메뉴 건너뛰기




Volumn 8, Issue 4, 2013, Pages

When Is Hub Gene Selection Better than Standard Meta-Analysis?

Author keywords

[No Author keywords available]

Indexed keywords

CHOLESTEROL;

EID: 84876217807     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0061505     Document Type: Article
Times cited : (225)

References (99)
  • 1
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte A, Tamayo P, Slonim D, Golub T, Kohane I, (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. PNAS 97: 12182-12186.
    • (2000) PNAS , vol.97 , pp. 12182-12186
    • Butte, A.1    Tamayo, P.2    Slonim, D.3    Golub, T.4    Kohane, I.5
  • 2
    • 0141993704 scopus 로고    scopus 로고
    • A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules
    • Stuart JM, Segal E, Koller D, Kim SK, (2003) A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 302: 249-255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 4
    • 25444476441 scopus 로고    scopus 로고
    • Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks
    • Wolfe C, Kohane I, Butte A, (2005) Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks. BMC Bioinformatics 6: 227.
    • (2005) BMC Bioinformatics , vol.6 , pp. 227
    • Wolfe, C.1    Kohane, I.2    Butte, A.3
  • 5
    • 34547844147 scopus 로고    scopus 로고
    • Systematic discovery of functional modules and context-specific functional annotation of human genome
    • Huang Y, Li H, Hu H, Yan X, Waterman M, et al. (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23: i222-229.
    • (2007) Bioinformatics , vol.23
    • Huang, Y.1    Li, H.2    Hu, H.3    Yan, X.4    Waterman, M.5
  • 6
    • 33751208636 scopus 로고    scopus 로고
    • Analysis of oncogenic signaling networks in glioblastoma identifies aspm as a novel molecular target
    • Horvath S, Zhang B, Carlson M, Lu K, Zhu S, et al. (2006) Analysis of oncogenic signaling networks in glioblastoma identifies aspm as a novel molecular target. PNAS 103: 17402-7.
    • (2006) PNAS , vol.103 , pp. 17402-17407
    • Horvath, S.1    Zhang, B.2    Carlson, M.3    Lu, K.4    Zhu, S.5
  • 7
    • 33645221650 scopus 로고    scopus 로고
    • Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks
    • Carlson M, Zhang B, Fang Z, Mischel P, Horvath S, et al. (2006) Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks. BMC Genomics 7: 40.
    • (2006) BMC Genomics , vol.7 , pp. 40
    • Carlson, M.1    Zhang, B.2    Fang, Z.3    Mischel, P.4    Horvath, S.5
  • 8
    • 33845231723 scopus 로고    scopus 로고
    • Conservation and evolution of gene coexpression networks in human and chimpanzee brains
    • Oldham M, Horvath S, Geschwind D, (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. PNAS 103: 17973-17978.
    • (2006) PNAS , vol.103 , pp. 17973-17978
    • Oldham, M.1    Horvath, S.2    Geschwind, D.3
  • 9
    • 34249736324 scopus 로고    scopus 로고
    • Biological impacts and context of network theory
    • Almaas E, (2007) Biological impacts and context of network theory. J Exp Biol 210: 1548-1558.
    • (2007) J Exp Biol , vol.210 , pp. 1548-1558
    • Almaas, E.1
  • 10
    • 43149125186 scopus 로고    scopus 로고
    • A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility
    • Keller MP, Choi Y, Wang P, Belt Davis D, Rabaglia ME, et al. (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18: 706-716.
    • (2008) Genome Res , vol.18 , pp. 706-716
    • Keller, M.P.1    Choi, Y.2    Wang, P.3    Belt Davis, D.4    Rabaglia, M.E.5
  • 11
    • 0034721164 scopus 로고    scopus 로고
    • Error and attack tolerance of complex networks
    • Albert R, Jeong H, Barabasi AL, (2000) Error and attack tolerance of complex networks. Nature 406: 378-82.
    • (2000) Nature , vol.406 , pp. 378-382
    • Albert, R.1    Jeong, H.2    Barabasi, A.L.3
  • 12
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R, Barabasi A, (2002) Statistical mechanics of complex networks. Rev Mod Phys 74: 47-97.
    • (2002) Rev Mod Phys , vol.74 , pp. 47-97
    • Albert, R.1    Barabasi, A.2
  • 13
    • 3042848952 scopus 로고    scopus 로고
    • Evidence for dynamically organized modularity in the yeast protein-protein interaction network
    • Han J, Bertin N, Hao T, Goldberg D, Berriz G, et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430: 88-93.
    • (2004) Nature , vol.430 , pp. 88-93
    • Han, J.1    Bertin, N.2    Hao, T.3    Goldberg, D.4    Berriz, G.5
  • 14
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN, (2004) Network biology: understanding the cell's functional organization. Nature Reviews Genetics 5: 101-113.
    • (2004) Nature Reviews Genetics , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 15
    • 0035799707 scopus 로고    scopus 로고
    • Lethality and centrality in protein networks
    • Jeong H, Mason S, Barabasi A, Oltvai Z, (2001) Lethality and centrality in protein networks. Nature 411: 41.
    • (2001) Nature , vol.411 , pp. 41
    • Jeong, H.1    Mason, S.2    Barabasi, A.3    Oltvai, Z.4
  • 16
    • 16344381521 scopus 로고    scopus 로고
    • Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks
    • Hahn MW, Kern AD, (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Molecular Biology and Evolution 22: 803-806.
    • (2005) Molecular Biology and Evolution , vol.22 , pp. 803-806
    • Hahn, M.W.1    Kern, A.D.2
  • 17
    • 50949084896 scopus 로고    scopus 로고
    • Geometric interpretation of gene co-expression network analysis
    • Horvath S, Dong J (2008) Geometric interpretation of gene co-expression network analysis. PLoS Computational Biology 4.
    • (2008) PLoS Computational Biology , vol.4
    • Horvath, S.1    Dong, J.2
  • 19
    • 78650392923 scopus 로고    scopus 로고
    • Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma
    • Ivliev AE, 't Hoen PA, Sergeeva MG, (2010) Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Research 70: 10060-10070.
    • (2010) Cancer Research , vol.70 , pp. 10060-10070
    • Ivliev, A.E.1    't Hoen, P.A.2    Sergeeva, M.G.3
  • 20
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M, Spellman P, Brown P, Botstein D, (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95: 14863-14868.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 21
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization
    • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, et al. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol Biol Cell 9: 3273-3297.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5
  • 23
    • 33748048164 scopus 로고    scopus 로고
    • Identification of inammatory gene modules based on variations of human endothelial cell responses to oxidized lipids
    • Gargalovic P, Imura M, Zhang B, Gharavi N, Clark M, et al. (2006) Identification of inammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. PNAS 103: 12741-6.
    • (2006) PNAS , vol.103 , pp. 12741-12746
    • Gargalovic, P.1    Imura, M.2    Zhang, B.3    Gharavi, N.4    Clark, M.5
  • 24
    • 33748040439 scopus 로고    scopus 로고
    • Integrating genetics and network analysis to characterize genes related to mouse weight
    • Ghazalpour A, Doss S, Zhang B, Plaisier C, Wang S, et al. (2006) Integrating genetics and network analysis to characterize genes related to mouse weight. PloS Genetics 2: 8.
    • (2006) PloS Genetics , vol.2 , pp. 8
    • Ghazalpour, A.1    Doss, S.2    Zhang, B.3    Plaisier, C.4    Wang, S.5
  • 25
    • 34548442971 scopus 로고    scopus 로고
    • Weighted gene coexpression network analysis strategies applied to mouse weight
    • Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, et al. (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. Mammalian Genome 18: 463-472.
    • (2007) Mammalian Genome , vol.18 , pp. 463-472
    • Fuller, T.1    Ghazalpour, A.2    Aten, J.3    Drake, T.4    Lusis, A.5
  • 26
    • 58549117328 scopus 로고    scopus 로고
    • Integrated weighted gene coexpression network analysis with an application to chronic fatigue syndrome
    • Presson A, Sobel E, Papp J, Suarez C, Whistler T, et al. (2008) Integrated weighted gene coexpression network analysis with an application to chronic fatigue syndrome. BMC Systems Biology 2.
    • (2008) BMC Systems Biology , vol.2
    • Presson, A.1    Sobel, E.2    Papp, J.3    Suarez, C.4    Whistler, T.5
  • 29
    • 84864152519 scopus 로고    scopus 로고
    • R/ebcoexpress: an empirical bayesian framework for discovering differential co-expression
    • Dawson JA, Ye S, Kendziorski C, (2012) R/ebcoexpress: an empirical bayesian framework for discovering differential co-expression. Bioinformatics 28: 1939-1940.
    • (2012) Bioinformatics , vol.28 , pp. 1939-1940
    • Dawson, J.A.1    Ye, S.2    Kendziorski, C.3
  • 30
    • 77953913791 scopus 로고    scopus 로고
    • From differential expression to differential networking identification of dysfunctional regulatory networks in diseases
    • de la Fuente A, (2010) From differential expression to differential networking identification of dysfunctional regulatory networks in diseases. Trends in Genetics 26: 326-333.
    • (2010) Trends in Genetics , vol.26 , pp. 326-333
    • de la Fuente, A.1
  • 32
    • 78651284406 scopus 로고    scopus 로고
    • Arrayexpress updatean archive of microarray and high-throughput sequencing-based functional genomics experiments
    • Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, et al. (2011) Arrayexpress updatean archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Research 39: D1002-D1004.
    • (2011) Nucleic Acids Research , vol.39
    • Parkinson, H.1    Sarkans, U.2    Kolesnikov, N.3    Abeygunawardena, N.4    Burdett, T.5
  • 34
    • 0001410128 scopus 로고
    • On the combination of independent tests
    • Liptak T, (1958) On the combination of independent tests. Magyar Tud Akad Mat Kutato Int Kozl 3: 171-197.
    • (1958) Magyar Tud Akad Mat Kutato Int Kozl , vol.3 , pp. 171-197
    • Liptak, T.1
  • 35
    • 28444493739 scopus 로고    scopus 로고
    • Combining probability from independent tests: the weighted z-method is superior to fisher's approach
    • Whitlock MC, (2005) Combining probability from independent tests: the weighted z-method is superior to fisher's approach. Journal of Evolutionary Biology 18: 1368-1373.
    • (2005) Journal of Evolutionary Biology , vol.18 , pp. 1368-1373
    • Whitlock, M.C.1
  • 36
    • 79960277368 scopus 로고    scopus 로고
    • Optimally weighted z-test is a powerful method for combining probabilities in meta-analysis
    • Zaykin DV, (2011) Optimally weighted z-test is a powerful method for combining probabilities in meta-analysis. Journal of Evolutionary Biology 24: 1836-1841.
    • (2011) Journal of Evolutionary Biology , vol.24 , pp. 1836-1841
    • Zaykin, D.V.1
  • 37
    • 0013451905 scopus 로고    scopus 로고
    • A note on the convolution of the uniform and related distributions and their use in quality control
    • Killmann F, von Collani E, (2001) A note on the convolution of the uniform and related distributions and their use in quality control. Economic Quality Control 16: 17-41.
    • (2001) Economic Quality Control , vol.16 , pp. 17-41
    • Killmann, F.1    von Collani, E.2
  • 38
    • 41449085571 scopus 로고    scopus 로고
    • Eigengene networks for studying the relationships between coexpression modules
    • Langfelder P, Horvath S, (2007) Eigengene networks for studying the relationships between coexpression modules. BMC Systems Biology 1: 54.
    • (2007) BMC Systems Biology , vol.1 , pp. 54
    • Langfelder, P.1    Horvath, S.2
  • 40
    • 49149129916 scopus 로고    scopus 로고
    • Gene expressionbased survival prediction in lung adenocarcinoma: a multi-site, blinded validation study
    • Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008) Gene expressionbased survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822-827.
    • (2008) Nat Med , vol.14 , pp. 822-827
    • Shedden, K.1    Taylor, J.M.G.2    Enkemann, S.A.3    Tsao, M.S.4    Yeatman, T.J.5
  • 41
    • 31144459985 scopus 로고    scopus 로고
    • Oncogenic pathway signatures in human cancers as a guide to targeted therapies
    • Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353-357.
    • (2006) Nature , vol.439 , pp. 353-357
    • Bild, A.H.1    Yao, G.2    Chang, J.T.3    Wang, Q.4    Potti, A.5
  • 42
    • 67649965344 scopus 로고    scopus 로고
    • Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis
    • Tomida S, Takeuchi T, Shimada Y, Arima C, Matsuo K, et al. (2009) Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. Journal of Clinical Oncology 27: 2793-2799.
    • (2009) Journal of Clinical Oncology , vol.27 , pp. 2793-2799
    • Tomida, S.1    Takeuchi, T.2    Shimada, Y.3    Arima, C.4    Matsuo, K.5
  • 43
    • 33645804773 scopus 로고    scopus 로고
    • Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors
    • Takeuchi T, Tomida S, Yatabe Y, Kosaka T, Osada H, et al. (2006) Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. Journal of Clinical Oncology 24: 1679-1688.
    • (2006) Journal of Clinical Oncology , vol.24 , pp. 1679-1688
    • Takeuchi, T.1    Tomida, S.2    Yatabe, Y.3    Kosaka, T.4    Osada, H.5
  • 44
    • 58849167381 scopus 로고    scopus 로고
    • An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer
    • Roepman P, Jassem J, Smit EF, Muley T, Niklinski J, et al. (2009) An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clinical Cancer Research 15: 284-290.
    • (2009) Clinical Cancer Research , vol.15 , pp. 284-290
    • Roepman, P.1    Jassem, J.2    Smit, E.F.3    Muley, T.4    Niklinski, J.5
  • 45
    • 58249103214 scopus 로고    scopus 로고
    • Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists
    • Mosley J, Keri R, (2008) Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists. BMC Medical Genomics 1: 11.
    • (2008) BMC Medical Genomics , vol.1 , pp. 11
    • Mosley, J.1    Keri, R.2
  • 46
    • 79952042778 scopus 로고    scopus 로고
    • Prognostic value of an rna expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study
    • Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, et al. (2011) Prognostic value of an rna expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. The Lancet Oncology 12: 245-255.
    • (2011) The Lancet Oncology , vol.12 , pp. 245-255
    • Cuzick, J.1    Swanson, G.P.2    Fisher, G.3    Brothman, A.R.4    Berney, D.M.5
  • 47
    • 0026659891 scopus 로고
    • Association of overexpression of tumor suppressor protien p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients
    • Isola J, Visakorpi T, Holli K, Kallioniemi OP, (1992) Association of overexpression of tumor suppressor protien p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. Journal of the National Cancer Institute 84: 1109-1114.
    • (1992) Journal of the National Cancer Institute , vol.84 , pp. 1109-1114
    • Isola, J.1    Visakorpi, T.2    Holli, K.3    Kallioniemi, O.P.4
  • 48
    • 0028820984 scopus 로고
    • Reduced expression of retinoblastoma (rb) gene protein is related to cell proliferation and prognosis in transitional-cell bladder cancer
    • Lipponen P, Liukkonen T, (1995) Reduced expression of retinoblastoma (rb) gene protein is related to cell proliferation and prognosis in transitional-cell bladder cancer. Journal of Cancer Research and Clinical Oncology 121: 44-50.
    • (1995) Journal of Cancer Research and Clinical Oncology , vol.121 , pp. 44-50
    • Lipponen, P.1    Liukkonen, T.2
  • 49
    • 77955205559 scopus 로고    scopus 로고
    • Genome-wide dna methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
    • Bell C, Teschendorff A, Rakyan V, Maxwell A, Beck S, et al. (2010) Genome-wide dna methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics 3: 33.
    • (2010) BMC Medical Genomics , vol.3 , pp. 33
    • Bell, C.1    Teschendorff, A.2    Rakyan, V.3    Maxwell, A.4    Beck, S.5
  • 51
    • 77950657253 scopus 로고    scopus 로고
    • Human aging-associated dna hypermethylation occurs preferentially at bivalent chromatin domains
    • Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, et al. (2010) Human aging-associated dna hypermethylation occurs preferentially at bivalent chromatin domains. Genome Research 20: 434-439.
    • (2010) Genome Research , vol.20 , pp. 434-439
    • Rakyan, V.K.1    Down, T.A.2    Maslau, S.3    Andrew, T.4    Yang, T.P.5
  • 52
    • 77953223693 scopus 로고    scopus 로고
    • Abundant quantitative trait loci exist for dna methylation and gene expression in human brain
    • Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, et al. (2010) Abundant quantitative trait loci exist for dna methylation and gene expression in human brain. PLoS Genet 6: e1000952.
    • (2010) PLoS Genet , vol.6
    • Gibbs, J.R.1    van der Brug, M.P.2    Hernandez, D.G.3    Traynor, B.J.4    Nalls, M.A.5
  • 53
    • 34247371874 scopus 로고    scopus 로고
    • Lymphotoxin receptor-dependent control of lipid homeostasis
    • Lo JC, Wang Y, Tumanov AV, Bamji M, Yao Z, et al. (2007) Lymphotoxin receptor-dependent control of lipid homeostasis. Science 316: 285-288.
    • (2007) Science , vol.316 , pp. 285-288
    • Lo, J.C.1    Wang, Y.2    Tumanov, A.V.3    Bamji, M.4    Yao, Z.5
  • 55
    • 67649644714 scopus 로고    scopus 로고
    • Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks
    • van Nas A, GuhaThakurta D, Wang SS, Yehya N, Horvath S, et al. (2009) Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks. Endocrinology 150: 1235-1249.
    • (2009) Endocrinology , vol.150 , pp. 1235-1249
    • van Nas, A.1    GuhaThakurta, D.2    Wang, S.S.3    Yehya, N.4    Horvath, S.5
  • 56
    • 75649122259 scopus 로고    scopus 로고
    • A high-resolution association mapping panel for the dissection of complex traits in mice
    • Bennett BJ, Farber CR, Orozco L, Min Kang H, Ghazalpour A, et al. (2010) A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research 20: 281-290.
    • (2010) Genome Research , vol.20 , pp. 281-290
    • Bennett, B.J.1    Farber, C.R.2    Orozco, L.3    Min Kang, H.4    Ghazalpour, A.5
  • 58
    • 55949099836 scopus 로고    scopus 로고
    • Finding common genes in multiple cancer types through metaanalysis of microarray experiments: A rank aggregation approach
    • Pihur V, Datta S, Datta S, (2008) Finding common genes in multiple cancer types through metaanalysis of microarray experiments: A rank aggregation approach. Genomics 92: 400-403.
    • (2008) Genomics , vol.92 , pp. 400-403
    • Pihur, V.1    Datta, S.2    Datta, S.3
  • 59
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaud P, Amtmann A, Herzyk P, (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters 573: 83-92.
    • (2004) FEBS Letters , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 60
    • 34447512704 scopus 로고    scopus 로고
    • Understanding Network Concepts in Modules
    • Dong J, Horvath S, (2007) Understanding Network Concepts in Modules. BMC Systems Biology 1: 24.
    • (2007) BMC Systems Biology , vol.1 , pp. 24
    • Dong, J.1    Horvath, S.2
  • 61
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks science
    • Barabasi AL, Albert R, (1999) Emergence of scaling in random networks science. Science 286: 509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 63
    • 78049467741 scopus 로고    scopus 로고
    • Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia
    • Zhang J, Xiang Y, Ding L, Keen-Circle K, Borlawsky T, et al. (2010) Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia. BMC Bioinformatics 11: S5.
    • (2010) BMC Bioinformatics , vol.11
    • Zhang, J.1    Xiang, Y.2    Ding, L.3    Keen-Circle, K.4    Borlawsky, T.5
  • 64
    • 77958005855 scopus 로고    scopus 로고
    • Is human blood a good surrogate for brain tissue in transcriptional studies?
    • Cai C, Langfelder P, Fuller T, Oldham M, Luo R, et al. (2010) Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics 11: 589.
    • (2010) BMC Genomics , vol.11 , pp. 589
    • Cai, C.1    Langfelder, P.2    Fuller, T.3    Oldham, M.4    Luo, R.5
  • 66
    • 33947305781 scopus 로고    scopus 로고
    • Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7.
    • (2006) BMC Bioinformatics , vol.7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 67
    • 84855846735 scopus 로고    scopus 로고
    • Comparing statistical methods for constructing large scale gene networks
    • Allen JD, Xie Y, Chen M, Girard L, Xiao G, (2012) Comparing statistical methods for constructing large scale gene networks. PLoS ONE 7: e29348.
    • (2012) PLoS ONE , vol.7
    • Allen, J.D.1    Xie, Y.2    Chen, M.3    Girard, L.4    Xiao, G.5
  • 69
    • 0000326805 scopus 로고
    • Selected quantitative techniques
    • In: Lindzey G, editor, Cambridge, Mass: Addison-Wesley
    • Mosteller F, Bush RR (1954) Selected quantitative techniques. In: Lindzey G, editor, Handbook of Social Psychology, Vol. 1. Cambridge, Mass: Addison-Wesley, pp.289-334.
    • (1954) Handbook of Social Psychology , vol.1 , pp. 289-334
    • Mosteller, F.1    Bush, R.R.2
  • 70
    • 0036682376 scopus 로고    scopus 로고
    • Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles Reveals Pathway Dysregulation in Prostate Cancer
    • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM, (2002) Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles Reveals Pathway Dysregulation in Prostate Cancer. Cancer Research 62: 4427-4433.
    • (2002) Cancer Research , vol.62 , pp. 4427-4433
    • Rhodes, D.R.1    Barrette, T.R.2    Rubin, M.A.3    Ghosh, D.4    Chinnaiyan, A.M.5
  • 71
    • 4944232237 scopus 로고    scopus 로고
    • Combining multiple microarray studies and modeling interstudy variation
    • Choi J, Yu U, Kim S, Yoo O, (2003) Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 19: 84-90.
    • (2003) Bioinformatics , vol.19 , pp. 84-90
    • Choi, J.1    Yu, U.2    Kim, S.3    Yoo, O.4
  • 73
    • 77955104946 scopus 로고    scopus 로고
    • Comparison study of microarray meta-analysis methods
    • Campain A, Yang Y, (2010) Comparison study of microarray meta-analysis methods. BMC Bioinformatics 11: 408.
    • (2010) BMC Bioinformatics , vol.11 , pp. 408
    • Campain, A.1    Yang, Y.2
  • 74
    • 38849106351 scopus 로고    scopus 로고
    • A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments
    • Hong F, Breitling R, (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24: 374-382.
    • (2008) Bioinformatics , vol.24 , pp. 374-382
    • Hong, F.1    Breitling, R.2
  • 75
    • 0033557255 scopus 로고    scopus 로고
    • Meta-analysis: formulating, evaluating, combining, and reporting
    • Normand SLT, (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Statistics in Medicine 18: 321-359.
    • (1999) Statistics in Medicine , vol.18 , pp. 321-359
    • Normand, S.L.T.1
  • 77
    • 34548499539 scopus 로고    scopus 로고
    • Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization
    • Cahan P, Rovegno F, Mooney D, Newman J, St Laurent G, et al. (2007) Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 401: 12-18.
    • (2007) Gene , vol.401 , pp. 12-18
    • Cahan, P.1    Rovegno, F.2    Mooney, D.3    Newman, J.4    St Laurent, G.5
  • 78
    • 53149135477 scopus 로고    scopus 로고
    • Key issues in conducting a meta-analysis of gene expression microarray datasets
    • Ramasamy A, Mondry A, Holmes CC, Altman DG, (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5: e184.
    • (2008) PLoS Med , vol.5
    • Ramasamy, A.1    Mondry, A.2    Holmes, C.C.3    Altman, D.G.4
  • 80
    • 84859326067 scopus 로고    scopus 로고
    • Fast R Functions for Robust Correlations and Hierarchical Clustering
    • Langfelder P, Horvath S, (2012) Fast R Functions for Robust Correlations and Hierarchical Clustering. Journal of Statistical Software 46: 1-17.
    • (2012) Journal of Statistical Software , vol.46 , pp. 1-17
    • Langfelder, P.1    Horvath, S.2
  • 83
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P, Horvath S, (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 84
    • 68949098307 scopus 로고    scopus 로고
    • Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells
    • Mason M, Fan G, Plath K, Zhou Q, Horvath S, (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10: 327.
    • (2009) BMC Genomics , vol.10 , pp. 327
    • Mason, M.1    Fan, G.2    Plath, K.3    Zhou, Q.4    Horvath, S.5
  • 86
    • 33847129641 scopus 로고    scopus 로고
    • Gene network interconnectedness and the generalized topological overlap measure
    • Yip A, Horvath S, (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8: 22.
    • (2007) BMC Bioinformatics , vol.8 , pp. 22
    • Yip, A.1    Horvath, S.2
  • 88
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut library for R
    • Langfelder P, Zhang B, Horvath S, (2007) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut library for R. Bioinformatics. 24: 719-20.
    • (2007) Bioinformatics , vol.24 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 90
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modelling
    • Alter O, Brown P, Botstein D, (2000) Singular value decomposition for genome-wide expression data processing and modelling. PNAS 97: 10101-10106.
    • (2000) PNAS , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.2    Botstein, D.3
  • 91
    • 3042514191 scopus 로고    scopus 로고
    • Coexpression Analysis of Human Genes Across Many Microarray Data Sets
    • Lee H, Hsu A, Sajdak J, Qin J, Pavlidis P, (2004) Coexpression Analysis of Human Genes Across Many Microarray Data Sets. Genome Res 14: 1085-1094.
    • (2004) Genome Res , vol.14 , pp. 1085-1094
    • Lee, H.1    Hsu, A.2    Sajdak, J.3    Qin, J.4    Pavlidis, P.5
  • 92
    • 31544460919 scopus 로고    scopus 로고
    • Topological and functional discovery in a gene coexpression meta-network of gastric cancer
    • Aggarwal A, Li Guo D, Hoshida Y, Tsan Yuen S, Chu KM, et al. (2006) Topological and functional discovery in a gene coexpression meta-network of gastric cancer. Cancer Research 66: 232-241.
    • (2006) Cancer Research , vol.66 , pp. 232-241
    • Aggarwal, A.1    Li Guo, D.2    Hoshida, Y.3    Tsan Yuen, S.4    Chu, K.M.5
  • 93
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang Y, Joshi T, Zhang XS, Xu D, Chen L, (2006) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22: 2413-2420.
    • (2006) Bioinformatics , vol.22 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.S.3    Xu, D.4    Chen, L.5
  • 95
    • 84888835546 scopus 로고    scopus 로고
    • Frequent pattern discovery in multiple biological networks: Patterns and algorithms
    • Li W, Hu H, Huang Y, Li H, Mehan M, et al. (2011) Frequent pattern discovery in multiple biological networks: Patterns and algorithms. Statistics in Biosciences: 1-20.
    • (2011) Statistics in Biosciences , pp. 1-20
    • Li, W.1    Hu, H.2    Huang, Y.3    Li, H.4    Mehan, M.5
  • 96
    • 79961116748 scopus 로고    scopus 로고
    • Strategies for aggregating gene expression data: The collapserows r function
    • Miller J, Cai C, Langfelder P, Geschwind D, Kurian S, et al. (2011) Strategies for aggregating gene expression data: The collapserows r function. BMC Bioinformatics 12: 322.
    • (2011) BMC Bioinformatics , vol.12 , pp. 322
    • Miller, J.1    Cai, C.2    Langfelder, P.3    Geschwind, D.4    Kurian, S.5
  • 97
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. URL. ISBN 3-900051-07-0
    • R Development Core Team (2010) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. ISBN 3-900051-07-0.
    • (2010) R: A Language and Environment for Statistical Computing
  • 98
  • 99
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical bayes methods
    • Li C, Rabinovic A, (2007) Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8: 118-127.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Li, C.1    Rabinovic, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.