메뉴 건너뛰기




Volumn 764, Issue , 2015, Pages 43-50

Error-free DNA-damage tolerance in Saccharomyces cerevisiae

Author keywords

DNA damage tolerance; Error free bypass; PCNA; Saccharomyces cerevisiae; Sumoylation; Ubiquitination

Indexed keywords

CYCLINE; DNA POLYMERASE; PROTEIN; PROTEIN SRS2; REPLICATION FACTOR C; SINGLE STRANDED DNA; UNCLASSIFIED DRUG; DNA BINDING PROTEIN; DNA HELICASE; FUNGAL DNA; POL30 PROTEIN, S CEREVISIAE; RAD18 PROTEIN, S CEREVISIAE; RAD6 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SRS2 PROTEIN, S CEREVISIAE; UBIQUITIN CONJUGATING ENZYME;

EID: 84930048461     PISSN: 13835742     EISSN: 13882139     Source Type: Journal    
DOI: 10.1016/j.mrrev.2015.02.001     Document Type: Review
Times cited : (54)

References (104)
  • 1
    • 0019770524 scopus 로고
    • Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations
    • Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet. 1981, 184:471-478.
    • (1981) Mol. Gen. Genet. , vol.184 , pp. 471-478
    • Prakash, L.1
  • 2
    • 0014404165 scopus 로고
    • Mutagenesis in Escherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair
    • Bridges B.A., Munson R.J. Mutagenesis in Escherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair. Proc. R. Soc. Lond. B: Biol. Sci. 1968, 171:213-226.
    • (1968) Proc. R. Soc. Lond. B: Biol. Sci. , vol.171 , pp. 213-226
    • Bridges, B.A.1    Munson, R.J.2
  • 3
    • 0016168106 scopus 로고
    • Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12
    • Ganesan A.K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J. Mol. Biol. 1974, 87:103-119.
    • (1974) J. Mol. Biol. , vol.87 , pp. 103-119
    • Ganesan, A.K.1
  • 4
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes M., Foiani M., Sogo J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 2006, 21:15-27.
    • (2006) Mol. Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 5
    • 77953694683 scopus 로고    scopus 로고
    • Ubiquitin-dependent DNA damage bypass is separable from genome replication
    • Daigaku Y., Davies A.A., Ulrich H.D. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 2010, 465:951-955.
    • (2010) Nature , vol.465 , pp. 951-955
    • Daigaku, Y.1    Davies, A.A.2    Ulrich, H.D.3
  • 6
    • 77951699996 scopus 로고    scopus 로고
    • The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
    • Karras G.I., Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 2010, 141:255-267.
    • (2010) Cell , vol.141 , pp. 255-267
    • Karras, G.I.1    Jentsch, S.2
  • 7
    • 0017288156 scopus 로고
    • UV mutagenesis in radiation-sensitive strains of yeast
    • Lawrence C.W., Christensen R. UV mutagenesis in radiation-sensitive strains of yeast. Genetics 1976, 82:207-232.
    • (1976) Genetics , vol.82 , pp. 207-232
    • Lawrence, C.W.1    Christensen, R.2
  • 8
    • 0001908121 scopus 로고
    • Mutants of yeast defective in mutation induced by ultraviolet light
    • Lemontt J.F. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 1971, 68:21-33.
    • (1971) Genetics , vol.68 , pp. 21-33
    • Lemontt, J.F.1
  • 9
    • 0032510731 scopus 로고    scopus 로고
    • MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway
    • Broomfield S., Chow B.L., Xiao W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:5678-5683.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5678-5683
    • Broomfield, S.1    Chow, B.L.2    Xiao, W.3
  • 10
    • 0034072812 scopus 로고    scopus 로고
    • UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae
    • Brusky J., Zhu Y., Xiao W. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet. 2000, 37:168-174.
    • (2000) Curr. Genet. , vol.37 , pp. 168-174
    • Brusky, J.1    Zhu, Y.2    Xiao, W.3
  • 11
    • 0027146121 scopus 로고
    • DNA repair genes and proteins of Saccharomyces cerevisiae
    • Prakash S., Sung P., Prakash L. DNA repair genes and proteins of Saccharomyces cerevisiae. Ann. Rev. Genet. 1993, 27:33-70.
    • (1993) Ann. Rev. Genet. , vol.27 , pp. 33-70
    • Prakash, S.1    Sung, P.2    Prakash, L.3
  • 12
    • 0035833662 scopus 로고    scopus 로고
    • DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae
    • Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 2001, 486:167-184.
    • (2001) Mutat. Res. , vol.486 , pp. 167-184
    • Broomfield, S.1    Hryciw, T.2    Xiao, W.3
  • 13
    • 84876333557 scopus 로고    scopus 로고
    • The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent
    • Huang D., Piening B.D., Paulovich A.G. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Mol. Cell Biol. 2013, 33:1515-1527.
    • (2013) Mol. Cell Biol. , vol.33 , pp. 1515-1527
    • Huang, D.1    Piening, B.D.2    Paulovich, A.G.3
  • 14
    • 84863100045 scopus 로고    scopus 로고
    • Competition, collaboration and coordination - determining how cells bypass DNA damage
    • Sale J.E. Competition, collaboration and coordination - determining how cells bypass DNA damage. J. Cell Sci. 2012, 125:1633-1643.
    • (2012) J. Cell Sci. , vol.125 , pp. 1633-1643
    • Sale, J.E.1
  • 15
    • 84930054315 scopus 로고    scopus 로고
    • Homologous recombination maintenance of genome integrity during DNA damage tolerance
    • Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol. Cell Oncol. 2014, 1:e957039.
    • (2014) Mol. Cell Oncol. , vol.1 , pp. e957039
    • Prado, F.1
  • 16
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan G.L., Pfander B., Jentsch S. PCNA, the maestro of the replication fork. Cell 2007, 129:665-679.
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 18
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C., Pfander B., Moldovan G.L., Pyrowolakis G., Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 19
    • 23144449208 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins as multifunctional signals
    • Welchman R.L., Gordon C., Mayer R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 2005, 6:599-609.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 599-609
    • Welchman, R.L.1    Gordon, C.2    Mayer, R.J.3
  • 21
    • 78649396592 scopus 로고    scopus 로고
    • The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition
    • Gareau J.R., Lima C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 2010, 11:861-871.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 861-871
    • Gareau, J.R.1    Lima, C.D.2
  • 22
  • 23
    • 0033525582 scopus 로고    scopus 로고
    • Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
    • Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999, 96:645-653.
    • (1999) Cell , vol.96 , pp. 645-653
    • Hofmann, R.M.1    Pickart, C.M.2
  • 24
    • 0035875079 scopus 로고    scopus 로고
    • Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer
    • VanDemark A.P., Hofmann R.M., Tsui C., Pickart C.M., Wolberger C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 2001, 105:711-720.
    • (2001) Cell , vol.105 , pp. 711-720
    • VanDemark, A.P.1    Hofmann, R.M.2    Tsui, C.3    Pickart, C.M.4    Wolberger, C.5
  • 25
    • 33749506057 scopus 로고    scopus 로고
    • Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
    • Eddins M.J., Carlile C.M., Gomez K.M., Pickart C.M., Wolberger C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 2006, 13:915-920.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 915-920
    • Eddins, M.J.1    Carlile, C.M.2    Gomez, K.M.3    Pickart, C.M.4    Wolberger, C.5
  • 26
    • 0035955731 scopus 로고    scopus 로고
    • Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination
    • McKenna S., Spyracopoulos L., Moraes T., Pastushok L., Ptak C., Xiao W., Ellison M.J. Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 2001, 276:40120-40126.
    • (2001) J. Biol. Chem. , vol.276 , pp. 40120-40126
    • McKenna, S.1    Spyracopoulos, L.2    Moraes, T.3    Pastushok, L.4    Ptak, C.5    Xiao, W.6    Ellison, M.J.7
  • 28
    • 0026661167 scopus 로고
    • Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome
    • Johnson R.E., Henderson S.T., Petes T.D., Prakash S., Bankmann M., Prakash L. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell Biol. 1992, 12:3807-3818.
    • (1992) Mol. Cell Biol. , vol.12 , pp. 3807-3818
    • Johnson, R.E.1    Henderson, S.T.2    Petes, T.D.3    Prakash, S.4    Bankmann, M.5    Prakash, L.6
  • 30
    • 0034600851 scopus 로고    scopus 로고
    • Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair
    • Ulrich H.D., Jentsch S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 2000, 19:3388-3397.
    • (2000) EMBO J. , vol.19 , pp. 3388-3397
    • Ulrich, H.D.1    Jentsch, S.2
  • 32
    • 33847381960 scopus 로고    scopus 로고
    • Contributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiae
    • Parker J.L., Bielen A.B., Dikic I., Ulrich H.D. Contributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiae. Nucleic Acids Res. 2007, 35:881-889.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 881-889
    • Parker, J.L.1    Bielen, A.B.2    Dikic, I.3    Ulrich, H.D.4
  • 33
    • 77956113157 scopus 로고    scopus 로고
    • Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities
    • Pastushok L., Hanna M., Xiao W. Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res. 2010, 38:5047-5058.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 5047-5058
    • Pastushok, L.1    Hanna, M.2    Xiao, W.3
  • 34
    • 77953480274 scopus 로고    scopus 로고
    • Ubiquitin-PCNA fusion as a mimic for mono-ubiquitinated PCNA in Schizosaccharomyces pombe
    • Ramasubramanyan S., Coulon S., Fuchs R.P., Lehmann A.R., Green C.M. Ubiquitin-PCNA fusion as a mimic for mono-ubiquitinated PCNA in Schizosaccharomyces pombe. DNA Repair 2010, 9:777-784.
    • (2010) DNA Repair , vol.9 , pp. 777-784
    • Ramasubramanyan, S.1    Coulon, S.2    Fuchs, R.P.3    Lehmann, A.R.4    Green, C.M.5
  • 36
    • 77952336245 scopus 로고    scopus 로고
    • Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains
    • Zhao S., Ulrich H.D. Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7704-7709.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7704-7709
    • Zhao, S.1    Ulrich, H.D.2
  • 37
    • 84906260581 scopus 로고    scopus 로고
    • Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance
    • Yang K., Gong P., Gokhale P., Zhuang Z. Chemical protein polyubiquitination reveals the role of a noncanonical polyubiquitin chain in DNA damage tolerance. ACS Chem. Biol. 2014, 9:1685-1691.
    • (2014) ACS Chem. Biol. , vol.9 , pp. 1685-1691
    • Yang, K.1    Gong, P.2    Gokhale, P.3    Zhuang, Z.4
  • 39
    • 84864014165 scopus 로고    scopus 로고
    • ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response
    • Weston R., Peeters H., Ahel D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 2012, 26:1558-1572.
    • (2012) Genes Dev. , vol.26 , pp. 1558-1572
    • Weston, R.1    Peeters, H.2    Ahel, D.3
  • 40
    • 84864923437 scopus 로고    scopus 로고
    • The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress
    • Yuan J., Ghosal G., Chen J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 2012, 47:410-421.
    • (2012) Mol. Cell , vol.47 , pp. 410-421
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 41
    • 0032867490 scopus 로고    scopus 로고
    • Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae
    • Xiao W., Chow B.L., Fontanie T., Ma L., Bacchetti S., Hryciw T., Broomfield S. Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat. Res. 1999, 435:1-11.
    • (1999) Mutat. Res. , vol.435 , pp. 1-11
    • Xiao, W.1    Chow, B.L.2    Fontanie, T.3    Ma, L.4    Bacchetti, S.5    Hryciw, T.6    Broomfield, S.7
  • 42
    • 0028149592 scopus 로고
    • Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase
    • Johnson R.E., Prakash S., Prakash L. Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase. J. Biol. Chem. 1994, 269:28259-28262.
    • (1994) J. Biol. Chem. , vol.269 , pp. 28259-28262
    • Johnson, R.E.1    Prakash, S.2    Prakash, L.3
  • 43
    • 33749617398 scopus 로고    scopus 로고
    • Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae
    • Gangavarapu V., Haracska L., Unk I., Johnson R.E., Prakash S., Prakash L. Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol. Cell Biol. 2006, 26:7783-7790.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 7783-7790
    • Gangavarapu, V.1    Haracska, L.2    Unk, I.3    Johnson, R.E.4    Prakash, S.5    Prakash, L.6
  • 44
    • 0037470244 scopus 로고    scopus 로고
    • Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair
    • Ulrich H.D. Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair. J. Biol. Chem. 2003, 278:7051-7058.
    • (2003) J. Biol. Chem. , vol.278 , pp. 7051-7058
    • Ulrich, H.D.1
  • 45
    • 70350417485 scopus 로고    scopus 로고
    • Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5
    • Carlile C.M., Pickart C.M., Matunis M.J., Cohen R.E. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J. Biol. Chem. 2009, 284:29326-29334.
    • (2009) J. Biol. Chem. , vol.284 , pp. 29326-29334
    • Carlile, C.M.1    Pickart, C.M.2    Matunis, M.J.3    Cohen, R.E.4
  • 46
    • 71349084952 scopus 로고    scopus 로고
    • Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5
    • Parker J.L., Ulrich H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J. 2009, 28:3657-3666.
    • (2009) EMBO J. , vol.28 , pp. 3657-3666
    • Parker, J.L.1    Ulrich, H.D.2
  • 47
    • 80052754015 scopus 로고    scopus 로고
    • Roles of sequential ubiquitination of PCNA in DNA-damage tolerance
    • Zhang W., Qin Z., Zhang X., Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 2011, 585:2786-2794.
    • (2011) FEBS Lett. , vol.585 , pp. 2786-2794
    • Zhang, W.1    Qin, Z.2    Zhang, X.3    Xiao, W.4
  • 48
    • 27144448514 scopus 로고    scopus 로고
    • The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner
    • Chen S., Davies A.A., Sagan D., Ulrich H.D. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 2005, 33:5878-5886.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 5878-5886
    • Chen, S.1    Davies, A.A.2    Sagan, D.3    Ulrich, H.D.4
  • 49
    • 77954218952 scopus 로고    scopus 로고
    • Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription
    • Tang L., Nogales E., Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol. Biol. 2010, 102:122-128.
    • (2010) Prog. Biophys. Mol. Biol. , vol.102 , pp. 122-128
    • Tang, L.1    Nogales, E.2    Ciferri, C.3
  • 50
    • 35148847451 scopus 로고    scopus 로고
    • Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
    • Blastyak A., Pinter L., Unk I., Prakash L., Prakash S., Haracska L. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 2007, 28:167-175.
    • (2007) Mol. Cell , vol.28 , pp. 167-175
    • Blastyak, A.1    Pinter, L.2    Unk, I.3    Prakash, L.4    Prakash, S.5    Haracska, L.6
  • 51
    • 0037799191 scopus 로고    scopus 로고
    • Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo
    • Pages V., Fuchs R.P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 2003, 300:1300-1303.
    • (2003) Science , vol.300 , pp. 1300-1303
    • Pages, V.1    Fuchs, R.P.2
  • 53
    • 53149087431 scopus 로고    scopus 로고
    • The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
    • Sun W., Nandi S., Osman F., Ahn J.S., Jakovleska J., Lorenz A., Whitby M.C. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 2008, 32:118-128.
    • (2008) Mol. Cell , vol.32 , pp. 118-128
    • Sun, W.1    Nandi, S.2    Osman, F.3    Ahn, J.S.4    Jakovleska, J.5    Lorenz, A.6    Whitby, M.C.7
  • 55
    • 84887850235 scopus 로고    scopus 로고
    • Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication
    • Glineburg M.R., Chavez A., Agrawal V., Brill S.J., Johnson F.B. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J. Biol. Chem. 2013, 288:33193-33204.
    • (2013) J. Biol. Chem. , vol.288 , pp. 33193-33204
    • Glineburg, M.R.1    Chavez, A.2    Agrawal, V.3    Brill, S.J.4    Johnson, F.B.5
  • 56
    • 84896015910 scopus 로고    scopus 로고
    • The Rad5 helicase activity is dispensable for error-free DNA post-replication repair
    • Ball L.G., Xu X., Blackwell S., Hanna M.D., Lambrecht A.D., Xiao W. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair 2014, 16C:74-83.
    • (2014) DNA Repair , vol.16C , pp. 74-83
    • Ball, L.G.1    Xu, X.2    Blackwell, S.3    Hanna, M.D.4    Lambrecht, A.D.5    Xiao, W.6
  • 57
    • 42449115326 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease
    • Ehmsen K.T., Heyer W.D. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res. 2008, 36:2182-2195.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 2182-2195
    • Ehmsen, K.T.1    Heyer, W.D.2
  • 58
    • 10044292849 scopus 로고    scopus 로고
    • Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease
    • Fricke W.M., Bastin-Shanower S.A., Brill S.J. Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease. DNA Repair 2005, 4:243-251.
    • (2005) DNA Repair , vol.4 , pp. 243-251
    • Fricke, W.M.1    Bastin-Shanower, S.A.2    Brill, S.J.3
  • 59
    • 0037470059 scopus 로고    scopus 로고
    • Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4
    • Whitby M.C., Osman F., Dixon J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 2003, 278:6928-6935.
    • (2003) J. Biol. Chem. , vol.278 , pp. 6928-6935
    • Whitby, M.C.1    Osman, F.2    Dixon, J.3
  • 60
    • 0035148955 scopus 로고    scopus 로고
    • Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae
    • Mullen J.R., Kaliraman V., Ibrahim S.S., Brill S.J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 2001, 157:103-118.
    • (2001) Genetics , vol.157 , pp. 103-118
    • Mullen, J.R.1    Kaliraman, V.2    Ibrahim, S.S.3    Brill, S.J.4
  • 61
    • 27644590452 scopus 로고    scopus 로고
    • The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination
    • Zhang H., Lawrence C.W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:15954-15959.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 15954-15959
    • Zhang, H.1    Lawrence, C.W.2
  • 62
    • 57749169348 scopus 로고    scopus 로고
    • SUMOylation regulates Rad18-mediated template switch
    • Branzei D., Vanoli F., Foiani M. SUMOylation regulates Rad18-mediated template switch. Nature 2008, 456:915-920.
    • (2008) Nature , vol.456 , pp. 915-920
    • Branzei, D.1    Vanoli, F.2    Foiani, M.3
  • 63
    • 33750437743 scopus 로고    scopus 로고
    • Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks
    • Branzei D., Sollier J., Liberi G., Zhao X., Maeda D., Seki M., Enomoto T., Ohta K., Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 2006, 127:509-522.
    • (2006) Cell , vol.127 , pp. 509-522
    • Branzei, D.1    Sollier, J.2    Liberi, G.3    Zhao, X.4    Maeda, D.5    Seki, M.6    Enomoto, T.7    Ohta, K.8    Foiani, M.9
  • 64
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter P., Ulrich H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003, 425:188-191.
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 65
    • 77953085206 scopus 로고    scopus 로고
    • Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks
    • Minca E.C., Kowalski D. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol. Cell 2010, 38:649-661.
    • (2010) Mol. Cell , vol.38 , pp. 649-661
    • Minca, E.C.1    Kowalski, D.2
  • 67
    • 0025786472 scopus 로고
    • In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975
    • Weiland K.L., Dooley T.P. In vitro and in vivo DNA bonding by the CC-1065 analogue U-73975. Biochemistry 1991, 30:7559-7565.
    • (1991) Biochemistry , vol.30 , pp. 7559-7565
    • Weiland, K.L.1    Dooley, T.P.2
  • 68
    • 67649447015 scopus 로고    scopus 로고
    • The yeast Shu complex couples error-free post-replication repair to homologous recombination
    • Ball L.G., Zhang K., Cobb J.A., Boone C., Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol. Microbiol. 2009, 73:89-102.
    • (2009) Mol. Microbiol. , vol.73 , pp. 89-102
    • Ball, L.G.1    Zhang, K.2    Cobb, J.A.3    Boone, C.4    Xiao, W.5
  • 70
    • 11244293527 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains
    • Kamau E., Bauerle K.T., Grove A. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J. Biol. Chem. 2004, 279:55234-55240.
    • (2004) J. Biol. Chem. , vol.279 , pp. 55234-55240
    • Kamau, E.1    Bauerle, K.T.2    Grove, A.3
  • 71
    • 77952348311 scopus 로고    scopus 로고
    • The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending
    • Xiao L., Williams A.M., Grove A. The C-terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in-phase DNA bending. Biochemistry 2010, 49:4051-4059.
    • (2010) Biochemistry , vol.49 , pp. 4051-4059
    • Xiao, L.1    Williams, A.M.2    Grove, A.3
  • 72
    • 17444391598 scopus 로고    scopus 로고
    • A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1SHU2PSY3 and CSM2: four genes involved in error-free DNA repair
    • Shor E., Weinstein J., Rothstein R. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1SHU2PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 2005, 169:1275-1289.
    • (2005) Genetics , vol.169 , pp. 1275-1289
    • Shor, E.1    Weinstein, J.2    Rothstein, R.3
  • 73
    • 34948885589 scopus 로고    scopus 로고
    • Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3
    • Mankouri H.W., Ngo H.P., Hickson I.D. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. Mol. Biol. Cell. 2007, 18:4062-4073.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 4062-4073
    • Mankouri, H.W.1    Ngo, H.P.2    Hickson, I.D.3
  • 74
    • 0036812236 scopus 로고    scopus 로고
    • Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae
    • Shor E., Gangloff S., Wagner M., Weinstein J., Price G., Rothstein R. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 2002, 162:647-662.
    • (2002) Genetics , vol.162 , pp. 647-662
    • Shor, E.1    Gangloff, S.2    Wagner, M.3    Weinstein, J.4    Price, G.5    Rothstein, R.6
  • 75
    • 84891952378 scopus 로고    scopus 로고
    • The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue
    • Xu X., Ball L., Chen W., Tian X., Lambrecht A., Hanna M., Xiao W. The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLOS ONE 2013, 8:e81371.
    • (2013) PLOS ONE , vol.8 , pp. e81371
    • Xu, X.1    Ball, L.2    Chen, W.3    Tian, X.4    Lambrecht, A.5    Hanna, M.6    Xiao, W.7
  • 77
    • 21244449061 scopus 로고    scopus 로고
    • Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
    • Papouli E., Chen S., Davies A.A., Huttner D., Krejci L., Sung P., Ulrich H.D. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 2005, 19:123-133.
    • (2005) Mol. Cell , vol.19 , pp. 123-133
    • Papouli, E.1    Chen, S.2    Davies, A.A.3    Huttner, D.4    Krejci, L.5    Sung, P.6    Ulrich, H.D.7
  • 79
    • 32644454570 scopus 로고    scopus 로고
    • Sumoylation of PCNA: wrestling with recombination at stalled replication forks
    • Watts F.Z. Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair 2006, 5:399-403.
    • (2006) DNA Repair , vol.5 , pp. 399-403
    • Watts, F.Z.1
  • 80
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander B., Moldovan G.L., Sacher M., Hoege C., Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005, 436:428-433.
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 81
    • 0018673170 scopus 로고
    • Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants
    • Lawrence C.W., Christensen R.B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 1979, 139:866-876.
    • (1979) J. Bacteriol. , vol.139 , pp. 866-876
    • Lawrence, C.W.1    Christensen, R.B.2
  • 82
    • 0025232659 scopus 로고
    • The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
    • Schiestl R.H., Prakash S., Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 1990, 124:817-831.
    • (1990) Genetics , vol.124 , pp. 817-831
    • Schiestl, R.H.1    Prakash, S.2    Prakash, L.3
  • 83
    • 0035445946 scopus 로고    scopus 로고
    • The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway
    • Ulrich H.D. The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res. 2001, 29:3487-3494.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 3487-3494
    • Ulrich, H.D.1
  • 84
    • 0036464540 scopus 로고    scopus 로고
    • Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis
    • Broomfield S., Xiao W. Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res. 2002, 30:732-739.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 732-739
    • Broomfield, S.1    Xiao, W.2
  • 85
    • 0026089250 scopus 로고
    • The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene
    • Rong L., Palladino F., Aguilera A., Klein H.L. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 1991, 127:75-85.
    • (1991) Genetics , vol.127 , pp. 75-85
    • Rong, L.1    Palladino, F.2    Aguilera, A.3    Klein, H.L.4
  • 86
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • Gangloff S., Soustelle C., Fabre F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 2000, 25:192-194.
    • (2000) Nat. Genet. , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 87
    • 0035049599 scopus 로고    scopus 로고
    • The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination
    • McVey M., Kaeberlein M., Tissenbaum H.A., Guarente L. The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 2001, 157:1531-1542.
    • (2001) Genetics , vol.157 , pp. 1531-1542
    • McVey, M.1    Kaeberlein, M.2    Tissenbaum, H.A.3    Guarente, L.4
  • 88
    • 0028948126 scopus 로고
    • Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51
    • Milne G.T., Ho T., Weaver D.T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 1995, 139:1189-1199.
    • (1995) Genetics , vol.139 , pp. 1189-1199
    • Milne, G.T.1    Ho, T.2    Weaver, D.T.3
  • 89
    • 0029348565 scopus 로고
    • The complexity of the interaction between RAD52 and SRS2
    • Kaytor M.D., Nguyen M., Livingston D.M. The complexity of the interaction between RAD52 and SRS2. Genetics 1995, 140:1441-1442.
    • (1995) Genetics , vol.140 , pp. 1441-1442
    • Kaytor, M.D.1    Nguyen, M.2    Livingston, D.M.3
  • 91
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X., Jeusset J., Soustelle C., Kowalczykowski S.C., Le Cam E., Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003, 423:309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5    Fabre, F.6
  • 92
    • 0027465864 scopus 로고
    • Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae
    • Rong L., Klein H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1993, 268:1252-1259.
    • (1993) J. Biol. Chem. , vol.268 , pp. 1252-1259
    • Rong, L.1    Klein, H.L.2
  • 93
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination
    • Dupaigne P., Le Breton C., Fabre F., Gangloff S., Le Cam E., Veaute X. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 2008, 29:243-254.
    • (2008) Mol. Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Gangloff, S.4    Le Cam, E.5    Veaute, X.6
  • 95
    • 67649637509 scopus 로고    scopus 로고
    • Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
    • Antony E., Tomko E.J., Xiao Q., Krejci L., Lohman T.M., Ellenberger T. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell 2009, 35:105-115.
    • (2009) Mol. Cell , vol.35 , pp. 105-115
    • Antony, E.1    Tomko, E.J.2    Xiao, Q.3    Krejci, L.4    Lohman, T.M.5    Ellenberger, T.6
  • 96
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J., Renault L., Veaute X., Fabre F., Stahlberg H., Heyer W.D. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 2011, 479:245-248.
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1    Renault, L.2    Veaute, X.3    Fabre, F.4    Stahlberg, H.5    Heyer, W.D.6
  • 97
    • 69949119552 scopus 로고    scopus 로고
    • Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase
    • Seong C., Colavito S., Kwon Y., Sung P., Krejci L. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J. Biol. Chem. 2009, 284:24363-24371.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24363-24371
    • Seong, C.1    Colavito, S.2    Kwon, Y.3    Sung, P.4    Krejci, L.5
  • 98
    • 0026669523 scopus 로고
    • Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants
    • Palladino F., Klein H.L. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 1992, 132:23-37.
    • (1992) Genetics , vol.132 , pp. 23-37
    • Palladino, F.1    Klein, H.L.2
  • 99
    • 79955499183 scopus 로고    scopus 로고
    • The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase
    • Bernstein K.A., Reid R.J., Sunjevaric I., Demuth K., Burgess R.C., Rothstein R. The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell 2011, 22:1599-1607.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1599-1607
    • Bernstein, K.A.1    Reid, R.J.2    Sunjevaric, I.3    Demuth, K.4    Burgess, R.C.5    Rothstein, R.6
  • 101
    • 84862006681 scopus 로고    scopus 로고
    • Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage
    • Tao Y., Li X., Liu Y., Ruan J., Qi S., Niu L., Teng M. Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage. J. Biol. Chem. 2012, 287:20231-20239.
    • (2012) J. Biol. Chem. , vol.287 , pp. 20231-20239
    • Tao, Y.1    Li, X.2    Liu, Y.3    Ruan, J.4    Qi, S.5    Niu, L.6    Teng, M.7
  • 104
    • 84876837172 scopus 로고    scopus 로고
    • The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication
    • Kubota T., Nishimura K., Kanemaki M.T., Donaldson A.D. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol. Cell 2013, 50:273-280.
    • (2013) Mol. Cell , vol.50 , pp. 273-280
    • Kubota, T.1    Nishimura, K.2    Kanemaki, M.T.3    Donaldson, A.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.