메뉴 건너뛰기




Volumn 31, Issue 3, 2015, Pages 397-404

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; COMPUTER PROGRAM; GENE EXPRESSION PROFILING; HUMAN; INFORMATION PROCESSING; PROCEDURES; PROPORTIONAL HAZARDS MODEL; REGRESSION ANALYSIS; SAMPLE SIZE; SURVIVAL RATE;

EID: 84929142356     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu660     Document Type: Article
Times cited : (38)

References (68)
  • 1
    • 21844511145 scopus 로고
    • Nearest neighbor estimation of a bivariate distribution under random censoring
    • Akritas, M.G. (1994) Nearest neighbor estimation of a bivariate distribution under random censoring. Ann. Stat., 22, 1299-1327.
    • (1994) Ann. Stat. , vol.22 , pp. 1299-1327
    • Akritas, M.G.1
  • 2
    • 7644240969 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh, A.A. et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 11, 403-503.
    • (2000) Nature , vol.11 , pp. 403-503
    • Alizadeh, A.A.1
  • 3
    • 78349291870 scopus 로고    scopus 로고
    • The Dantzig selector in Cox's proportional hazards model
    • Antoniadis, A. et al. (2010) The Dantzig selector in Cox's proportional hazards model. Scand. Stat. Theory Appl., 37, 531-552.
    • (2010) Scand. Stat. Theory Appl. , vol.37 , pp. 531-552
    • Antoniadis, A.1
  • 4
    • 33645527646 scopus 로고    scopus 로고
    • Prediction by supervised principal components
    • Bair, E. et al. (2006) Prediction by supervised principal components. J. Am. Stat. Assoc, 101, 119-137.
    • (2006) J. Am. Stat. Assoc , vol.101 , pp. 119-137
    • Bair, E.1
  • 5
    • 39649095846 scopus 로고    scopus 로고
    • Deviance residual based PLS regression for censored data in high dimensional data
    • Bastien, P. (2008) Deviance residual based PLS regression for censored data in high dimensional data. Chemom. Intell. Lab. Syst., 91, 78-86.
    • (2008) Chemom. Intell. Lab. Syst. , vol.91 , pp. 78-86
    • Bastien, P.1
  • 6
    • 10144260674 scopus 로고    scopus 로고
    • PLS generalised linear regression
    • Bastien, P. et al. (2005) PLS generalised linear regression. Comput. Stat. Data Anal., 48, 17-46.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 17-46
    • Bastien, P.1
  • 8
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer, D.G. et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 8, 816-824.
    • (2002) Nat. Med. , vol.8 , pp. 816-824
    • Beer, D.G.1
  • 9
    • 2442514721 scopus 로고    scopus 로고
    • An optimization perspective on kernel partial least squares regression
    • Bennett, K.P. and Embrecht, MJ. (2003) An optimization perspective on kernel partial least squares regression. Adv. Learn. Theory, 190, 227-250.
    • (2003) Adv. Learn. Theory , vol.190 , pp. 227-250
    • Bennett, K.P.1    Embrecht, M.J.2
  • 10
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub-classes
    • Bhattacharjee, A. et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub-classes. Proc. Natl Acad. Sci. USA, 98, 13790-13795.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 11
    • 34548565944 scopus 로고    scopus 로고
    • Predicting survival from microarray data-A comparative study
    • Bøvelstad, H.M. et al. (2007) Predicting survival from microarray data-A comparative study. Bioinformatics, 23, 2080-2087.
    • (2007) Bioinformatics , vol.23 , pp. 2080-2087
    • Bøvelstad, H.M.1
  • 12
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun, H. and Keles, S. (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. B, 72, 3-25.
    • (2010) J. R. Stat. Soc. B , vol.72 , pp. 3-25
    • Chun, H.1    Keles, S.2
  • 14
    • 0000336139 scopus 로고
    • Regression models and life tables
    • Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B, 74, 187-220.
    • (1972) J. R. Stat. Soc. B , vol.74 , pp. 187-220
    • Cox, D.R.1
  • 15
    • 84984291168 scopus 로고
    • Comments on the PLS kernel algorithm
    • De Jong, S. and ter Braak, C. (1994) Comments on the PLS kernel algorithm. J. Chemom., 8, 169-174.
    • (1994) J. Chemom. , vol.8 , pp. 169-174
    • De Jong, S.1    Ter Braak, C.2
  • 16
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • Efron, B. et al. (2004) Least angle regression. Ann. Stat., 32, 407-451.
    • (2004) Ann. Stat. , vol.32 , pp. 407-451
    • Efron, B.1
  • 18
    • 84879219995 scopus 로고    scopus 로고
    • High-dimensional variable selection for Cox's proportional hazards model
    • Fan, J. et al. (2010) High-dimensional variable selection for Cox's proportional hazards model. Borrowing Strength, 6, 70-86.
    • (2010) Borrowing Strength , vol.6 , pp. 70-86
    • Fan, J.1
  • 19
    • 0036117466 scopus 로고    scopus 로고
    • Variable selection for Cox's proportional hazards model and frailty model
    • Fan, J. and Li, R. (2002) Variable selection for Cox's proportional hazards model and frailty model. Ann. Stat., 30, 74-99.
    • (2002) Ann. Stat. , vol.30 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 22
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the LASSO
    • Fu, WJ. (1998) Penalized regression: the bridge versus the LASSO. J. Comput. Graph. Stat., 7, 397-416.
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 23
    • 0035923583 scopus 로고    scopus 로고
    • Diversity of gene expression in adenocarcinoma of the lung
    • Garber, M. et al. (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA, 98, 13784-13789.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13784-13789
    • Garber, M.1
  • 24
    • 21344479527 scopus 로고
    • An interpretation of partial least squares
    • Garthwaite, P.H. (1994) An interpretation of partial least squares. J. Am. Stat. Assoc, 89, 122-127.
    • (1994) J. Am. Stat. Assoc , vol.89 , pp. 122-127
    • Garthwaite, P.H.1
  • 25
    • 77952568988 scopus 로고    scopus 로고
    • L1 Penalized estimation in the cox proportional hazards model
    • Goeman, JJ. (2010) L1 Penalized estimation in the cox proportional hazards model. Biometric. J., 52, 70-84.
    • (2010) Biometric. J. , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 26
    • 27944450863 scopus 로고    scopus 로고
    • Concordance probability and discriminatory power in proportional hazards regression
    • Gonen, M. and Heller, G. (2005) Concordance probability and discriminatory power in proportional hazards regression. Biometrika, 92, 1809-2005.
    • (2005) Biometrika , vol.92 , pp. 1809-2005
    • Gonen, M.1    Heller, G.2
  • 27
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with application to microarray gene expression data
    • Gui, J. and Li, H. (2005) Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with application to microarray gene expression data. Bioinformatics, 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 28
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error
    • Harrell, F.E. et al. (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error. Stat. Med., 15, 361-387.
    • (1996) Stat. Med. , vol.15 , pp. 361-387
    • Harrell, F.E.1
  • 29
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • Heagerty, PJ. et al. (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 56, 337-344.
    • (2000) Biometrics , vol.56 , pp. 337-344
    • Heagerty, P.J.1
  • 30
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • Heagerty, PJ. and Zheng, Y. (2005) Survival model predictive accuracy and ROC curves. Biometrics, 61, 92-105.
    • (2005) Biometrics , vol.61 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 31
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the lasso
    • Jolliffe, I. et al. (2003) A modified principal component technique based on the lasso. J. Comput. Graph. Stat., 12, 531-547.
    • (2003) J. Comput. Graph. Stat. , vol.12 , pp. 531-547
    • Jolliffe, I.1
  • 32
    • 0000830193 scopus 로고
    • Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix
    • Kaiser, H.F. and Dickman, K. (1962) Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix. Psychometrika, 27, 179-182.
    • (1962) Psychometrika , vol.27 , pp. 179-182
    • Kaiser, H.F.1    Dickman, K.2
  • 33
    • 64249152738 scopus 로고    scopus 로고
    • A gradient-based optimization algorithm for lasso
    • Kim, J. et al. (2008) A gradient-based optimization algorithm for lasso. J. Comput. Graph. Stat., 17, 994-1009.
    • (2008) J. Comput. Graph. Stat. , vol.17 , pp. 994-1009
    • Kim, J.1
  • 34
    • 34347207585 scopus 로고    scopus 로고
    • An overview on the shrinkage properties of partial least squares regression
    • Kramer, N. (2007) An overview on the shrinkage properties of partial least squares regression. Comput. Stat., 22, 249-273.
    • (2007) Comput. Stat. , vol.22 , pp. 249-273
    • Kramer, N.1
  • 36
    • 84876217807 scopus 로고    scopus 로고
    • When is hub gene selection better than standard metaanalysis?
    • Langfelder, P. et al. (2013) When is hub gene selection better than standard metaanalysis? PloS One, 8, e61505.
    • (2013) PloS One , vol.8 , pp. e61505
    • Langfelder, P.1
  • 37
    • 12744266814 scopus 로고    scopus 로고
    • Partial cox regression analysis for high-dimensional micro-array gene expression data
    • Li, H. and Gui, J. (2004) Partial cox regression analysis for high-dimensional micro-array gene expression data. Bioinformatics, 20, 208-215.
    • (2004) Bioinformatics , vol.20 , pp. 208-215
    • Li, H.1    Gui, J.2
  • 38
    • 32544434981 scopus 로고    scopus 로고
    • Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information
    • Li, L. (2006) Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information. Bioinformatics, 22, 466-471.
    • (2006) Bioinformatics , vol.22 , pp. 466-471
    • Li, L.1
  • 39
    • 85162673553 scopus 로고
    • The kernel algorithm for PLS
    • Lindgren, F. et al. (1993) The kernel algorithm for PLS. J. Chemom., 7, 45-59.
    • (1993) J. Chemom. , vol.7 , pp. 45-59
    • Lindgren, F.1
  • 40
    • 84886025136 scopus 로고    scopus 로고
    • The role of proxy genes in predictive models: An application to early detection of prostate cancer
    • American Statistical Association, Vancouver
    • Magidson, J. and Wassmann, K. (2010) The role of proxy genes in predictive models: an application to early detection of prostate cancer. In: Joint Statistical Meetings Proceedings. American Statistical Association, Vancouver, pp. 2739-2753.
    • (2010) Joint Statistical Meetings Proceedings , pp. 2739-2753
    • Magidson, J.1    Wassmann, K.2
  • 41
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx, B.D. (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics, 38, 374-381.
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 42
    • 57449103508 scopus 로고    scopus 로고
    • An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia
    • Metzeler, K.H. et al. (2008) An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood, 112, 4193-4201.
    • (2008) Blood , vol.112 , pp. 4193-4201
    • Metzeler, K.H.1
  • 43
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen, D.V. and Rocke, D. (2002) Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics, 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.2
  • 44
    • 34547849507 scopus 로고    scopus 로고
    • L1 regularization path algorithm for generalized linear models
    • Park, M.Y. and Hastie, T. (2007) L1 regularization path algorithm for generalized linear models. J. R. Stat. Soc. B, 69, 659-677.
    • (2007) J. R. Stat. Soc. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 45
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part I: Theory and algorithm
    • Rannar, S. et al. (1994) A PLS kernel algorithm for data sets with many variables and fewer objects. Part I: theory and algorithm. J. Chemom., 8, 111-125.
    • (1994) J. Chemom. , vol.8 , pp. 111-125
    • Rannar, S.1
  • 46
    • 77957911931 scopus 로고    scopus 로고
    • Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment
    • Romain, B. et al. (2010) Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment. BMC Cancer, 10, 561.
    • (2010) BMC Cancer , vol.10 , pp. 561
    • Romain, B.1
  • 47
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald, A. et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med., 346, 1937-1947.
    • (2002) N. Engl. J. Med. , vol.346 , pp. 1937-1947
    • Rosenwald, A.1
  • 48
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal, R. and Trejo, L.J. (2001) Kernel partial least squares regression in reproducing kernel hilbert space. J. Mach. Learn. Res., 2, 97-123.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 49
    • 79952266675 scopus 로고    scopus 로고
    • A robust alternative to the Schemper-Henderson estimator of prediction error
    • Schmid, M. et al. (2011) A robust alternative to the Schemper-Henderson estimator of prediction error. Biometrics, 67, 524-535.
    • (2011) Biometrics , vol.67 , pp. 524-535
    • Schmid, M.1
  • 50
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival pheno-types: Diffuse large-Bcell lymphoma revisited
    • Segal, M.R (2006) Microarray gene expression data with linked survival pheno-types: diffuse large-Bcell lymphoma revisited. Biostatistics, 7, 268-285.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 51
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for cox's proportional hazards model via coordinate descent
    • Simon, N. et al. (2011) Regularization paths for cox's proportional hazards model via coordinate descent. J. Stat. Softw., 39, 1-13.
    • (2011) J. Stat. Softw. , vol.39 , pp. 1-13
    • Simon, N.1
  • 52
    • 84882287077 scopus 로고    scopus 로고
    • A sparse-group Lasso
    • Simon, N. et al. (2013) A sparse-group Lasso. J. Comput. Graph. Stat., 22, 231-245.
    • (2013) J. Comput. Graph. Stat. , vol.22 , pp. 231-245
    • Simon, N.1
  • 53
    • 67649855127 scopus 로고    scopus 로고
    • Gradient lasso for cox proportional hazards model
    • Sohn, I. et al. (2009) Gradient lasso for cox proportional hazards model. Bioinformatics, 25, 1775-1781.
    • (2009) Bioinformatics , vol.25 , pp. 1775-1781
    • Sohn, I.1
  • 54
    • 34147155819 scopus 로고    scopus 로고
    • Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification
    • Tenenhaus, A. et al. (2007) Kernel logistic PLS: a tool for supervised nonlinear dimensionality reduction and binary classification. Comput. Stat. Data Anal., 51, 4083-4100.
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 4083-4100
    • Tenenhaus, A.1
  • 57
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 58
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997) The lasso method for variable selection in the Cox model. Stat. Med., 16, 385-395.
    • (1997) Stat. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 59
    • 67249151397 scopus 로고    scopus 로고
    • Univariate shrinkage in the cox model for high dimensional data
    • Tibshirani, R. (2009) Univariate shrinkage in the cox model for high dimensional data. Stat. Appl. Genet. Mol. Biol., 8, 1-18.
    • (2009) Stat. Appl. Genet. Mol. Biol. , vol.8 , pp. 1-18
    • Tibshirani, R.1
  • 60
    • 60349120810 scopus 로고    scopus 로고
    • Survival prediction using gene expression data: A review and comparison
    • van Wieringen, N. et al. (2009) Survival prediction using gene expression data: a review and comparison. Comput. Stat. Data Anal., 53, 1590-1603.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1590-1603
    • Van Wieringen, N.1
  • 61
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang, Y. et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365, 671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1
  • 62
    • 66249113503 scopus 로고    scopus 로고
    • Hierarchically penalized Cox regression with grouped variables
    • Wang, S. et al. (2009) Hierarchically penalized Cox regression with grouped variables. Biometrika, 96, 307-322.
    • (2009) Biometrika , vol.96 , pp. 307-322
    • Wang, S.1
  • 63
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • Academic Press, New York, NY
    • Wold, H. (1966) Estimation of principal components and related models by iterative least squares. Krishnaiah, P.R. (ed.) (1982) Multivariate Analysis. Academic Press, New York, NY, pp. 391-420.
    • (1966) (1982) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 64
    • 0002555784 scopus 로고
    • The multivariate calibration problem in chemistry solved by the PLS method
    • Ruhe, A. and Kastrøm, B. (eds) Springer Verlag, Heidelberg
    • Wold, S. et al. (1983) The multivariate calibration problem in chemistry solved by the PLS method. In: Ruhe, A. and Kastrøm, B. (eds) Proceeding Conference Matrix Pencils, March 1982, Lecture Notes in Mathematics. Springer Verlag, Heidelberg, pp. 286-293.
    • (1983) Proceeding Conference Matrix Pencils, March 1982, Lecture Notes in Mathematics , pp. 286-293
    • Wold, S.1
  • 65
    • 0003011114 scopus 로고    scopus 로고
    • A R type measure of dependence for proportional hazards models
    • Xu, R and O'Quigley, J. (1999) A R type measure of dependence for proportional hazards models. J. Nonparametr. Stat., 12, 83-107.
    • (1999) J. Nonparametr. Stat. , vol.12 , pp. 83-107
    • Xu, R.1    O'Quigley, J.2
  • 66
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive lasso for Cox's proportional hazards model
    • Zhang, H.H. and Lu, W. (2007) Adaptive lasso for Cox's proportional hazards model. Biometrika, 94, 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 67
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301-320.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 68
    • 33745309913 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • Zou, H. et al. (2006) Sparse principal component analysis. J. Comput. Graph. Stat., 15, 265-286.
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 265-286
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.