothing Spline ANOVA Models: Application to Deterministic Computer Codes," Technometrics, 51, 110-120.
-
(2009)
Technometrics
, vol.51
, pp. 110-120
-
-
Reich, B.1
Storlie, C.2
Bondell, H.3
-
38
-
-
0012891890
-
-
Cambridge: Cambridge University Press
-
Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression, Cambridge: Cambridge University Press.
-
(2003)
Semiparametric Regression
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
39
-
-
82455175692
-
Hyper-g priors for generalized linear models
-
Sabanés Bové, D., and Held, L. (2011), "Hyper-g Priors for Generalized Linear Models," Bayesian Analysis, 6, 1-24.
-
(2011)
Bayesian Analysis
, vol.6
, pp. 1-24
-
-
Sabanés Bové, D.1
Held, L.2
-
40
-
-
84871982029
-
-
Technical Report, University of Zurich
-
Sabanés Bové, D., Held, L., and Kauermann, G. (2011), "Hyper-g Priors for Generalised Additive Model Selection With Penalised Splines," Technical Report, University of Zurich.
-
(2011)
Hyper-g Priors for Generalised Additive Model Selection with Penalised Splines
-
-
Sabanés Bové, D.1
Held, L.2
Kauermann, G.3
-
43
-
-
80052986293
-
SpikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R
-
Scheipl, F. (2011b, 9), "SpikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, 43, 1-24.
-
Journal of Statistical Software
, vol.43
, pp. 1-24
-
-
Scheipl, F.1
-
45
-
-
40249103367
-
Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
-
Scheipl, F., Greven, S., and Küchenhoff, H. (2008), "Size and Power of Tests for a Zero Random Effect Variance or Polynomial Regression in Additive and Linear Mixed Models," Computational Statistics & Data Analysis, 52, 3283-3299.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, pp. 3283-3299
-
-
Scheipl, F.1
Greven, S.2
Küchenhoff, H.3
-
46
-
-
84871981874
-
Penalized likelihood and bayesian function selection in regression models
-
(in press)
-
Scheipl, F., Kneib, T., and Fahrmeir, L. (in press), "Penalized Likelihood and Bayesian Function Selection in Regression Models," Advances in Statistical Analysis.
-
Advances in Statistical Analysis
-
-
Scheipl, F.1
Kneib, T.2
Fahrmeir, L.3
-
47
-
-
78650732213
-
The adaptive cosso for nonparametric surface estimation and model selection
-
Storlie, C., Bondell, H., Reich, B., and Zhang, H. (2011), "The Adaptive COSSO for Nonparametric Surface Estimation and Model Selection," Statistica Sinica, 21, 679-705.
-
(2011)
Statistica Sinica
, vol.21
, pp. 679-705
-
-
Storlie, C.1
Bondell, H.2
Reich, B.3
Zhang, H.4
-
48
-
-
0034555628
-
A comparison of regression spline smoothing proce-dures
-
Wand, M. P. (2000), "A Comparison of Regression Spline Smoothing Proce-dures," Computational Statistics, 15, 443-462.
-
(2000)
Computational Statistics
, vol.15
, pp. 443-462
-
-
Wand, M.P.1
-
49
-
-
0036427356
-
Model selection in spline nonparametric regression
-
Wood, S., Kohn, R., Shively, T., and Jiang, W. (2002), "Model Selection in Spline Nonparametric Regression," Journal of the Royal Statistical Society, Series B, 64, 119-139.
-
(2002)
Journal of the Royal Statistical Society, Series B
, vol.64
, pp. 119-139
-
-
Wood, S.1
Kohn, R.2
Shively, T.3
Jiang, W.4
-
50
-
-
0037352633
-
Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
-
Yau, P., Kohn, R., and Wood, S. (2003), "Bayesian Variable Selection and Model Averaging in High-Dimensional Multinomial Nonparametric Regression," Journal of Computational and Graphical Statistics, 12, 23-54.
-
(2003)
Journal of Computational and Graphical Statistics
, vol.12
, pp. 23-54
-
-
Yau, P.1
Kohn, R.2
Wood, S.3
-
51
-
-
80054702555
-
Robust, adaptive functional re-gression in functional mixed model framework
-
Zhu, H., Brown, P., and Morris, J. S. (2011), "Robust, Adaptive Functional Re-gression in Functional Mixed Model Framework," Journal of the American Statistical Association, 106, 1167-1179.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 1167-1179
-
-
Zhu, H.1
Brown, P.2
Morris, J.S.3
-
52
-
-
77952974130
-
A bayesian hierarchical model for classification with selection of functional predictors
-
Zhu, H., Vannucci, M., and Cox, D. (2010), "A Bayesian Hierarchical Model for Classification With Selection of Functional Predictors," Biometrics, 66, 463-473.
-
(2010)
Biometrics
, vol.66
, pp. 463-473
-
-
Zhu, H.1
Vannucci, M.2
Cox, D.3
|