-
1
-
-
0019770524
-
Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations
-
Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet. 1981, 184:471-478.
-
(1981)
Mol. Gen. Genet.
, vol.184
, pp. 471-478
-
-
Prakash, L.1
-
2
-
-
0014404165
-
Mutagenesis in Escherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair
-
Bridges B.A., Munson R.J. Mutagenesis in Escherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair. Proc. R. Soc. Lond. B: Biol. Sci. 1968, 171:213-226.
-
(1968)
Proc. R. Soc. Lond. B: Biol. Sci.
, vol.171
, pp. 213-226
-
-
Bridges, B.A.1
Munson, R.J.2
-
3
-
-
0016168106
-
Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12
-
Ganesan A.K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J. Mol. Biol. 1974, 87:103-119.
-
(1974)
J. Mol. Biol.
, vol.87
, pp. 103-119
-
-
Ganesan, A.K.1
-
4
-
-
29544437558
-
Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
-
Lopes M., Foiani M., Sogo J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 2006, 21:15-27.
-
(2006)
Mol. Cell
, vol.21
, pp. 15-27
-
-
Lopes, M.1
Foiani, M.2
Sogo, J.M.3
-
5
-
-
77953694683
-
Ubiquitin-dependent DNA damage bypass is separable from genome replication
-
Daigaku Y., Davies A.A., Ulrich H.D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 2010, 465:951-955.
-
(2010)
Nature
, vol.465
, pp. 951-955
-
-
Daigaku, Y.1
Davies, A.A.2
Ulrich, H.D.3
-
6
-
-
77951699996
-
The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
-
Karras G.I., Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 2010, 141:255-267.
-
(2010)
Cell
, vol.141
, pp. 255-267
-
-
Karras, G.I.1
Jentsch, S.2
-
7
-
-
0017288156
-
UV mutagenesis in radiation-sensitive strains of yeast
-
Lawrence C.W., Christensen R. UV mutagenesis in radiation-sensitive strains of yeast. Genetics 1976, 82:207-232.
-
(1976)
Genetics
, vol.82
, pp. 207-232
-
-
Lawrence, C.W.1
Christensen, R.2
-
8
-
-
0001908121
-
Mutants of yeast defective in mutation induced by ultraviolet light
-
Lemontt J.F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 1971, 68:21-33.
-
(1971)
Genetics
, vol.68
, pp. 21-33
-
-
Lemontt, J.F.1
-
9
-
-
0032510731
-
MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway
-
Broomfield S., Chow B.L., Xiao W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:5678-5683.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 5678-5683
-
-
Broomfield, S.1
Chow, B.L.2
Xiao, W.3
-
10
-
-
0034072812
-
UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae
-
Brusky J., Zhu Y., Xiao W. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet. 2000, 37:168-174.
-
(2000)
Curr. Genet.
, vol.37
, pp. 168-174
-
-
Brusky, J.1
Zhu, Y.2
Xiao, W.3
-
11
-
-
0027146121
-
DNA repair genes and proteins of Saccharomyces cerevisiae
-
Prakash S., Sung P., Prakash L. DNA repair genes and proteins of Saccharomyces cerevisiae. Ann. Rev. Genet. 1993, 27:33-70.
-
(1993)
Ann. Rev. Genet.
, vol.27
, pp. 33-70
-
-
Prakash, S.1
Sung, P.2
Prakash, L.3
-
12
-
-
0035833662
-
DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae
-
Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 2001, 486:167-184.
-
(2001)
Mutat. Res.
, vol.486
, pp. 167-184
-
-
Broomfield, S.1
Hryciw, T.2
Xiao, W.3
-
13
-
-
84876333557
-
The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent
-
Huang D., Piening B.D., Paulovich A.G. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Mol. Cell Biol. 2013, 33:1515-1527.
-
(2013)
Mol. Cell Biol.
, vol.33
, pp. 1515-1527
-
-
Huang, D.1
Piening, B.D.2
Paulovich, A.G.3
-
14
-
-
84863100045
-
Competition, collaboration and coordination - determining how cells bypass DNA damage
-
Sale J.E. Competition, collaboration and coordination - determining how cells bypass DNA damage. J. Cell Sci. 2012, 125:1633-1643.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1633-1643
-
-
Sale, J.E.1
-
15
-
-
84930054315
-
Homologous recombination maintenance of genome integrity during DNA damage tolerance
-
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol. Cell Oncol. 2014, 1:e957039.
-
(2014)
Mol. Cell Oncol.
, vol.1
, pp. e957039
-
-
Prado, F.1
-
16
-
-
34249066085
-
PCNA, the maestro of the replication fork
-
Moldovan G.L., Pfander B., Jentsch S. PCNA, the maestro of the replication fork. Cell 2007, 129:665-679.
-
(2007)
Cell
, vol.129
, pp. 665-679
-
-
Moldovan, G.L.1
Pfander, B.2
Jentsch, S.3
-
17
-
-
0029821929
-
Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair
-
Torres-Ramos C.A., Yoder B.L., Burgers P.M., Prakash S., Prakash L. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:9676-9681.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 9676-9681
-
-
Torres-Ramos, C.A.1
Yoder, B.L.2
Burgers, P.M.3
Prakash, S.4
Prakash, L.5
-
18
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege C., Pfander B., Moldovan G.L., Pyrowolakis G., Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
Pfander, B.2
Moldovan, G.L.3
Pyrowolakis, G.4
Jentsch, S.5
-
19
-
-
23144449208
-
Ubiquitin and ubiquitin-like proteins as multifunctional signals
-
Welchman R.L., Gordon C., Mayer R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 2005, 6:599-609.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 599-609
-
-
Welchman, R.L.1
Gordon, C.2
Mayer, R.J.3
-
20
-
-
0032504021
-
Structure determination of the small ubiquitin-related modifier SUMO-1
-
Bayer P., Arndt A., Metzger S., Mahajan R., Melchior F., Jaenicke R., Becker J. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 1998, 280:275-286.
-
(1998)
J. Mol. Biol.
, vol.280
, pp. 275-286
-
-
Bayer, P.1
Arndt, A.2
Metzger, S.3
Mahajan, R.4
Melchior, F.5
Jaenicke, R.6
Becker, J.7
-
21
-
-
78649396592
-
The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition
-
Gareau J.R., Lima C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 2010, 11:861-871.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 861-871
-
-
Gareau, J.R.1
Lima, C.D.2
-
23
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999, 96:645-653.
-
(1999)
Cell
, vol.96
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
24
-
-
0035875079
-
Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer
-
VanDemark A.P., Hofmann R.M., Tsui C., Pickart C.M., Wolberger C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 2001, 105:711-720.
-
(2001)
Cell
, vol.105
, pp. 711-720
-
-
VanDemark, A.P.1
Hofmann, R.M.2
Tsui, C.3
Pickart, C.M.4
Wolberger, C.5
-
25
-
-
33749506057
-
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
-
Eddins M.J., Carlile C.M., Gomez K.M., Pickart C.M., Wolberger C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 2006, 13:915-920.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 915-920
-
-
Eddins, M.J.1
Carlile, C.M.2
Gomez, K.M.3
Pickart, C.M.4
Wolberger, C.5
-
26
-
-
0035955731
-
Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination
-
McKenna S., Spyracopoulos L., Moraes T., Pastushok L., Ptak C., Xiao W., Ellison M.J. Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 2001, 276:40120-40126.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 40120-40126
-
-
McKenna, S.1
Spyracopoulos, L.2
Moraes, T.3
Pastushok, L.4
Ptak, C.5
Xiao, W.6
Ellison, M.J.7
-
27
-
-
0034881624
-
Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13
-
Moraes T.F., Edwards R.A., McKenna S., Pastushok L., Xiao W., Glover J.N., Ellison M.J. Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Nat. Struct. Biol. 2001, 8:669-673.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 669-673
-
-
Moraes, T.F.1
Edwards, R.A.2
McKenna, S.3
Pastushok, L.4
Xiao, W.5
Glover, J.N.6
Ellison, M.J.7
-
28
-
-
0026661167
-
Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome
-
Johnson R.E., Henderson S.T., Petes T.D., Prakash S., Bankmann M., Prakash L. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell Biol. 1992, 12:3807-3818.
-
(1992)
Mol. Cell Biol.
, vol.12
, pp. 3807-3818
-
-
Johnson, R.E.1
Henderson, S.T.2
Petes, T.D.3
Prakash, S.4
Bankmann, M.5
Prakash, L.6
-
29
-
-
0033613222
-
RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination
-
Lorick K.L., Jensen J.P., Fang S., Ong A.M., Hatakeyama S., Weissman A.M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:11364-11369.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 11364-11369
-
-
Lorick, K.L.1
Jensen, J.P.2
Fang, S.3
Ong, A.M.4
Hatakeyama, S.5
Weissman, A.M.6
-
30
-
-
0034600851
-
Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair
-
Ulrich H.D., Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000, 19:3388-3397.
-
(2000)
EMBO J.
, vol.19
, pp. 3388-3397
-
-
Ulrich, H.D.1
Jentsch, S.2
-
31
-
-
29144499065
-
Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis
-
Bienko M., Green C.M., Crosetto N., Rudolf F., Zapart G., Coull B., Kannouche P., Wider G., Peter M., Lehmann A.R., Hofmann K., Dikic I. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 2005, 310:1821-1824.
-
(2005)
Science
, vol.310
, pp. 1821-1824
-
-
Bienko, M.1
Green, C.M.2
Crosetto, N.3
Rudolf, F.4
Zapart, G.5
Coull, B.6
Kannouche, P.7
Wider, G.8
Peter, M.9
Lehmann, A.R.10
Hofmann, K.11
Dikic, I.12
-
32
-
-
33847381960
-
Contributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiae
-
Parker J.L., Bielen A.B., Dikic I., Ulrich H.D. Contributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiae. Nucleic Acids Res. 2007, 35:881-889.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 881-889
-
-
Parker, J.L.1
Bielen, A.B.2
Dikic, I.3
Ulrich, H.D.4
-
33
-
-
77956113157
-
Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities
-
Pastushok L., Hanna M., Xiao W. Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res. 2010, 38:5047-5058.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 5047-5058
-
-
Pastushok, L.1
Hanna, M.2
Xiao, W.3
-
34
-
-
77953480274
-
Ubiquitin-PCNA fusion as a mimic for mono-ubiquitinated PCNA in Schizosaccharomyces pombe
-
Ramasubramanyan S., Coulon S., Fuchs R.P., Lehmann A.R., Green C.M. Ubiquitin-PCNA fusion as a mimic for mono-ubiquitinated PCNA in Schizosaccharomyces pombe. DNA Repair 2010, 9:777-784.
-
(2010)
DNA Repair
, vol.9
, pp. 777-784
-
-
Ramasubramanyan, S.1
Coulon, S.2
Fuchs, R.P.3
Lehmann, A.R.4
Green, C.M.5
-
36
-
-
77952336245
-
Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains
-
Zhao S., Ulrich H.D. Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7704-7709.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7704-7709
-
-
Zhao, S.1
Ulrich, H.D.2
-
37
-
-
84906260581
-
Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance
-
Yang K., Gong P., Gokhale P., Zhuang Z. Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance. ACS Chem. Biol. 2014, 9:1685-1691.
-
(2014)
ACS Chem. Biol.
, vol.9
, pp. 1685-1691
-
-
Yang, K.1
Gong, P.2
Gokhale, P.3
Zhuang, Z.4
-
38
-
-
84864946159
-
Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress
-
Ciccia A., Nimonkar A.V., Hu Y., Hajdu I., Achar Y.J., Izhar L., Petit S.A., Adamson B., Yoon J.C., Kowalczykowski S.C., Livingston D.M., Haracska L., Elledge S.J. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 2012, 47:396-409.
-
(2012)
Mol. Cell
, vol.47
, pp. 396-409
-
-
Ciccia, A.1
Nimonkar, A.V.2
Hu, Y.3
Hajdu, I.4
Achar, Y.J.5
Izhar, L.6
Petit, S.A.7
Adamson, B.8
Yoon, J.C.9
Kowalczykowski, S.C.10
Livingston, D.M.11
Haracska, L.12
Elledge, S.J.13
-
39
-
-
84864014165
-
ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response
-
Weston R., Peeters H., Ahel D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 2012, 26:1558-1572.
-
(2012)
Genes Dev.
, vol.26
, pp. 1558-1572
-
-
Weston, R.1
Peeters, H.2
Ahel, D.3
-
40
-
-
84864923437
-
The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress
-
Yuan J., Ghosal G., Chen J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 2012, 47:410-421.
-
(2012)
Mol. Cell
, vol.47
, pp. 410-421
-
-
Yuan, J.1
Ghosal, G.2
Chen, J.3
-
41
-
-
0032867490
-
Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae
-
Xiao W., Chow B.L., Fontanie T., Ma L., Bacchetti S., Hryciw T., Broomfield S. Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat. Res. 1999, 435:1-11.
-
(1999)
Mutat. Res.
, vol.435
, pp. 1-11
-
-
Xiao, W.1
Chow, B.L.2
Fontanie, T.3
Ma, L.4
Bacchetti, S.5
Hryciw, T.6
Broomfield, S.7
-
42
-
-
0028149592
-
Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase
-
Johnson R.E., Prakash S., Prakash L. Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase. J. Biol. Chem. 1994, 269:28259-28262.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 28259-28262
-
-
Johnson, R.E.1
Prakash, S.2
Prakash, L.3
-
43
-
-
33749617398
-
Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae
-
Gangavarapu V., Haracska L., Unk I., Johnson R.E., Prakash S., Prakash L. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol. Cell Biol. 2006, 26:7783-7790.
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 7783-7790
-
-
Gangavarapu, V.1
Haracska, L.2
Unk, I.3
Johnson, R.E.4
Prakash, S.5
Prakash, L.6
-
44
-
-
0037470244
-
Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair
-
Ulrich H.D. Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair. J. Biol. Chem. 2003, 278:7051-7058.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7051-7058
-
-
Ulrich, H.D.1
-
45
-
-
70350417485
-
Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5
-
Carlile C.M., Pickart C.M., Matunis M.J., Cohen R.E. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J. Biol. Chem. 2009, 284:29326-29334.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 29326-29334
-
-
Carlile, C.M.1
Pickart, C.M.2
Matunis, M.J.3
Cohen, R.E.4
-
46
-
-
71349084952
-
Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5
-
Parker J.L., Ulrich H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J. 2009, 28:3657-3666.
-
(2009)
EMBO J.
, vol.28
, pp. 3657-3666
-
-
Parker, J.L.1
Ulrich, H.D.2
-
47
-
-
80052754015
-
Roles of sequential ubiquitination of PCNA in DNA-damage tolerance
-
Zhang W., Qin Z., Zhang X., Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 2011, 585:2786-2794.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2786-2794
-
-
Zhang, W.1
Qin, Z.2
Zhang, X.3
Xiao, W.4
-
48
-
-
27144448514
-
The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner
-
Chen S., Davies A.A., Sagan D., Ulrich H.D. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 2005, 33:5878-5886.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 5878-5886
-
-
Chen, S.1
Davies, A.A.2
Sagan, D.3
Ulrich, H.D.4
-
49
-
-
77954218952
-
Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription
-
Tang L., Nogales E., Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol. Biol. 2010, 102:122-128.
-
(2010)
Prog. Biophys. Mol. Biol.
, vol.102
, pp. 122-128
-
-
Tang, L.1
Nogales, E.2
Ciferri, C.3
-
50
-
-
35148847451
-
Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
-
Blastyak A., Pinter L., Unk I., Prakash L., Prakash S., Haracska L. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 2007, 28:167-175.
-
(2007)
Mol. Cell
, vol.28
, pp. 167-175
-
-
Blastyak, A.1
Pinter, L.2
Unk, I.3
Prakash, L.4
Prakash, S.5
Haracska, L.6
-
51
-
-
0037799191
-
Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo
-
Pages V., Fuchs R.P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 2003, 300:1300-1303.
-
(2003)
Science
, vol.300
, pp. 1300-1303
-
-
Pages, V.1
Fuchs, R.P.2
-
52
-
-
84922431202
-
Restriction of replication fork regression activities by a conserved SMC complex
-
Xue X., Choi K., Bonner J., Chiba T., Kwon Y., Xu Y., Sanchez H., Wyman C., Niu H., Zhao X., Sung P. Restriction of replication fork regression activities by a conserved SMC complex. Mol. Cell 2014, 56:436-445.
-
(2014)
Mol. Cell
, vol.56
, pp. 436-445
-
-
Xue, X.1
Choi, K.2
Bonner, J.3
Chiba, T.4
Kwon, Y.5
Xu, Y.6
Sanchez, H.7
Wyman, C.8
Niu, H.9
Zhao, X.10
Sung, P.11
-
53
-
-
53149087431
-
The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
-
Sun W., Nandi S., Osman F., Ahn J.S., Jakovleska J., Lorenz A., Whitby M.C. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 2008, 32:118-128.
-
(2008)
Mol. Cell
, vol.32
, pp. 118-128
-
-
Sun, W.1
Nandi, S.2
Osman, F.3
Ahn, J.S.4
Jakovleska, J.5
Lorenz, A.6
Whitby, M.C.7
-
54
-
-
19944432787
-
Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase
-
Liberi G., Maffioletti G., Lucca C., Chiolo I., Baryshnikova A., Cotta-Ramusino C., Lopes M., Pellicioli A., Haber J.E., Foiani M. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 2005, 19:339-350.
-
(2005)
Genes Dev.
, vol.19
, pp. 339-350
-
-
Liberi, G.1
Maffioletti, G.2
Lucca, C.3
Chiolo, I.4
Baryshnikova, A.5
Cotta-Ramusino, C.6
Lopes, M.7
Pellicioli, A.8
Haber, J.E.9
Foiani, M.10
-
55
-
-
84887850235
-
Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication
-
Glineburg M.R., Chavez A., Agrawal V., Brill S.J., Johnson F.B. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J. Biol. Chem. 2013, 288:33193-33204.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33193-33204
-
-
Glineburg, M.R.1
Chavez, A.2
Agrawal, V.3
Brill, S.J.4
Johnson, F.B.5
-
56
-
-
84896015910
-
The Rad5 helicase activity is dispensable for error-free DNA post-replication repair
-
Ball L.G., Xu X., Blackwell S., Hanna M.D., Lambrecht A.D., Xiao W. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair 2014, 16C:74-83.
-
(2014)
DNA Repair
, vol.16C
, pp. 74-83
-
-
Ball, L.G.1
Xu, X.2
Blackwell, S.3
Hanna, M.D.4
Lambrecht, A.D.5
Xiao, W.6
-
57
-
-
42449115326
-
Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease
-
Ehmsen K.T., Heyer W.D. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008, 36:2182-2195.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 2182-2195
-
-
Ehmsen, K.T.1
Heyer, W.D.2
-
58
-
-
10044292849
-
Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease
-
Fricke W.M., Bastin-Shanower S.A., Brill S.J. Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease. DNA Repair 2005, 4:243-251.
-
(2005)
DNA Repair
, vol.4
, pp. 243-251
-
-
Fricke, W.M.1
Bastin-Shanower, S.A.2
Brill, S.J.3
-
59
-
-
0037470059
-
Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4
-
Whitby M.C., Osman F., Dixon J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 2003, 278:6928-6935.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 6928-6935
-
-
Whitby, M.C.1
Osman, F.2
Dixon, J.3
-
60
-
-
0035148955
-
Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae
-
Mullen J.R., Kaliraman V., Ibrahim S.S., Brill S.J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 2001, 157:103-118.
-
(2001)
Genetics
, vol.157
, pp. 103-118
-
-
Mullen, J.R.1
Kaliraman, V.2
Ibrahim, S.S.3
Brill, S.J.4
-
61
-
-
27644590452
-
The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination
-
Zhang H., Lawrence C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:15954-15959.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 15954-15959
-
-
Zhang, H.1
Lawrence, C.W.2
-
62
-
-
57749169348
-
SUMOylation regulates Rad18-mediated template switch
-
Branzei D., Vanoli F., Foiani M. SUMOylation regulates Rad18-mediated template switch. Nature 2008, 456:915-920.
-
(2008)
Nature
, vol.456
, pp. 915-920
-
-
Branzei, D.1
Vanoli, F.2
Foiani, M.3
-
63
-
-
33750437743
-
Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks
-
Branzei D., Sollier J., Liberi G., Zhao X., Maeda D., Seki M., Enomoto T., Ohta K., Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 2006, 127:509-522.
-
(2006)
Cell
, vol.127
, pp. 509-522
-
-
Branzei, D.1
Sollier, J.2
Liberi, G.3
Zhao, X.4
Maeda, D.5
Seki, M.6
Enomoto, T.7
Ohta, K.8
Foiani, M.9
-
64
-
-
0141831006
-
Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
-
Stelter P., Ulrich H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003, 425:188-191.
-
(2003)
Nature
, vol.425
, pp. 188-191
-
-
Stelter, P.1
Ulrich, H.D.2
-
65
-
-
77953085206
-
Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks
-
Minca E.C., Kowalski D. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol. Cell 2010, 38:649-661.
-
(2010)
Mol. Cell
, vol.38
, pp. 649-661
-
-
Minca, E.C.1
Kowalski, D.2
-
66
-
-
0019990978
-
Mechanism of interaction of CC-1065 (NSC 298223) with DNA
-
Swenson D.H., Li L.H., Hurley L.H., Rokem J.S., Petzold G.L., Dayton B.D., Wallace T.L., Lin A.H., Krueger W.C. Mechanism of interaction of CC-1065 (NSC 298223) with DNA. Cancer Res. 1982, 42:2821-2828.
-
(1982)
Cancer Res.
, vol.42
, pp. 2821-2828
-
-
Swenson, D.H.1
Li, L.H.2
Hurley, L.H.3
Rokem, J.S.4
Petzold, G.L.5
Dayton, B.D.6
Wallace, T.L.7
Lin, A.H.8
Krueger, W.C.9
-
67
-
-
0025786472
-
In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975
-
Weiland K.L., Dooley T.P. In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975. Biochemistry 1991, 30:7559-7565.
-
(1991)
Biochemistry
, vol.30
, pp. 7559-7565
-
-
Weiland, K.L.1
Dooley, T.P.2
-
68
-
-
67649447015
-
The yeast Shu complex couples error-free post-replication repair to homologous recombination
-
Ball L.G., Zhang K., Cobb J.A., Boone C., Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol. Microbiol. 2009, 73:89-102.
-
(2009)
Mol. Microbiol.
, vol.73
, pp. 89-102
-
-
Ball, L.G.1
Zhang, K.2
Cobb, J.A.3
Boone, C.4
Xiao, W.5
-
69
-
-
84897888392
-
DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity
-
Gonzalez-Huici V., Szakal B., Urulangodi M., Psakhye I., Castellucci F., Menolfi D., Rajakumara E., Fumasoni M., Bermejo R., Jentsch S., Branzei D. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J. 2014, 33:327-340.
-
(2014)
EMBO J.
, vol.33
, pp. 327-340
-
-
Gonzalez-Huici, V.1
Szakal, B.2
Urulangodi, M.3
Psakhye, I.4
Castellucci, F.5
Menolfi, D.6
Rajakumara, E.7
Fumasoni, M.8
Bermejo, R.9
Jentsch, S.10
Branzei, D.11
-
70
-
-
11244293527
-
The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains
-
Kamau E., Bauerle K.T., Grove A. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J. Biol. Chem. 2004, 279:55234-55240.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55234-55240
-
-
Kamau, E.1
Bauerle, K.T.2
Grove, A.3
-
71
-
-
77952348311
-
The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending
-
Xiao L., Williams A.M., Grove A. The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending. Biochemistry 2010, 49:4051-4059.
-
(2010)
Biochemistry
, vol.49
, pp. 4051-4059
-
-
Xiao, L.1
Williams, A.M.2
Grove, A.3
-
72
-
-
17444391598
-
A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1SHU2PSY3 and CSM2: four genes involved in error-free DNA repair
-
Shor E., Weinstein J., Rothstein R. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1SHU2PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 2005, 169:1275-1289.
-
(2005)
Genetics
, vol.169
, pp. 1275-1289
-
-
Shor, E.1
Weinstein, J.2
Rothstein, R.3
-
73
-
-
34948885589
-
Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3
-
Mankouri H.W., Ngo H.P., Hickson I.D. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. Mol. Biol. Cell. 2007, 18:4062-4073.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 4062-4073
-
-
Mankouri, H.W.1
Ngo, H.P.2
Hickson, I.D.3
-
74
-
-
0036812236
-
Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae
-
Shor E., Gangloff S., Wagner M., Weinstein J., Price G., Rothstein R. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 2002, 162:647-662.
-
(2002)
Genetics
, vol.162
, pp. 647-662
-
-
Shor, E.1
Gangloff, S.2
Wagner, M.3
Weinstein, J.4
Price, G.5
Rothstein, R.6
-
75
-
-
84891952378
-
The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue
-
Xu X., Ball L., Chen W., Tian X., Lambrecht A., Hanna M., Xiao W. The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLOS ONE 2013, 8:e81371.
-
(2013)
PLOS ONE
, vol.8
, pp. e81371
-
-
Xu, X.1
Ball, L.2
Chen, W.3
Tian, X.4
Lambrecht, A.5
Hanna, M.6
Xiao, W.7
-
76
-
-
84877256636
-
The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55-Rad57 to mediate error-free recombination
-
Godin S., Wier A., Kabbinavar F., Bratton-Palmer D.S., Ghodke H., Van Houten B., Vandemark A.P., Bernstein K.A. The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55-Rad57 to mediate error-free recombination. Nucleic Acids Res. 2013.
-
(2013)
Nucleic Acids Res.
-
-
Godin, S.1
Wier, A.2
Kabbinavar, F.3
Bratton-Palmer, D.S.4
Ghodke, H.5
Van Houten, B.6
Vandemark, A.P.7
Bernstein, K.A.8
-
77
-
-
21244449061
-
Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
-
Papouli E., Chen S., Davies A.A., Huttner D., Krejci L., Sung P., Ulrich H.D. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 2005, 19:123-133.
-
(2005)
Mol. Cell
, vol.19
, pp. 123-133
-
-
Papouli, E.1
Chen, S.2
Davies, A.A.3
Huttner, D.4
Krejci, L.5
Sung, P.6
Ulrich, H.D.7
-
78
-
-
51949083815
-
SUMO modification of PCNA is controlled by DNA
-
Parker J.L., Bucceri A., Davies A.A., Heidrich K., Windecker H., Ulrich H.D. SUMO modification of PCNA is controlled by DNA. EMBO J. 2008, 27:2422-2431.
-
(2008)
EMBO J.
, vol.27
, pp. 2422-2431
-
-
Parker, J.L.1
Bucceri, A.2
Davies, A.A.3
Heidrich, K.4
Windecker, H.5
Ulrich, H.D.6
-
79
-
-
32644454570
-
Sumoylation of PCNA: wrestling with recombination at stalled replication forks
-
Watts F.Z. Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair 2006, 5:399-403.
-
(2006)
DNA Repair
, vol.5
, pp. 399-403
-
-
Watts, F.Z.1
-
80
-
-
22944474665
-
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
-
Pfander B., Moldovan G.L., Sacher M., Hoege C., Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005, 436:428-433.
-
(2005)
Nature
, vol.436
, pp. 428-433
-
-
Pfander, B.1
Moldovan, G.L.2
Sacher, M.3
Hoege, C.4
Jentsch, S.5
-
81
-
-
0018673170
-
Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants
-
Lawrence C.W., Christensen R.B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 1979, 139:866-876.
-
(1979)
J. Bacteriol.
, vol.139
, pp. 866-876
-
-
Lawrence, C.W.1
Christensen, R.B.2
-
82
-
-
0025232659
-
The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
-
Schiestl R.H., Prakash S., Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 1990, 124:817-831.
-
(1990)
Genetics
, vol.124
, pp. 817-831
-
-
Schiestl, R.H.1
Prakash, S.2
Prakash, L.3
-
83
-
-
0035445946
-
The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway
-
Ulrich H.D. The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res. 2001, 29:3487-3494.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 3487-3494
-
-
Ulrich, H.D.1
-
84
-
-
0036464540
-
Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis
-
Broomfield S., Xiao W. Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res. 2002, 30:732-739.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 732-739
-
-
Broomfield, S.1
Xiao, W.2
-
85
-
-
0026089250
-
The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene
-
Rong L., Palladino F., Aguilera A., Klein H.L. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 1991, 127:75-85.
-
(1991)
Genetics
, vol.127
, pp. 75-85
-
-
Rong, L.1
Palladino, F.2
Aguilera, A.3
Klein, H.L.4
-
86
-
-
0034119866
-
Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
-
Gangloff S., Soustelle C., Fabre F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 2000, 25:192-194.
-
(2000)
Nat. Genet.
, vol.25
, pp. 192-194
-
-
Gangloff, S.1
Soustelle, C.2
Fabre, F.3
-
87
-
-
0035049599
-
The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination
-
McVey M., Kaeberlein M., Tissenbaum H.A., Guarente L. The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 2001, 157:1531-1542.
-
(2001)
Genetics
, vol.157
, pp. 1531-1542
-
-
McVey, M.1
Kaeberlein, M.2
Tissenbaum, H.A.3
Guarente, L.4
-
88
-
-
0028948126
-
Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51
-
Milne G.T., Ho T., Weaver D.T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 1995, 139:1189-1199.
-
(1995)
Genetics
, vol.139
, pp. 1189-1199
-
-
Milne, G.T.1
Ho, T.2
Weaver, D.T.3
-
89
-
-
0029348565
-
The complexity of the interaction between RAD52 and SRS2
-
Kaytor M.D., Nguyen M., Livingston D.M. The complexity of the interaction between RAD52 and SRS2. Genetics 1995, 140:1441-1442.
-
(1995)
Genetics
, vol.140
, pp. 1441-1442
-
-
Kaytor, M.D.1
Nguyen, M.2
Livingston, D.M.3
-
90
-
-
0037673941
-
DNA helicase Srs2 disrupts the Rad51 presynaptic filament
-
Krejci L., Van Komen S., Li Y., Villemain J., Reddy M.S., Klein H., Ellenberger T., Sung P. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 2003, 423:305-309.
-
(2003)
Nature
, vol.423
, pp. 305-309
-
-
Krejci, L.1
Van Komen, S.2
Li, Y.3
Villemain, J.4
Reddy, M.S.5
Klein, H.6
Ellenberger, T.7
Sung, P.8
-
91
-
-
0037673943
-
The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
-
Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003, 423:309-312.
-
(2003)
Nature
, vol.423
, pp. 309-312
-
-
Veaute, X.1
Jeusset, J.2
Soustelle, C.3
Kowalczykowski, S.C.4
Le Cam, E.5
Fabre, F.6
-
92
-
-
0027465864
-
Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae
-
Rong L., Klein H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1993, 268:1252-1259.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 1252-1259
-
-
Rong, L.1
Klein, H.L.2
-
93
-
-
38649130654
-
The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination
-
Dupaigne P., Le Breton C., Fabre F., Gangloff S., Le Cam E., Veaute X. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 2008, 29:243-254.
-
(2008)
Mol. Cell
, vol.29
, pp. 243-254
-
-
Dupaigne, P.1
Le Breton, C.2
Fabre, F.3
Gangloff, S.4
Le Cam, E.5
Veaute, X.6
-
94
-
-
73349140234
-
Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption
-
Colavito S., Macris-Kiss M., Seong C., Gleeson O., Greene E.C., Klein H.L., Krejci L., Sung P. Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res. 2009, 37:6754-6764.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 6754-6764
-
-
Colavito, S.1
Macris-Kiss, M.2
Seong, C.3
Gleeson, O.4
Greene, E.C.5
Klein, H.L.6
Krejci, L.7
Sung, P.8
-
95
-
-
67649637509
-
Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
-
Antony E., Tomko E.J., Xiao Q., Krejci L., Lohman T.M., Ellenberger T. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell 2009, 35:105-115.
-
(2009)
Mol. Cell
, vol.35
, pp. 105-115
-
-
Antony, E.1
Tomko, E.J.2
Xiao, Q.3
Krejci, L.4
Lohman, T.M.5
Ellenberger, T.6
-
96
-
-
80855132890
-
Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
-
Liu J., Renault L., Veaute X., Fabre F., Stahlberg H., Heyer W.D. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 2011, 479:245-248.
-
(2011)
Nature
, vol.479
, pp. 245-248
-
-
Liu, J.1
Renault, L.2
Veaute, X.3
Fabre, F.4
Stahlberg, H.5
Heyer, W.D.6
-
97
-
-
69949119552
-
Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase
-
Seong C., Colavito S., Kwon Y., Sung P., Krejci L. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J. Biol. Chem. 2009, 284:24363-24371.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 24363-24371
-
-
Seong, C.1
Colavito, S.2
Kwon, Y.3
Sung, P.4
Krejci, L.5
-
98
-
-
0026669523
-
Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants
-
Palladino F., Klein H.L. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 1992, 132:23-37.
-
(1992)
Genetics
, vol.132
, pp. 23-37
-
-
Palladino, F.1
Klein, H.L.2
-
99
-
-
79955499183
-
The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase
-
Bernstein K.A., Reid R.J., Sunjevaric I., Demuth K., Burgess R.C., Rothstein R. The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell 2011, 22:1599-1607.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1599-1607
-
-
Bernstein, K.A.1
Reid, R.J.2
Sunjevaric, I.3
Demuth, K.4
Burgess, R.C.5
Rothstein, R.6
-
100
-
-
84864284062
-
Structural and SAXS analysis of the budding yeast SHU-complex proteins
-
She Z., Gao Z.Q., Liu Y., Wang W.J., Liu G.F., Shtykova E.V., Xu J.H., Dong Y.H. Structural and SAXS analysis of the budding yeast SHU-complex proteins. FEBS Lett. 2012, 586:2306-2312.
-
(2012)
FEBS Lett.
, vol.586
, pp. 2306-2312
-
-
She, Z.1
Gao, Z.Q.2
Liu, Y.3
Wang, W.J.4
Liu, G.F.5
Shtykova, E.V.6
Xu, J.H.7
Dong, Y.H.8
-
101
-
-
84862006681
-
Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage
-
Tao Y., Li X., Liu Y., Ruan J., Qi S., Niu L., Teng M. Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage. J. Biol. Chem. 2012, 287:20231-20239.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 20231-20239
-
-
Tao, Y.1
Li, X.2
Liu, Y.3
Ruan, J.4
Qi, S.5
Niu, L.6
Teng, M.7
-
102
-
-
0035836765
-
A comprehensive two-hybrid analysis to explore the yeast protein interactome
-
Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:4569-4574.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 4569-4574
-
-
Ito, T.1
Chiba, T.2
Ozawa, R.3
Yoshida, M.4
Hattori, M.5
Sakaki, Y.6
-
103
-
-
77955416458
-
Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA
-
Parnas O., Zipin-Roitman A., Pfander B., Liefshitz B., Mazor Y., Ben-Aroya S., Jentsch S., Kupiec M. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J. 2010, 29:2611-2622.
-
(2010)
EMBO J.
, vol.29
, pp. 2611-2622
-
-
Parnas, O.1
Zipin-Roitman, A.2
Pfander, B.3
Liefshitz, B.4
Mazor, Y.5
Ben-Aroya, S.6
Jentsch, S.7
Kupiec, M.8
-
104
-
-
84876837172
-
The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication
-
Kubota T., Nishimura K., Kanemaki M.T., Donaldson A.D. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol. Cell 2013, 50:273-280.
-
(2013)
Mol. Cell
, vol.50
, pp. 273-280
-
-
Kubota, T.1
Nishimura, K.2
Kanemaki, M.T.3
Donaldson, A.D.4
|