-
1
-
-
84871530214
-
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
-
Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013, 14:25-37.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 25-37
-
-
Foley, E.A.1
Kapoor, T.M.2
-
3
-
-
84918558075
-
Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling
-
Sacristan C., Kops G.J. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 2015, 25:21-28.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 21-28
-
-
Sacristan, C.1
Kops, G.J.2
-
4
-
-
73349105276
-
The kinetochore and the centromere: a working long distance relationship
-
Przewloka M.R., Glover D.M. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 2009, 43:439-465.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 439-465
-
-
Przewloka, M.R.1
Glover, D.M.2
-
5
-
-
84887925042
-
The spindle assembly checkpoint: progress and persistent puzzles
-
Hauf S. The spindle assembly checkpoint: progress and persistent puzzles. Biochem. Soc. Trans. 2013, 41:1755-1760.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1755-1760
-
-
Hauf, S.1
-
6
-
-
0025941405
-
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function
-
Hoyt M.A., et al. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991, 66:507-517.
-
(1991)
Cell
, vol.66
, pp. 507-517
-
-
Hoyt, M.A.1
-
7
-
-
84860280333
-
Mitotic checkpoint control and chromatin remodeling
-
Yao Y., Dai W. Mitotic checkpoint control and chromatin remodeling. Front. Biosci. 2012, 17:976-983.
-
(2012)
Front. Biosci.
, vol.17
, pp. 976-983
-
-
Yao, Y.1
Dai, W.2
-
8
-
-
84906258277
-
Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles
-
Silva P.M., et al. Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett. 2014, 588:3265-3273.
-
(2014)
FEBS Lett.
, vol.588
, pp. 3265-3273
-
-
Silva, P.M.1
-
9
-
-
33947731702
-
Bub1 is essential for assembly of the functional inner centromere
-
Boyarchuk Y., et al. Bub1 is essential for assembly of the functional inner centromere. J. Cell Biol. 2007, 176:919-928.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 919-928
-
-
Boyarchuk, Y.1
-
10
-
-
84894333045
-
Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex
-
Tipton A.R., et al. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex. J. Biol. Chem. 2013, 288:35149-35158.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 35149-35158
-
-
Tipton, A.R.1
-
11
-
-
77954715434
-
Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex
-
Hewitt L., et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J. Cell Biol. 2010, 190:25-34.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 25-34
-
-
Hewitt, L.1
-
12
-
-
84892740735
-
Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint
-
London N., Biggins S. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev. 2014, 28:140-152.
-
(2014)
Genes Dev.
, vol.28
, pp. 140-152
-
-
London, N.1
Biggins, S.2
-
13
-
-
84857356017
-
Kinase activity of fission yeast Mph1 is required for Mad2 and Mad3 to stably bind the anaphase promoting complex
-
Zich J., et al. Kinase activity of fission yeast Mph1 is required for Mad2 and Mad3 to stably bind the anaphase promoting complex. Curr. Biol. 2012, 22:296-301.
-
(2012)
Curr. Biol.
, vol.22
, pp. 296-301
-
-
Zich, J.1
-
14
-
-
84879459640
-
Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation
-
Conde C., et al. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO J. 2013, 32:1761-1777.
-
(2013)
EMBO J.
, vol.32
, pp. 1761-1777
-
-
Conde, C.1
-
15
-
-
58149196468
-
Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit
-
Huang H., et al. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J. Cell Biol. 2008, 183:667-680.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 667-680
-
-
Huang, H.1
-
16
-
-
34548436939
-
Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions
-
Elowe S., et al. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 2007, 21:2205-2219.
-
(2007)
Genes Dev.
, vol.21
, pp. 2205-2219
-
-
Elowe, S.1
-
17
-
-
79952445057
-
BUB1 and BUBR1: multifaceted kinases of the cell cycle
-
Bolanos-Garcia V.M., Blundell T.L. BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem. Sci. 2011, 36:141-150.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 141-150
-
-
Bolanos-Garcia, V.M.1
Blundell, T.L.2
-
18
-
-
49849083943
-
Whole chromosome instability and cancer: a complex relationship
-
Ricke R.M., et al. Whole chromosome instability and cancer: a complex relationship. Trends Genet. 2008, 24:457-466.
-
(2008)
Trends Genet.
, vol.24
, pp. 457-466
-
-
Ricke, R.M.1
-
19
-
-
84862776998
-
Structure of the mitotic checkpoint complex
-
Chao W.C.H., et al. Structure of the mitotic checkpoint complex. Nature 2012, 484:208-213.
-
(2012)
Nature
, vol.484
, pp. 208-213
-
-
Chao, W.C.H.1
-
20
-
-
53149152614
-
The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C)
-
Sczaniecka M., et al. The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). J. Biol. Chem. 2008, 283:23039-23047.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23039-23047
-
-
Sczaniecka, M.1
-
21
-
-
33947310066
-
Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint
-
Burton J.L., Solomon M.J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 2007, 21:655-667.
-
(2007)
Genes Dev.
, vol.21
, pp. 655-667
-
-
Burton, J.L.1
Solomon, M.J.2
-
22
-
-
56149107126
-
Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint
-
King E.M., et al. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2007, 2:e342.
-
(2007)
PLoS ONE
, vol.2
, pp. e342
-
-
King, E.M.1
-
23
-
-
84922540477
-
The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signaling and silencing
-
Lischetti T., et al. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signaling and silencing. Nat. Commun. 2014, 5:5563.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5563
-
-
Lischetti, T.1
-
24
-
-
0035435063
-
MAD2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1
-
Tang Z., et al. MAD2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 2001, 1:227-237.
-
(2001)
Dev. Cell
, vol.1
, pp. 227-237
-
-
Tang, Z.1
-
25
-
-
84922794048
-
The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators
-
Di Fiore B., et al. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev. Cell 2015, 32:358-372.
-
(2015)
Dev. Cell
, vol.32
, pp. 358-372
-
-
Di Fiore, B.1
-
26
-
-
84921793979
-
The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis
-
Diaz-Martinez L.A., et al. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J. Biol. Chem. 2015, 290:2431-2443.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 2431-2443
-
-
Diaz-Martinez, L.A.1
-
27
-
-
33846629576
-
Structural analysis of Bub3 interactions in the mitotic spindle checkpoint
-
Larsen N.A., et al. Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1201-1206.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1201-1206
-
-
Larsen, N.A.1
-
28
-
-
84861532305
-
Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
-
London N., et al. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 2012, 22:900-906.
-
(2012)
Curr. Biol.
, vol.22
, pp. 900-906
-
-
London, N.1
-
29
-
-
84884683570
-
Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling
-
Primorac I., et al. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife 2013, 2:e01030.
-
(2013)
Elife
, vol.2
, pp. e01030
-
-
Primorac, I.1
-
30
-
-
84861526045
-
Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint
-
Shepperd L.A., et al. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 2012, 22:891-899.
-
(2012)
Curr. Biol.
, vol.22
, pp. 891-899
-
-
Shepperd, L.A.1
-
31
-
-
84863226706
-
MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
-
Yamagishi Y., et al. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 2012, 14:746-752.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 746-752
-
-
Yamagishi, Y.1
-
32
-
-
84859983402
-
Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction
-
Krenn V., et al. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J. Cell Biol. 2012, 196:451-467.
-
(2012)
J. Cell Biol.
, vol.196
, pp. 451-467
-
-
Krenn, V.1
-
33
-
-
80855128195
-
Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site
-
Bolanos-Garcia V.M., et al. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site. Structure 2011, 19:1691-1700.
-
(2011)
Structure
, vol.19
, pp. 1691-1700
-
-
Bolanos-Garcia, V.M.1
-
34
-
-
58149466578
-
BubR1N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase
-
Malureanu L.A., et al. BubR1N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev. Cell 2009, 16:118-131.
-
(2009)
Dev. Cell
, vol.16
, pp. 118-131
-
-
Malureanu, L.A.1
-
35
-
-
77953770988
-
Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy
-
Suijkerbuijk S.J., et al. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res. 2010, 70:4891-4900.
-
(2010)
Cancer Res.
, vol.70
, pp. 4891-4900
-
-
Suijkerbuijk, S.J.1
-
36
-
-
0038446875
-
Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1
-
Mao Y., et al. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 2003, 114:87-98.
-
(2003)
Cell
, vol.114
, pp. 87-98
-
-
Mao, Y.1
-
37
-
-
34548304294
-
BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment
-
Zhang J., et al. BubR1 and APC/EB1 cooperate to maintain metaphase chromosome alignment. J. Cell Biol. 2007, 178:773-784.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 773-784
-
-
Zhang, J.1
-
38
-
-
65949112247
-
BubR1 is an effector of multiple mitotic kinases that specifies kinetochore microtubule attachments and checkpoint
-
Huang H., Yen T.J. BubR1 is an effector of multiple mitotic kinases that specifies kinetochore microtubule attachments and checkpoint. Cell Cycle 2009, 8:1164-1167.
-
(2009)
Cell Cycle
, vol.8
, pp. 1164-1167
-
-
Huang, H.1
Yen, T.J.2
-
39
-
-
84862131533
-
The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase
-
Suijkerbuijk S.J., et al. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev. Cell 2012, 22:1321-1329.
-
(2012)
Dev. Cell
, vol.22
, pp. 1321-1329
-
-
Suijkerbuijk, S.J.1
-
40
-
-
33646540000
-
BubR1 is involved in regulation of DNA damage responses
-
Fang Y., et al. BubR1 is involved in regulation of DNA damage responses. Oncogene 2006, 25:3598-3605.
-
(2006)
Oncogene
, vol.25
, pp. 3598-3605
-
-
Fang, Y.1
-
41
-
-
79955393977
-
Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates
-
Miyamoto T., et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum. Mol. Genet. 2011, 20:2058-2070.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 2058-2070
-
-
Miyamoto, T.1
-
42
-
-
3042761646
-
BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice
-
Baker D.J., et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 2004, 36:744-749.
-
(2004)
Nat. Genet.
, vol.36
, pp. 744-749
-
-
Baker, D.J.1
-
43
-
-
74049151180
-
Separating the spindle, checkpoint, and timer functions of BubR1
-
Rahmani Z., et al. Separating the spindle, checkpoint, and timer functions of BubR1. J. Cell Biol. 2009, 187:597-605.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 597-605
-
-
Rahmani, Z.1
-
44
-
-
36349025888
-
Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope
-
Wong K.O., Fang G. Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J. Cell Biol. 2007, 179:611-617.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 611-617
-
-
Wong, K.O.1
Fang, G.2
-
45
-
-
66349124679
-
Bub1 regulates chromosome segregation in a kinetochore-independent manner
-
Klebig C., et al. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 2009, 185:841-858.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 841-858
-
-
Klebig, C.1
-
46
-
-
73649145890
-
Getting down to the phosphorylated 'nuts and bolts' of spindle checkpoint signalling
-
Zich J., Hardwick K.G. Getting down to the phosphorylated 'nuts and bolts' of spindle checkpoint signalling. Trends Biochem. Sci. 2010, 35:18-27.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 18-27
-
-
Zich, J.1
Hardwick, K.G.2
-
47
-
-
33845875196
-
Relating three-dimensional structures to protein networks provides evolutionary insights
-
Kim P.M., et al. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 2006, 314:1938-1941.
-
(2006)
Science
, vol.314
, pp. 1938-1941
-
-
Kim, P.M.1
-
48
-
-
84878156617
-
Tracking spindle checkpoint signals from kinetochores to APC/C
-
Jia L., et al. Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem. Sci. 2013, 38:302-311.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 302-311
-
-
Jia, L.1
-
49
-
-
84907932112
-
The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation
-
Lee S., Bolanos-Garcia V.M. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Front. Physiol. 2014, 5:368.
-
(2014)
Front. Physiol.
, vol.5
, pp. 368
-
-
Lee, S.1
Bolanos-Garcia, V.M.2
-
50
-
-
67651161889
-
BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis
-
Choi E., et al. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J. 2009, 28:2077-2089.
-
(2009)
EMBO J.
, vol.28
, pp. 2077-2089
-
-
Choi, E.1
-
51
-
-
67651148389
-
Escaping the firing squad: acetylation of BubR1 protects it from degradation in checkpoint cells
-
Yekezare M., Pines J. Escaping the firing squad: acetylation of BubR1 protects it from degradation in checkpoint cells. EMBO J. 2009, 28:1991-1993.
-
(2009)
EMBO J.
, vol.28
, pp. 1991-1993
-
-
Yekezare, M.1
Pines, J.2
-
52
-
-
84918530626
-
Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition
-
Suematsu T., et al. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem. Biophys. Res. Commun. 2014, 453:588-594.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.453
, pp. 588-594
-
-
Suematsu, T.1
-
53
-
-
84903744004
-
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
-
North B.J., et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014, 33:1438-1453.
-
(2014)
EMBO J.
, vol.33
, pp. 1438-1453
-
-
North, B.J.1
-
54
-
-
80855138775
-
Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
-
Baker D.J., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479:232-236.
-
(2011)
Nature
, vol.479
, pp. 232-236
-
-
Baker, D.J.1
-
55
-
-
27544515607
-
The mitotic checkpoint in cancer and aging: what have mice taught us?
-
Baker D.J., et al. The mitotic checkpoint in cancer and aging: what have mice taught us?. Curr. Opin. Cell Biol. 2005, 17:583-589.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 583-589
-
-
Baker, D.J.1
-
56
-
-
84927909490
-
Accelerated epigenetic aging in Down syndrome
-
Horvath S., et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 2015, 14:491-495.
-
(2015)
Aging Cell
, vol.14
, pp. 491-495
-
-
Horvath, S.1
-
57
-
-
84917732251
-
The aging clock and circadian control of metabolism and genome stability
-
Belancio V.P., et al. The aging clock and circadian control of metabolism and genome stability. Front. Genet. 2015, 5:455.
-
(2015)
Front. Genet.
, vol.5
, pp. 455
-
-
Belancio, V.P.1
-
58
-
-
33947492069
-
Aging-associated vascular phenotype in mutant mice with low levels of BubR1
-
Matsumoto T., et al. Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 2007, 38:1050-1056.
-
(2007)
Stroke
, vol.38
, pp. 1050-1056
-
-
Matsumoto, T.1
-
59
-
-
34247105784
-
Mutant mice with small amounts of BubR1 display accelerated age-related gliosis
-
Hartman T.K., et al. Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiol. Aging 2007, 28:921-927.
-
(2007)
Neurobiol. Aging
, vol.28
, pp. 921-927
-
-
Hartman, T.K.1
-
60
-
-
10644258336
-
Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B
-
Hanks S., et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 2004, 36:1159-1161.
-
(2004)
Nat. Genet.
, vol.36
, pp. 1159-1161
-
-
Hanks, S.1
-
61
-
-
11844299802
-
From spindle checkpoint to cancer
-
Lengauer C., Wang Z. From spindle checkpoint to cancer. Nat. Genet. 2004, 36:1144-1145.
-
(2004)
Nat. Genet.
, vol.36
, pp. 1144-1145
-
-
Lengauer, C.1
Wang, Z.2
-
62
-
-
0031802203
-
Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait
-
Kajii T., et al. Mosaic variegated aneuploidy with multiple congenital abnormalities: homozygosity for total premature chromatid separation trait. Am. J. Med. Genet. 1998, 78:245-249.
-
(1998)
Am. J. Med. Genet.
, vol.78
, pp. 245-249
-
-
Kajii, T.1
-
63
-
-
0242693226
-
Cystic partially differentiated nephroblastoma, embryonal rhabdomyosarcoma, and multiple congenital anomalies associated with variegated mosaic aneuploidy and premature centromere division: a case report
-
Furukawa T., et al. Cystic partially differentiated nephroblastoma, embryonal rhabdomyosarcoma, and multiple congenital anomalies associated with variegated mosaic aneuploidy and premature centromere division: a case report. J. Pediatr. Hematol. Oncol. 2003, 25:896-899.
-
(2003)
J. Pediatr. Hematol. Oncol.
, vol.25
, pp. 896-899
-
-
Furukawa, T.1
-
64
-
-
84872018271
-
Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation
-
Wijshake T., et al. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet. 2012, 8:e1003138.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003138
-
-
Wijshake, T.1
-
65
-
-
84871717211
-
Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan
-
Baker D.J., et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat. Cell Biol. 2013, 15:96-102.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 96-102
-
-
Baker, D.J.1
-
66
-
-
84870527677
-
Mitosis-targeted anti-cancer therapies: where they stand
-
Chan K.S., et al. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012, 3:e411.
-
(2012)
Cell Death Dis.
, vol.3
, pp. e411
-
-
Chan, K.S.1
-
67
-
-
84896262571
-
Synuclein γ compromises spindle assembly checkpoint and renders resistance to antimicrotubule drugs
-
Miao S., et al. Synuclein γ compromises spindle assembly checkpoint and renders resistance to antimicrotubule drugs. Mol. Cancer Ther. 2014, 13:699-713.
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 699-713
-
-
Miao, S.1
-
68
-
-
84906937206
-
Discovery of inhibitors of the mitotic kinase TTK based on N-(3-(3-sulfamoylphenyl)-1H-indazol-5-yl)-acetamides and carboxamides
-
Laufer R., et al. Discovery of inhibitors of the mitotic kinase TTK based on N-(3-(3-sulfamoylphenyl)-1H-indazol-5-yl)-acetamides and carboxamides. Bioorg. Med. Chem. 2014, 22:4968-4997.
-
(2014)
Bioorg. Med. Chem.
, vol.22
, pp. 4968-4997
-
-
Laufer, R.1
-
69
-
-
84881109637
-
The molecular basis of targeting protein kinases in cancer therapeutics
-
Tsai C.J., Nussinov R. The molecular basis of targeting protein kinases in cancer therapeutics. Semin. Cancer Biol. 2013, 23:235-242.
-
(2013)
Semin. Cancer Biol.
, vol.23
, pp. 235-242
-
-
Tsai, C.J.1
Nussinov, R.2
-
70
-
-
84881611353
-
Cdc20 turnover rate: a key determinant in cancer patient response to anti-mitotic therapies?
-
Frey A. Cdc20 turnover rate: a key determinant in cancer patient response to anti-mitotic therapies?. Bioessays 2013, 35:762.
-
(2013)
Bioessays
, vol.35
, pp. 762
-
-
Frey, A.1
-
71
-
-
84863209627
-
Antibody-enabled small-molecule drug discovery
-
Lawson A.D.G. Antibody-enabled small-molecule drug discovery. Nat. Rev. Drug Discov. 2012, 11:519-525.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 519-525
-
-
Lawson, A.D.G.1
-
72
-
-
34249874926
-
Strategies to search and design stabilizers of protein-protein interactions: a feasibility study
-
Block P., et al. Strategies to search and design stabilizers of protein-protein interactions: a feasibility study. Proteins 2007, 68:170-186.
-
(2007)
Proteins
, vol.68
, pp. 170-186
-
-
Block, P.1
-
73
-
-
84893018543
-
Protein-protein interactions as druggable targets: recent technological advances
-
Higueruelo A.P., et al. Protein-protein interactions as druggable targets: recent technological advances. Curr. Opin. Pharmacol. 2013, 13:791-796.
-
(2013)
Curr. Opin. Pharmacol.
, vol.13
, pp. 791-796
-
-
Higueruelo, A.P.1
-
74
-
-
84877912076
-
Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression
-
Kruse T., et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J. Cell Sci. 2013, 126:1086-1092.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 1086-1092
-
-
Kruse, T.1
-
75
-
-
84965081595
-
BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression
-
Xu P., et al. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol. Open 2013, 2:479-486.
-
(2013)
Biol. Open
, vol.2
, pp. 479-486
-
-
Xu, P.1
-
76
-
-
84913570740
-
B56-PP2A regulates motor dynamics for mitotic chromosome alignment
-
Xu P., et al. B56-PP2A regulates motor dynamics for mitotic chromosome alignment. J. Cell Sci. 2014, 127:4567-4573.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4567-4573
-
-
Xu, P.1
-
77
-
-
84871302192
-
Senescent cells: a novel therapeutic target for aging and age-related diseases
-
Naylor R.M., et al. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 2013, 93:105-116.
-
(2013)
Clin. Pharmacol. Ther.
, vol.93
, pp. 105-116
-
-
Naylor, R.M.1
-
78
-
-
84880803876
-
Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation
-
Park I., et al. Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J. Cell Biol. 2013, 202:295-309.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 295-309
-
-
Park, I.1
-
79
-
-
0032546360
-
Mutations of mitotic checkpoint genes in human cancers
-
Cahill D.P., et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998, 392:300-303.
-
(1998)
Nature
, vol.392
, pp. 300-303
-
-
Cahill, D.P.1
-
80
-
-
0034308209
-
Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma
-
Ohshima K., et al. Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett. 2000, 158:141-150.
-
(2000)
Cancer Lett.
, vol.158
, pp. 141-150
-
-
Ohshima, K.1
-
81
-
-
32444444090
-
Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome
-
Matsuura S., et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am. J. Med. Genet. A 2006, 140:358-367.
-
(2006)
Am. J. Med. Genet. A
, vol.140
, pp. 358-367
-
-
Matsuura, S.1
-
82
-
-
0033152810
-
Characterization of MAD2B and other mitotic spindle checkpoint genes
-
Cahill D.P., et al. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 1999, 58:181-187.
-
(1999)
Genomics
, vol.58
, pp. 181-187
-
-
Cahill, D.P.1
-
83
-
-
0036534146
-
Frequent Impairment of the spindle assembly checkpoint in hepatocellular carcinoma
-
Saeki A., et al. Frequent Impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer 2002, 94:2047-2054.
-
(2002)
Cancer
, vol.94
, pp. 2047-2054
-
-
Saeki, A.1
-
84
-
-
0035032855
-
Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas
-
Reis R.M., et al. Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol. 2001, 101:297-304.
-
(2001)
Acta Neuropathol.
, vol.101
, pp. 297-304
-
-
Reis, R.M.1
-
85
-
-
0034193627
-
Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines
-
Myrie K.A., et al. Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett. 2000, 152:193-199.
-
(2000)
Cancer Lett.
, vol.152
, pp. 193-199
-
-
Myrie, K.A.1
-
86
-
-
33745576563
-
Comparative genomic hybridization and BUB1B mutation analyses in childhood cancers associated with mosaic variegated aneuploidy syndrome
-
Hanks S., et al. Comparative genomic hybridization and BUB1B mutation analyses in childhood cancers associated with mosaic variegated aneuploidy syndrome. Cancer Lett. 2006, 239:234-238.
-
(2006)
Cancer Lett.
, vol.239
, pp. 234-238
-
-
Hanks, S.1
-
87
-
-
0035931391
-
Variegated aneuploidy related to premature centromere division (PCD) is expressed in vivo and is a cancer-prone disease
-
Plaja A., et al. Variegated aneuploidy related to premature centromere division (PCD) is expressed in vivo and is a cancer-prone disease. Am. J. Med. Genet. 2001, 98:216-223.
-
(2001)
Am. J. Med. Genet.
, vol.98
, pp. 216-223
-
-
Plaja, A.1
-
88
-
-
0035869223
-
Prediction of deleterious human alleles
-
Sunyaev S., et al. Prediction of deleterious human alleles. Hum. Mol. Genet. 2001, 10:591-597.
-
(2001)
Hum. Mol. Genet.
, vol.10
, pp. 591-597
-
-
Sunyaev, S.1
-
89
-
-
0032952902
-
Child with mosaic variegated aneuploidy and embryonal rhabdomyosarcoma
-
Limwongse C., et al. Child with mosaic variegated aneuploidy and embryonal rhabdomyosarcoma. Am. J. Med. Genet. 1999, 82:20-24.
-
(1999)
Am. J. Med. Genet.
, vol.82
, pp. 20-24
-
-
Limwongse, C.1
|