메뉴 건너뛰기




Volumn 51, Issue 9, 2007, Pages 4083-4100

Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification

Author keywords

Classification; Dimensionality reduction; Kernel; Logistic regression; PLS regression

Indexed keywords

ALGORITHMS; BINARY CODES; COMPUTATIONAL COMPLEXITY; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 34147155819     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.01.004     Document Type: Article
Times cited : (19)

References (42)
  • 1
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • Albert A., and Anderson J.A. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71 (1984) 1-10
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 2
    • 34147105062 scopus 로고    scopus 로고
    • Allison, D.P., 1999. Logistic regression using the SAS system: theory and application, SAS institute, ISBN: 1-58025-352-0.
  • 3
    • 31844446681 scopus 로고    scopus 로고
    • Bach, F.R., Jordan, M.I., 2005. Predictive low-rank decomposition for kernel methods. In: Proceedings of the Twenty-second International Conference on Machine Learning, Bonn, Germany.
  • 4
    • 0033544443 scopus 로고    scopus 로고
    • Non-linear projection to latent structures revisited (the neural networks PLS algorithm)
    • Baffi G., Martin E.B., and Morris A.J. Non-linear projection to latent structures revisited (the neural networks PLS algorithm). Comput. Chem. Eng. 23 (1999) 1293-1307
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 1293-1307
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 5
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M., and Rayens W.S. Partial least squares for discrimination. J. Chemometrics 17 (2003) 166-173
    • (2003) J. Chemometrics , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.S.2
  • 8
    • 0026966646 scopus 로고    scopus 로고
    • Boser, B.E., Guyon, I., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, vol. 5, Pittsburgh, pp. 144-152.
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 34249753618 scopus 로고
    • Support vector network
    • Cortes C., and Vapnik V. Support vector network. Mach. Learning 20 (1995) 273-297
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (1999) 1-50
    • (1999) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 80 (1993) 27-38
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 14
    • 21344479527 scopus 로고
    • An interpretation of partial least squares
    • Garthwaite P.H. An interpretation of partial least squares. J. Amer. Statist. Assoc. 89 425 (1994) 122-127
    • (1994) J. Amer. Statist. Assoc. , vol.89 , Issue.425 , pp. 122-127
    • Garthwaite, P.H.1
  • 15
    • 0024443297 scopus 로고
    • Receiver operating characteristic methodology: the state of the art
    • Hanley J.A. Receiver operating characteristic methodology: the state of the art. Critical Reviews in Diagnostic Imaging 29 (1989) 307-335
    • (1989) Critical Reviews in Diagnostic Imaging , vol.29 , pp. 307-335
    • Hanley, J.A.1
  • 16
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze G., and Schemper M. A solution to the problem of separation in logistic regression. Statist. Medicine 21 (2002) 2409-2419
    • (2002) Statist. Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 17
    • 85162676194 scopus 로고
    • PLS regression methods
    • Höskuldsson A. PLS regression methods. J. Chemometrics 2 (1988) 211-228
    • (1988) J. Chemometrics , vol.2 , pp. 211-228
    • Höskuldsson, A.1
  • 18
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B., Burges C., and Smola A. (Eds), MIT Press, Cambridge, MA
    • Joachims J. Making large-scale SVM learning practical. In: Schölkopf B., Burges C., and Smola A. (Eds). Advances in Kernel Methods-Support Vector Learning (1999), MIT Press, Cambridge, MA
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Joachims, J.1
  • 19
    • 34147156329 scopus 로고    scopus 로고
    • Li, J., Liu, H., 2002. Kent Ridge Biomedical Dataset Repository. 〈http://sdmc-lit.org.sg/GEDatasets〉
  • 21
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal R., and Trejo L.J. Kernel partial least squares regression in reproducing kernel hilbert space. J. Mach. Learning Res. 2 (2001) 97-123
    • (2001) J. Mach. Learning Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 22
    • 1942516826 scopus 로고    scopus 로고
    • Rosipal, R., Trejo, L.J., Matthews, B., 2003. Kernel PLS-SVC for linear and nonlinear classification. In: Proceeding of the Twentieth International Conference on Machine Learning, Washington, USA.
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., and Müller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 26
    • 22944456563 scopus 로고    scopus 로고
    • Dimension reduction-based penalized logistic regression for cancer classification using microarray data
    • Shen L., and Tan E.C. Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2 2 (2005) 166-175
    • (2005) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.2 , Issue.2 , pp. 166-175
    • Shen, L.1    Tan, E.C.2
  • 27
    • 34147116854 scopus 로고    scopus 로고
    • Smola, A.J., Schölkopf, B., 2000. Sparse greedy matrix approximation for machine learning. In: Proceeding of the Seventeenth International Conference on Machine Learning, Stanford, USA.
  • 29
    • 34147128773 scopus 로고    scopus 로고
    • Tenenhaus, M., 1998. La Régression PLS, éditions Technip.
  • 30
    • 34147179579 scopus 로고    scopus 로고
    • La régression logistique PLS
    • Droesbeke J.J., Lejeune M., and Saporta G. (Eds), Editions Technip
    • Tenenhaus M. La régression logistique PLS. In: Droesbeke J.J., Lejeune M., and Saporta G. (Eds). Modèles statistiques pour données qualitatives (2005), Editions Technip
    • (2005) Modèles statistiques pour données qualitatives
    • Tenenhaus, M.1
  • 31
    • 34147164155 scopus 로고    scopus 로고
    • Tenenhaus, A., Giron, A., Saporta, G., Fertil, B., 2005. Kernel logistic PLS: a new tool for complex classification. In: 11th International Symposium on Applied Stochastic Models and Data Analysis, Brest, France.
  • 33
    • 0000503256 scopus 로고
    • An inter-battery method of factor analysis
    • Tucker L.R. An inter-battery method of factor analysis. Psychometrika 23 2 (1958)
    • (1958) Psychometrika , vol.23 , Issue.2
    • Tucker, L.R.1
  • 35
    • 34147108354 scopus 로고    scopus 로고
    • Wahba, G., 1999. Support vector machines, reproducing kernel Hilbert spaces and randomized GACV. In: Advances in Kernel Methods-Support Vector Learning, pp. 69-88.
  • 36
    • 0003972765 scopus 로고    scopus 로고
    • Webb, A.R., 1996. Nonlinear feature extraction with radial basis functions using a weighted multidimensional scaling stress measure. In: 13th International Conference on Pattern Recognition.
  • 37
    • 34147139560 scopus 로고    scopus 로고
    • Williams, C.K.I., Seeger, M., 2000. Effect on the input density distribution on kernel-based classifiers. In: Proceeding of the Seventeenth International Conference on Machine Learning, Stanford, USA.
  • 38
    • 0026578543 scopus 로고
    • Non-linear partial least squares modelling. II Spline inner function
    • Wold S. Non-linear partial least squares modelling. II Spline inner function. Chemometrics Intell. Lab. Systems 14 (1992) 71-84
    • (1992) Chemometrics Intell. Lab. Systems , vol.14 , pp. 71-84
    • Wold, S.1
  • 39
    • 0002555784 scopus 로고
    • The multivariate calibration problem in chemistry solved by the PLS method
    • Springer, Heidelberg
    • Wold S., Martens H., and Wold H. The multivariate calibration problem in chemistry solved by the PLS method. Lecture Notes in Mathematics (1983), Springer, Heidelberg 286-293
    • (1983) Lecture Notes in Mathematics , pp. 286-293
    • Wold, S.1    Martens, H.2    Wold, H.3
  • 41
    • 0030814744 scopus 로고    scopus 로고
    • The kernel PCA algorithms for wide data. Part II: fast cross validation and application in classification of NIR data
    • Wu W., Massart D.L., and de Jong S. The kernel PCA algorithms for wide data. Part II: fast cross validation and application in classification of NIR data. Chemometrics Intell. Lab. Systems 37 (1997) 271-280
    • (1997) Chemometrics Intell. Lab. Systems , vol.37 , pp. 271-280
    • Wu, W.1    Massart, D.L.2    de Jong, S.3
  • 42
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J., and Hastie T. Kernel logistic regression and the import vector machine. J. Comput. Graphical Statist. 14 1 (2005) 185-205
    • (2005) J. Comput. Graphical Statist. , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.