메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Clk post-transcriptional control denoises circadian transcription both temporally and spatially

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTION FACTOR CLOCK; 3' UNTRANSLATED REGION; AGO1 PROTEIN, DROSOPHILA; ARGONAUTE PROTEIN; BANTAM MICRORNA, DROSOPHILA; CLK PROTEIN, DROSOPHILA; DROSOPHILA PROTEIN; MESSENGER RNA; MICRORNA;

EID: 84929208398     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms8056     Document Type: Article
Times cited : (31)

References (65)
  • 1
    • 77951912759 scopus 로고    scopus 로고
    • Circadian organization of behavior and physiology in Drosophila
    • Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605-624 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 605-624
    • Allada, R.1    Chung, B.Y.2
  • 2
    • 0037686260 scopus 로고    scopus 로고
    • Genetics and molecular biology of rhythms in Drosophila and other insects
    • Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1-280 (2003).
    • (2003) Adv. Genet. , vol.48 , pp. 1-280
    • Hall J. ., C.1
  • 3
    • 17044451254 scopus 로고    scopus 로고
    • A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless
    • Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791-804 (1998).
    • (1998) Cell , vol.93 , pp. 791-804
    • Allada, R.1    White, N.E.2    So, W.V.3    Hall, J.C.4    Rosbash, M.5
  • 4
    • 0032577450 scopus 로고    scopus 로고
    • CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless
    • Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805-814 (1998).
    • (1998) Cell , vol.93 , pp. 805-814
    • Rutila, J.E.1
  • 5
    • 0025044560 scopus 로고
    • Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels
    • Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536-540 (1990).
    • (1990) Nature , vol.343 , pp. 536-540
    • Hardin, P.E.1    Hall, J.C.2    Rosbash, M.3
  • 6
    • 0028826150 scopus 로고
    • Positional cloning and sequence analysis of the Drosophila clock gene, timeless
    • Myers, M. P., Wager-Smith, K., Wesley, C. S., Young, M. W. & Sehgal, A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270, 805-808 (1995).
    • (1995) Science , vol.270 , pp. 805-808
    • Myers, M.P.1    Wager-Smith, K.2    Wesley, C.S.3    Young, M.W.4    Sehgal, A.5
  • 7
    • 34347382964 scopus 로고    scopus 로고
    • Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component
    • Kadener, S., Stoleru, D., McDonald, M., Nawathean, P. & Rosbash, M. Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes Dev. 21, 1675-1686 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1675-1686
    • Kadener, S.1    Stoleru, D.2    McDonald, M.3    Nawathean, P.4    Rosbash, M.5
  • 8
    • 34250215964 scopus 로고    scopus 로고
    • Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila
    • Lim, C. et al. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr. Biol. 17, 1082-1089 (2007).
    • (2007) Curr. Biol. , vol.17 , pp. 1082-1089
    • Lim, C.1
  • 9
    • 34347375754 scopus 로고    scopus 로고
    • A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock
    • Matsumoto, A. et al. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 21, 1687-1700 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1687-1700
    • Matsumoto, A.1
  • 10
    • 0034161394 scopus 로고    scopus 로고
    • DCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex
    • Bae, K., Lee, C., Hardin, P. E. & Edery, I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J. Neurosci. 20, 1746-1753 (2000).
    • (2000) J. Neurosci. , vol.20 , pp. 1746-1753
    • Bae, K.1    Lee, C.2    Hardin, P.E.3    Edery, I.4
  • 11
    • 0037423224 scopus 로고    scopus 로고
    • Vrille Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock
    • Cyran, S. A. et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 329-341 (2003).
    • (2003) Cell , vol.112 , pp. 329-341
    • Cyran, S.A.1
  • 12
    • 0037461716 scopus 로고    scopus 로고
    • VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator
    • Glossop, N. R. et al. VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator. Neuron 37, 249-261 (2003).
    • (2003) Neuron , vol.37 , pp. 249-261
    • Glossop, N.R.1
  • 13
    • 77249127936 scopus 로고    scopus 로고
    • The circadian output gene takeout is regulated by Pdp1epsilon
    • Benito, J. et al. The circadian output gene takeout is regulated by Pdp1epsilon. Proc. Natl Acad. Sci. USA 107, 2544-2549 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 2544-2549
    • Benito, J.1
  • 14
    • 79955890550 scopus 로고    scopus 로고
    • Kinases and phosphatases in the mammalian circadian clock
    • Reischl, S. & Kramer, A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 585, 1393-1399 (2011).
    • (2011) FEBS Lett. , vol.585 , pp. 1393-1399
    • Reischl, S.1    Kramer, A.2
  • 15
    • 84886813829 scopus 로고    scopus 로고
    • Emerging roles for post-transcriptional regulation in circadian clocks
    • Lim, C. & Allada, R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat. Neurosci. 16, 1544-1550 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1544-1550
    • Lim, C.1    Allada, R.2
  • 16
    • 33846102215 scopus 로고    scopus 로고
    • Regulating a circadian clock's period, phase and amplitude by phosphorylation: Insights from Drosophila
    • Bae, K. & Edery, I. Regulating a circadian clock's period, phase and amplitude by phosphorylation: insights from Drosophila. J. Biochem. 140, 609-617 (2006).
    • (2006) J. Biochem. , vol.140 , pp. 609-617
    • Bae, K.1    Edery, I.2
  • 17
    • 0030656411 scopus 로고    scopus 로고
    • Independent photoreceptive circadian clocks throughout Drosophila
    • Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632-1635 (1997).
    • (1997) Science , vol.278 , pp. 1632-1635
    • Plautz, J.D.1    Kaneko, M.2    Hall, J.C.3    Kay, S.A.4
  • 18
    • 0033599009 scopus 로고    scopus 로고
    • A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila
    • Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791-802 (1999).
    • (1999) Cell , vol.99 , pp. 791-802
    • Renn, S.C.1    Park, J.H.2    Rosbash, M.3    Hall, J.C.4    Taghert, P.H.5
  • 19
    • 58549108053 scopus 로고    scopus 로고
    • The Drosophila melanogaster circadian pacemaker circuit
    • Sheeba, V. The Drosophila melanogaster circadian pacemaker circuit. J. Genet. 87, 485-493 (2008).
    • (2008) J. Genet. , vol.87 , pp. 485-493
    • Sheeba, V.1
  • 20
    • 33746818002 scopus 로고    scopus 로고
    • Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes
    • Shafer, O. T., Helfrich-Forster, C., Renn, S. C. & Taghert, P. H. Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180-193 (2006).
    • (2006) J. Comp. Neurol. , vol.498 , pp. 180-193
    • Shafer, O.T.1    Helfrich-Forster, C.2    Renn, S.C.3    Taghert, P.H.4
  • 21
    • 0037187636 scopus 로고    scopus 로고
    • Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity
    • Kim, E. Y. et al. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34, 69-81 (2002).
    • (2002) Neuron , vol.34 , pp. 69-81
    • Kim, E.Y.1
  • 22
    • 84869191713 scopus 로고    scopus 로고
    • CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila
    • Luo, W. et al. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila. Genes Dev. 26, 2536-2549 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 2536-2549
    • Luo, W.1
  • 23
    • 33645010948 scopus 로고    scopus 로고
    • PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription
    • Yu, W., Zheng, H., Houl, J. H., Dauwalder, B. & Hardin, P. E. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev. 20, 723-733 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 723-733
    • Yu, W.1    Zheng, H.2    Houl, J.H.3    Dauwalder, B.4    Hardin, P.E.5
  • 24
    • 84883170011 scopus 로고    scopus 로고
    • The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator
    • Szabo, A. et al. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol. 11, e1001645 (2013).
    • (2013) PLoS Biol. , vol.11 , pp. e1001645
    • Szabo, A.1
  • 25
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1
  • 26
    • 76749085755 scopus 로고    scopus 로고
    • Dynamic per repression mechanisms in the Drosophila circadian clock: From on-DNA to off-DNA
    • Menet, J. S., Abruzzi, K. C., Desrochers, J., Rodriguez, J. & Rosbash, M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 24, 358-367 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 358-367
    • Menet, J.S.1    Abruzzi, K.C.2    Desrochers, J.3    Rodriguez, J.4    Rosbash, M.5
  • 27
    • 72249113898 scopus 로고    scopus 로고
    • Mathematical model of the Drosophila circadian clock: Loop regulation and transcriptional integration
    • Fathallah-Shaykh, H. M., Bona, J. L. & Kadener, S. Mathematical model of the Drosophila circadian clock: loop regulation and transcriptional integration. Biophys. J. 97, 2399-2408 (2009).
    • (2009) Biophys. J. , vol.97 , pp. 2399-2408
    • Fathallah-Shaykh, H.M.1    Bona, J.L.2    Kadener, S.3
  • 28
    • 45149085615 scopus 로고    scopus 로고
    • Circadian transcription contributes to core period determination in Drosophila
    • Kadener, S., Menet, J. S., Schoer, R. & Rosbash, M. Circadian transcription contributes to core period determination in Drosophila. PLoS Biol. 6, e119 (2008).
    • (2008) PLoS Biol. , vol.6 , pp. e119
    • Kadener, S.1    Menet, J.S.2    Schoer, R.3    Rosbash, M.4
  • 29
    • 0037587790 scopus 로고    scopus 로고
    • A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude
    • Allada, R., Kadener, S., Nandakumar, N. & Rosbash, M. A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude. EMBO J. 22, 3367-3375 (2003).
    • (2003) EMBO J. , vol.22 , pp. 3367-3375
    • Allada, R.1    Kadener, S.2    Nandakumar, N.3    Rosbash, M.4
  • 30
    • 0038681910 scopus 로고    scopus 로고
    • Drosophila clock can generate ectopic circadian clocks
    • Zhao, J. et al. Drosophila clock can generate ectopic circadian clocks. Cell 113, 755-766 (2003).
    • (2003) Cell , vol.113 , pp. 755-766
    • Zhao, J.1
  • 31
    • 0034724292 scopus 로고    scopus 로고
    • Differential regulation of circadian pacemaker output by separate clock genes in Drosophila
    • Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl Acad. Sci. USA 97, 3608-3613 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 3608-3613
    • Park, J.H.1
  • 32
    • 70349093118 scopus 로고    scopus 로고
    • A role for microRNAs in the Drosophila circadian clock
    • Kadener, S. et al. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23, 2179-2191 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2179-2191
    • Kadener, S.1
  • 33
    • 84855259393 scopus 로고    scopus 로고
    • Tuning the mammalian circadian clock: Robust synergy of two loops
    • Relogio, A. et al. Tuning the mammalian circadian clock: robust synergy of two loops. PLoS. Comput. Biol. 7, e1002309 (2011).
    • (2011) PLoS. Comput. Biol. , vol.7 , pp. e1002309
    • Relogio, A.1
  • 34
    • 84878666032 scopus 로고    scopus 로고
    • Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
    • Erzberger, A., Hampp, G., Granada, A. E., Albrecht, U. & Herzel, H. Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range. J. R. Soc. Interface 10, 20130221 (2013).
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20130221
    • Erzberger, A.1    Hampp, G.2    Granada, A.E.3    Albrecht, U.4    Herzel, H.5
  • 35
    • 77951897767 scopus 로고    scopus 로고
    • Systems biology of mammalian circadian clocks
    • Ukai, H. & Ueda, H. R. Systems biology of mammalian circadian clocks. Annu. Rev. Physiol. 72, 579-603 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 579-603
    • Ukai, H.1    Ueda, H.R.2
  • 36
    • 79956300350 scopus 로고    scopus 로고
    • Understanding systems-level properties: Timely stories from the study of clocks
    • Hogenesch, J. B. & Ueda, H. R. Understanding systems-level properties: timely stories from the study of clocks. Nat. Rev. Genet. 12, 407-416 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 407-416
    • Hogenesch, J.B.1    Ueda, H.R.2
  • 37
    • 4243112662 scopus 로고    scopus 로고
    • Drosophila free-running rhythms require intercellular communication
    • Peng, Y., Stoleru, D., Levine, J. D., Hall, J. C. & Rosbash, M. Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1, E13 (2003).
    • (2003) PLoS Biol. , vol.1 , pp. E13
    • Peng, Y.1    Stoleru, D.2    Levine, J.D.3    Hall, J.C.4    Rosbash, M.5
  • 38
    • 79955879737 scopus 로고    scopus 로고
    • Intracellular and intercellular processes determine robustness of the circadian clock
    • Hogenesch, J. B. & Herzog, E. D. Intracellular and intercellular processes determine robustness of the circadian clock. FEBS Lett. 585, 1427-1434 (2011).
    • (2011) FEBS Lett. , vol.585 , pp. 1427-1434
    • Hogenesch, J.B.1    Herzog, E.D.2
  • 39
    • 84901357562 scopus 로고    scopus 로고
    • Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster
    • Weiss, R., Bartok, O., Mezan, S., Malka, Y. & Kadener, S. Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster. PLoS. Genet. 10, e1004252 (2014).
    • (2014) PLoS. Genet. , vol.10 , pp. e1004252
    • Weiss, R.1    Bartok, O.2    Mezan, S.3    Malka, Y.4    Kadener, S.5
  • 40
    • 53549123008 scopus 로고    scopus 로고
    • Nature nurture, or chance: Stochastic gene expression and its consequences
    • Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216-226 (2008).
    • (2008) Cell , vol.135 , pp. 216-226
    • Raj, A.1    Van Oudenaarden, A.2
  • 41
    • 84872840475 scopus 로고    scopus 로고
    • Nascent-Seq analysis of Drosophila cycling gene expression
    • Rodriguez, J. et al. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl Acad. Sci. USA 110, E275-E284 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E275-E284
    • Rodriguez, J.1
  • 42
    • 84861441546 scopus 로고    scopus 로고
    • Deep sequencing the circadian and diurnal transcriptome of Drosophila brain
    • Hughes, M. E., Grant, G. R., Paquin, C., Qian, J. & Nitabach, M. N. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res. 22, 1266-1281 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1266-1281
    • Hughes, M.E.1    Grant, G.R.2    Paquin, C.3    Qian, J.4    Nitabach, M.N.5
  • 43
    • 70349177026 scopus 로고    scopus 로고
    • Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation
    • Fabian, M. R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868-880 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 868-880
    • Fabian, M.R.1
  • 44
    • 0037032832 scopus 로고    scopus 로고
    • Resetting the circadian clock by social experience in Drosophila melanogaster
    • Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010-2012 (2002).
    • (2002) Science , vol.298 , pp. 2010-2012
    • Levine, J.D.1    Funes, P.2    Dowse, H.B.3    Hall, J.C.4
  • 45
    • 0031681288 scopus 로고    scopus 로고
    • Circadian regulation of a Drosophila homolog of the mammalian Clock gene: Per and TIM function as positive regulators
    • Bae, K., Lee, C., Sidote, D., Chuang, K. Y. & Edery, I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol. Cell Biol. 18, 6142-6151 (1998).
    • (1998) Mol. Cell Biol. , vol.18 , pp. 6142-6151
    • Bae, K.1    Lee, C.2    Sidote, D.3    Chuang, K.Y.4    Edery, I.5
  • 46
    • 84984765621 scopus 로고    scopus 로고
    • Canalization of development by microRNAs
    • Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nat. Genet. 38 (Suppl), S20-S24 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. S20-S24
    • Hornstein, E.1    Shomron, N.2
  • 47
    • 84885131782 scopus 로고    scopus 로고
    • MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise
    • Siciliano, V. et al. MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat. Commun. 4, 2364 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2364
    • Siciliano, V.1
  • 48
    • 33751073710 scopus 로고    scopus 로고
    • Denoising feedback loops by thresholding - A new role for microRNAs
    • Cohen, S. M., Brennecke, J. & Stark, A. Denoising feedback loops by thresholding - a new role for microRNAs. Genes Dev. 20, 2769-2772 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2769-2772
    • Cohen, S.M.1    Brennecke, J.2    Stark, A.3
  • 49
    • 79952638264 scopus 로고    scopus 로고
    • Cellular decision making and biological noise: From microbes to mammals
    • Balazsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910-925 (2011).
    • (2011) Cell , vol.144 , pp. 910-925
    • Balazsi, G.1    Van Oudenaarden, A.2    Collins, J.J.3
  • 50
    • 80052266532 scopus 로고    scopus 로고
    • MicroRNAs can generate thresholds in target gene expression
    • Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854-859 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 854-859
    • Mukherji, S.1
  • 51
    • 79957573284 scopus 로고    scopus 로고
    • Strong negative feedback from Erk to Raf confers robustness to MAPK signaling
    • Fritsche-Guenther, R. et al. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol. Syst. Biol. 7, 489 (2011).
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 489
    • Fritsche-Guenther, R.1
  • 52
    • 84889261450 scopus 로고    scopus 로고
    • Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression
    • Hansen, A. S. & O'Shea, E. K. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Mol. Syst. Biol. 9, 704 (2013).
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 704
    • Hansen, A.S.1    O'shea, E.K.2
  • 53
    • 84859641038 scopus 로고    scopus 로고
    • Using gene expression noise to understand gene regulation
    • Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183-187 (2012).
    • (2012) Science , vol.336 , pp. 183-187
    • Munsky, B.1    Neuert, G.2    Van Oudenaarden, A.3
  • 54
    • 79955381895 scopus 로고    scopus 로고
    • Mammalian genes are transcribed with widely different bursting kinetics
    • Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472-474 (2011).
    • (2011) Science , vol.332 , pp. 472-474
    • Suter, D.M.1
  • 55
    • 84870562146 scopus 로고    scopus 로고
    • Noise-mean relationship in mutated promoters
    • Hornung, G. et al. Noise-mean relationship in mutated promoters. Genome Res. 22, 2409-2417 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2409-2417
    • Hornung, G.1
  • 56
    • 84867670963 scopus 로고    scopus 로고
    • Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
    • Morf, J. et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338, 379-383 (2012).
    • (2012) Science , vol.338 , pp. 379-383
    • Morf, J.1
  • 57
    • 66149167562 scopus 로고    scopus 로고
    • Integration of microRNA miR-122 in hepatic circadian gene expression
    • Gatfield, D. et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 23, 1313-1326 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 1313-1326
    • Gatfield, D.1
  • 58
    • 84877741071 scopus 로고    scopus 로고
    • ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila
    • Lim, C. & Allada, R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340, 875-879 (2013).
    • (2013) Science , vol.340 , pp. 875-879
    • Lim, C.1    Allada, R.2
  • 59
    • 84877733547 scopus 로고    scopus 로고
    • A role for Drosophila ATX2 in activation of per translation and circadian behavior
    • Zhang, Y., Ling, J., Yuan, C., Dubruille, R. & Emery, P. A role for Drosophila ATX2 in activation of PER translation and circadian behavior. Science 340, 879-882 (2013).
    • (2013) Science , vol.340 , pp. 879-882
    • Zhang, Y.1    Ling, J.2    Yuan, C.3    Dubruille, R.4    Emery, P.5
  • 60
    • 84857367540 scopus 로고    scopus 로고
    • Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit
    • Luo, W. & Sehgal, A. Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell 148, 765-779 (2012).
    • (2012) Cell , vol.148 , pp. 765-779
    • Luo, W.1    Sehgal, A.2
  • 61
    • 33751118533 scopus 로고    scopus 로고
    • MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila
    • Li, Y., Wang, F., Lee, J. A. & Gao, F. B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20, 2793-2805 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2793-2805
    • Li, Y.1    Wang, F.2    Lee, J.A.3    Gao, F.B.4
  • 62
    • 77954697226 scopus 로고    scopus 로고
    • Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis
    • Hilgers, V., Bushati, N. & Cohen, S. M. Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biol. 8, e1000396 (2010).
    • (2010) PLoS Biol. , vol.8 , pp. e1000396
    • Hilgers, V.1    Bushati, N.2    Cohen, S.M.3
  • 63
    • 73049112390 scopus 로고    scopus 로고
    • Genetic analysis of ectopic circadian clock induction in Drosophila
    • Kilman, V. L. & Allada, R. Genetic analysis of ectopic circadian clock induction in Drosophila. J. Biol. Rhythms. 24, 368-378 (2009).
    • (2009) J. Biol. Rhythms. , vol.24 , pp. 368-378
    • Kilman, V.L.1    Allada, R.2
  • 64
    • 0035902008 scopus 로고    scopus 로고
    • A new role for cryptochrome in a Drosophila circadian oscillator
    • Krishnan, B. et al. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313-317 (2001).
    • (2001) Nature , vol.411 , pp. 313-317
    • Krishnan, B.1
  • 65
    • 0035141217 scopus 로고    scopus 로고
    • Wild-type circadian rhythmicity is dependent on closely spaced e boxes in the Drosophila timeless promoter
    • McDonald, M. J., Rosbash, M. & Emery, P. Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol. Cell Biol. 21, 1207-1217 (2001).
    • (2001) Mol. Cell Biol. , vol.21 , pp. 1207-1217
    • McDonald, M.J.1    Rosbash, M.2    Emery, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.