메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass

Author keywords

Biomass; Co utilisation of xylose and cellulose; S. pastorianus; Spent grain fermentations

Indexed keywords

BETA GLUCOSIDASE; BETA GLUCOSIDASE 1; CELLOBIOHYDROLASE 2; CELLULASE; CELLULOSE; CELLULOSE 1,4 BETA CELLOBIOSIDASE; GLUCAN SYNTHASE; GLUCAN SYNTHASE 2; HEMICELLULOSE; LIGNOCELLULOSE; NICOTINAMIDE ADENINE DINUCLEOTIDE; OXIDOREDUCTASE; RECOMBINANT ENZYME; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; UNCLASSIFIED DRUG; XYLITOL; XYLITOL DEHYDROGENASE; XYLOSE; XYLOSE ISOMERASE; XYLOSE REDUCTASE; XYLULOSE KINASE;

EID: 84928807849     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-015-0242-4     Document Type: Article
Times cited : (24)

References (64)
  • 1
    • 84922577459 scopus 로고    scopus 로고
    • Integration of the first and second generation bioethanol processes and the importance of by-products
    • Lennartsson PR, Erlandsson P, Taherzadeh MJ. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol. 2014;165:3-8.
    • (2014) Bioresour Technol , vol.165 , pp. 3-8
    • Lennartsson, P.R.1    Erlandsson, P.2    Taherzadeh, M.J.3
  • 2
    • 84899666911 scopus 로고    scopus 로고
    • Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective
    • Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol. 2014;5:174.
    • (2014) Front Microbiol , vol.5 , pp. 174
    • Kricka, W.1    Fitzpatrick, J.2    Bond, U.3
  • 4
    • 79952574144 scopus 로고    scopus 로고
    • Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'
    • Chandel AK, Singh OV. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Appl Microbiol Biotechnol. 2011;89:1289-303.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 1289-1303
    • Chandel, A.K.1    Singh, O.V.2
  • 5
    • 84862162242 scopus 로고    scopus 로고
    • Crystalline and amorphous cellulose in the secondary walls of Arabidopsis
    • Ruel K, Nishiyama Y, Joseleau JP. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 2012;193-194:48-61.
    • (2012) Plant Sci , vol.193-194 , pp. 48-61
    • Ruel, K.1    Nishiyama, Y.2    Joseleau, J.P.3
  • 6
    • 84861661369 scopus 로고    scopus 로고
    • Fractional purification and bioconversion of hemicelluloses
    • Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. 2012;30:879-903.
    • (2012) Biotechnol Adv , vol.30 , pp. 879-903
    • Peng, F.1    Peng, P.2    Xu, F.3    Sun, R.C.4
  • 7
    • 84856703096 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae
    • Madhavan A, Srivastava A, Kondo A, Bisaria VS. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol. 2012;32:22-48.
    • (2012) Crit Rev Biotechnol , vol.32 , pp. 22-48
    • Madhavan, A.1    Srivastava, A.2    Kondo, A.3    Bisaria, V.S.4
  • 8
    • 42249110184 scopus 로고    scopus 로고
    • Emerging strategies of lignin engineering and degradation for cellulosic biofuel production
    • Weng JK, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol. 2008;19:166-72.
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 166-172
    • Weng, J.K.1    Li, X.2    Bonawitz, N.D.3    Chapple, C.4
  • 9
    • 84868483522 scopus 로고    scopus 로고
    • Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method
    • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, et al. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy. 2012;46:25-35.
    • (2012) Biomass and Bioenergy , vol.46 , pp. 25-35
    • Chiaramonti, D.1    Prussi, M.2    Ferrero, S.3    Oriani, L.4    Ottonello, P.5    Torre, P.6
  • 10
    • 84858444031 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by Spathaspora passalidarum
    • Hou X. Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol. 2012;94:205-14.
    • (2012) Appl Microbiol Biotechnol , vol.94 , pp. 205-214
    • Hou, X.1
  • 11
    • 84880837044 scopus 로고    scopus 로고
    • Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade
    • Urbina H, Frank R, Blackwell M. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia. 2013;105:650-60.
    • (2013) Mycologia , vol.105 , pp. 650-660
    • Urbina, H.1    Frank, R.2    Blackwell, M.3
  • 12
    • 84884489848 scopus 로고    scopus 로고
    • Diversity and Fermentation Products of Xylose-Utilizing Yeasts Isolated from Buffalo Feces in Thailand
    • Wanlapa L, Ancharida A, Motofumi S, Moriya O, Somboon T. Diversity and Fermentation Products of Xylose-Utilizing Yeasts Isolated from Buffalo Feces in Thailand. Microb Environ. 2013;28:354-60.
    • (2013) Microb Environ , vol.28 , pp. 354-360
    • Wanlapa, L.1    Ancharida, A.2    Motofumi, S.3    Moriya, O.4    Somboon, T.5
  • 14
    • 84879820772 scopus 로고    scopus 로고
    • Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
    • Nakatani Y, Yamada R, Ogino C, Kondo A. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact. 2013;12:66.
    • (2013) Microb Cell Fact , vol.12 , pp. 66
    • Nakatani, Y.1    Yamada, R.2    Ogino, C.3    Kondo, A.4
  • 15
    • 77953211186 scopus 로고    scopus 로고
    • Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae
    • 6. 13.
    • Wenger J, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS genetics 2010, 6. 13;6(5):e1000942. doi: 10.1371/journal.pgen.1000942.
    • (2010) PLoS genetics , vol.6 , Issue.5 , pp. e1000942
    • Wenger, J.1    Schwartz, K.2    Sherlock, G.3
  • 16
    • 84862560015 scopus 로고    scopus 로고
    • APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast
    • Schwartz K, Wenger JW, Dunn B, Sherlock G. APJ1 and GRE3 homologs work in concert to allow growth in xylose in a natural Saccharomyces sensu stricto hybrid yeast. Genetics. 2012;191:621-32.
    • (2012) Genetics , vol.191 , pp. 621-632
    • Schwartz, K.1    Wenger, J.W.2    Dunn, B.3    Sherlock, G.4
  • 17
    • 79956076724 scopus 로고    scopus 로고
    • A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
    • Bera AK, Ho NW, Khan A, Sedlak M. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol. 2011;38:617-26.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 617-626
    • Bera, A.K.1    Ho, N.W.2    Khan, A.3    Sedlak, M.4
  • 18
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol. 2009;100:2392-8.
    • (2009) Bioresour Technol , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 19
    • 84881101974 scopus 로고    scopus 로고
    • Cocktail delta-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    • Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T, et al. Cocktail delta-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J Biosci Bioeng. 2013;116:333-6.
    • (2013) J Biosci Bioeng , vol.116 , pp. 333-336
    • Kato, H.1    Matsuda, F.2    Yamada, R.3    Nagata, K.4    Shirai, T.5    Hasunuma, T.6
  • 20
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Fromanger R, Hahn-Hagerdal B, Gorwa-Grauslund MF. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2007;73:1039-46.
    • (2007) Appl Microbiol Biotechnol , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 21
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels. 2013;6:84.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 84
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Mertens, J.A.4
  • 22
    • 84873164214 scopus 로고    scopus 로고
    • Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend
    • de Figueiredo VL, de Mello VM, Reis VC, Bon EP, Goncalves Torres FA, Neves BC, et al. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour Technol. 2013;128:792-6.
    • (2013) Bioresour Technol , vol.128 , pp. 792-796
    • Figueiredo, V.L.1    Mello, V.M.2    Reis, V.C.3    Bon, E.P.4    Goncalves Torres, F.A.5    Neves, B.C.6
  • 23
    • 78149412303 scopus 로고    scopus 로고
    • Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation
    • Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol. 2010;88:1215-21.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 1215-1221
    • Tanino, T.1    Hotta, A.2    Ito, T.3    Ishii, J.4    Yamada, R.5    Hasunuma, T.6
  • 24
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol. 1996;62:4648-51.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bulow, L.5    Hahn-Hagerdal, B.6
  • 25
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
    • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 2004;4:655-64.
    • (2004) FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.A.2    Dijken, J.P.3    Pronk, J.T.4
  • 26
    • 80052377729 scopus 로고    scopus 로고
    • Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations
    • Xiong M, Chen G, Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour Technol. 2011;102:9206-15.
    • (2011) Bioresour Technol , vol.102 , pp. 9206-9215
    • Xiong, M.1    Chen, G.2    Barford, J.3
  • 28
    • 84890317534 scopus 로고    scopus 로고
    • Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
    • Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 2013;13:110.
    • (2013) BMC Biotechnol , vol.13 , pp. 110
    • Diao, L.1    Liu, Y.2    Qian, F.3    Yang, J.4    Jiang, Y.5    Yang, S.6
  • 29
    • 84866172183 scopus 로고    scopus 로고
    • Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • Lee SM, Jellison T, Alper HS. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:5708-16.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 30
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6:89.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6
  • 31
    • 84867202661 scopus 로고    scopus 로고
    • Cellulosic ethanol production by combination of cellulase-displaying yeast cells
    • Baek SH, Kim S, Lee K, Lee JK, Hahn JS. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Technol. 2012;51:366-72.
    • (2012) Enzyme Microb Technol , vol.51 , pp. 366-372
    • Baek, S.H.1    Kim, S.2    Lee, K.3    Lee, J.K.4    Hahn, J.S.5
  • 32
    • 84873260717 scopus 로고    scopus 로고
    • Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase
    • Kim S, Baek SH, Lee K, Hahn JS. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microb Cell Fact. 2013;12:14.
    • (2013) Microb Cell Fact , vol.12 , pp. 14
    • Kim, S.1    Baek, S.H.2    Lee, K.3    Hahn, J.S.4
  • 33
    • 85028099794 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
    • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels. 2011;4:8.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 8
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 34
    • 77952171368 scopus 로고    scopus 로고
    • Ethanol production from cellulosic materials using cellulase-expressing yeast
    • Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J. 2010;5:449-55.
    • (2010) Biotechnol J , vol.5 , pp. 449-455
    • Yanase, S.1    Yamada, R.2    Kaneko, S.3    Noda, H.4    Hasunuma, T.5    Tanaka, T.6
  • 35
    • 84902544670 scopus 로고    scopus 로고
    • Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose
    • Fitzpatrick J, Kricka W, James TC, Bond U. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J Appl Microbiol. 2014;117:96-108.
    • (2014) J Appl Microbiol , vol.117 , pp. 96-108
    • Fitzpatrick, J.1    Kricka, W.2    James, T.C.3    Bond, U.4
  • 36
    • 33845609259 scopus 로고    scopus 로고
    • Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
    • Den Haan R, Rose SH, Lynd LR, van Zyl WH. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng. 2007;9:87-94.
    • (2007) Metab Eng , vol.9 , pp. 87-94
    • Haan, R.1    Rose, S.H.2    Lynd, L.R.3    Zyl, W.H.4
  • 37
    • 80055040909 scopus 로고    scopus 로고
    • Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
    • Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact. 2011;10:89.
    • (2011) Microb Cell Fact , vol.10 , pp. 89
    • Goyal, G.1    Tsai, S.L.2    Madan, B.3    DaSilva, N.A.4    Chen, W.5
  • 38
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
    • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol. 2004;70:1207-12.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 39
    • 76649105430 scopus 로고    scopus 로고
    • Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
    • Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol. 2010;76:1251-60.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 1251-1260
    • Wen, F.1    Sun, J.2    Zhao, H.3
  • 40
    • 77955553357 scopus 로고    scopus 로고
    • Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2
    • Saitoh S, Hasunuma T, Tanaka T, Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl Microbiol Biotechnol. 2010;87:1975-82.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 1975-1982
    • Saitoh, S.1    Hasunuma, T.2    Tanaka, T.3    Kondo, A.4
  • 41
    • 79551670374 scopus 로고    scopus 로고
    • Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 2011;108:504-9.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 504-509
    • Ha, S.J.1    Galazka, J.M.2    Kim, S.R.3    Choi, J.H.4    Yang, X.5    Seo, J.H.6
  • 42
    • 80052631100 scopus 로고    scopus 로고
    • Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both beta-glucosidase and beta-xylosidase
    • Saitoh S, Tanaka T, Kondo A. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both beta-glucosidase and beta-xylosidase. Appl Microbiol Biotechnol. 2011;91:1553-9.
    • (2011) Appl Microbiol Biotechnol , vol.91 , pp. 1553-1559
    • Saitoh, S.1    Tanaka, T.2    Kondo, A.3
  • 43
    • 69249184669 scopus 로고    scopus 로고
    • The Genomes of Lager Yeasts
    • Laskin AI, Sariaslani S, Gadd GM, editors. Burlington: Academic Press.
    • Bond U. The Genomes of Lager Yeasts. In: Laskin AI, Sariaslani S, Gadd GM, editors. Adv Appl Microbiol, vol. 69. Burlington: Academic Press; 2009. p. 159-82.
    • (2009) Adv Appl Microbiol , vol.69 , pp. 159-182
    • Bond, U.1
  • 45
    • 85005773708 scopus 로고    scopus 로고
    • Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains
    • Monerawela C, James TC, Wolfe KH, Bond U. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains. FEMS Yeast Res. 2015;15:1-11.
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-11
    • Monerawela, C.1    James, T.C.2    Wolfe, K.H.3    Bond, U.4
  • 46
    • 56449084752 scopus 로고    scopus 로고
    • Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains
    • Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels. 2008;1:16.
    • (2008) Biotechnol Biofuels , vol.1 , pp. 16
    • Bettiga, M.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 47
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact. 2007;6:5.
    • (2007) Microb Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 48
    • 84878315786 scopus 로고    scopus 로고
    • Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural
    • Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek. 2013;103:1281-95.
    • (2013) Antonie Van Leeuwenhoek , vol.103 , pp. 1281-1295
    • Bajwa, P.K.1    Ho, C.Y.2    Chan, C.K.3    Martin, V.J.4    Trevors, J.T.5    Lee, H.6
  • 49
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 50
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • Hasunuma T, Ismail KS, Nambu Y, Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng. 2014;117:165-9.
    • (2014) J Biosci Bioeng , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.2    Nambu, Y.3    Kondo, A.4
  • 51
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 52
    • 77950475482 scopus 로고    scopus 로고
    • Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production
    • Zhuang J, Liu Y, Wu Z, Sun Y, Lin L. Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. Bio-Resources. 2009;4:674-86.
    • (2009) Bio-Resources , vol.4 , pp. 674-686
    • Zhuang, J.1    Liu, Y.2    Wu, Z.3    Sun, Y.4    Lin, L.5
  • 53
    • 33846884378 scopus 로고    scopus 로고
    • Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501
    • Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol. 2007;98:1947-50.
    • (2007) Bioresour Technol , vol.98 , pp. 1947-1950
    • Chandel, A.K.1    Kapoor, R.K.2    Singh, A.3    Kuhad, R.C.4
  • 54
    • 84856239135 scopus 로고    scopus 로고
    • Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover
    • Grzenia DL, Wickramasinghe SR, Schell DJ. Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover. Appl Biochem Biotechnol. 2012;166:470-8.
    • (2012) Appl Biochem Biotechnol , vol.166 , pp. 470-478
    • Grzenia, D.L.1    Wickramasinghe, S.R.2    Schell, D.J.3
  • 55
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels. 2012;5:32.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 56
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
    • Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol. 2008;1:497-506.
    • (2008) Microb Biotechnol , vol.1 , pp. 497-506
    • Heer, D.1    Sauer, U.2
  • 57
    • 84885551317 scopus 로고    scopus 로고
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
    • Wallace-Salinas V, Gorwa-Grauslund MF. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels. 2013;6:151.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 151
    • Wallace-Salinas, V.1    Gorwa-Grauslund, M.F.2
  • 58
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario MP, Reyes LH, Kao KC. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng. 2013;110:2616-23.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 59
    • 39649104571 scopus 로고    scopus 로고
    • Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress
    • James TC, Usher J, Campbell S, Bond U. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Curr Genet. 2008;53:139-52.
    • (2008) Curr Genet , vol.53 , pp. 139-152
    • James, T.C.1    Usher, J.2    Campbell, S.3    Bond, U.4
  • 60
    • 84876081257 scopus 로고    scopus 로고
    • Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance
    • Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res. 2013;13:335-49.
    • (2013) FEMS Yeast Res , vol.13 , pp. 335-349
    • Ekberg, J.1    Rautio, J.2    Mattinen, L.3    Vidgren, V.4    Londesborough, J.5    Gibson, B.R.6
  • 61
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N, Quarterman J, Kim SR, Cate JH, Jin YS. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun. 2013;4:2580.
    • (2013) Nat Commun , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.S.5
  • 62
  • 64
    • 33644941225 scopus 로고    scopus 로고
    • System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
    • Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 2006;40:73-8.
    • (2006) Biotechniques , vol.40 , pp. 73-78
    • Taxis, C.1    Knop, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.