메뉴 건너뛰기




Volumn 10, Issue 2, 2015, Pages 18-29

Local receptive fields based extreme learning machine

Author keywords

[No Author keywords available]

Indexed keywords

ARCHITECTURE; FEEDFORWARD NEURAL NETWORKS; ITERATIVE METHODS; KNOWLEDGE ACQUISITION; NETWORK ARCHITECTURE; NETWORK LAYERS; OBJECT RECOGNITION; PROBABILITY DISTRIBUTIONS;

EID: 84928106753     PISSN: 1556603X     EISSN: 15566048     Source Type: Journal    
DOI: 10.1109/MCI.2015.2405316     Document Type: Article
Times cited : (329)

References (66)
  • 1
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • Aug.
    • C. P. Chen and C.-Y. Zhang, "Data-intensive applications, challenges, techniques and technologies: A survey on big data," Inform. Sci., vol. 275, pp. 314-347, Aug. 2014.
    • (2014) Inform. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 2
    • 84908019121 scopus 로고    scopus 로고
    • Big data opportunities and challenges: Discussions from data analytics perspectives
    • Nov.
    • Z.-H. Zhou, N. Chawla, Y. Jin, and G. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives," IEEE Comput. Intell. Mag., vol. 9, pp. 62-74, Nov. 2014.
    • (2014) IEEE Comput. Intell. Mag. , vol.9 , pp. 62-74
    • Zhou, Z.-H.1    Chawla, N.2    Jin, Y.3    Williams, G.4
  • 3
  • 4
    • 84921341261 scopus 로고    scopus 로고
    • Bring your own learner: A cloud-based, data-parallel commons for machine learning
    • Feb.
    • I. Arnaldo, K. Veeramachaneni, A. Song, and U. O'Reilly, "Bring your own learner: A cloud-based, data-parallel commons for machine learning," IEEE Comput. Intell. Mag., vol. 10, pp. 20-32, Feb. 2015.
    • (2015) IEEE Comput. Intell. Mag. , vol.10 , pp. 20-32
    • Arnaldo, I.1    Veeramachaneni, K.2    Song, A.3    O'reilly, U.4
  • 5
    • 84904092315 scopus 로고    scopus 로고
    • Representational learning with extreme learning machine for big data
    • L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, "Representational learning with extreme learning machine for big data," IEEE Intell. Syst., vol. 28, no. 6, pp. 31-34, 2013.
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.6 , pp. 31-34
    • Kasun, L.L.C.1    Zhou, H.2    Huang, G.-B.3    Vong, C.M.4
  • 6
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Oct.
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagation errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 7
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • July
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. Int. Joint Conf. Neural Networks, July 2004, vol. 2, pp. 985-990.
    • (2004) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 8
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Dec.
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, pp. 489-501, Dec. 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 10
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Oct.
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, pp. 3056-3062, Oct. 2007.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Oct.
    • G.-B. Huang and L. Chen, "Enhanced random search based incremental extreme learning machine," Neurocomputing, vol. 71, pp. 3460-3468, Oct. 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 12
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst. Man, Cybern. B, vol. 42, no. 2, pp. 513-529, 2012.
    • (2012) IEEE Trans. Syst. Man, Cybern. B , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 13
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: Random neurons, random features and kernels
    • G.-B. Huang, "An insight into extreme learning machines: Random neurons, random features and kernels," Cognitive Comput., vol. 6, no. 3, pp. 376-390, 2014.
    • (2014) Cognitive Comput. , vol.6 , Issue.3 , pp. 376-390
    • Huang, G.-B.1
  • 14
    • 84883162967 scopus 로고    scopus 로고
    • Prediction of proteinprotein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
    • Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, "Prediction of proteinprotein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis," BMC Bioinform., vol. 14, suppl. 8, p. S10, 2013.
    • (2013) BMC Bioinform. , vol.14 , pp. S10
    • You, Z.-H.1    Lei, Y.-K.2    Zhu, L.3    Xia, J.4    Wang, B.5
  • 15
    • 84865313417 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    • Y. Song, J. Crowcroft, and J. Zhang, "Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine," J. Neurosci. Methods, vol. 210, no. 2, pp. 132-146, 2012.
    • (2012) J. Neurosci. Methods , vol.210 , Issue.2 , pp. 132-146
    • Song, Y.1    Crowcroft, J.2    Zhang, J.3
  • 16
    • 80051683250 scopus 로고    scopus 로고
    • Optimization of nonlinear process based on sequential extreme learning machine
    • Y. Zhang and P. Zhang, "Optimization of nonlinear process based on sequential extreme learning machine," Chem. Eng. Sci., vol. 66, no. 20, pp. 4702-4710, 2011.
    • (2011) Chem. Eng. Sci. , vol.66 , Issue.20 , pp. 4702-4710
    • Zhang, Y.1    Zhang, P.2
  • 17
    • 84876924052 scopus 로고    scopus 로고
    • Bidirectional extreme learning machine for regression problem and its learning effectiveness
    • Y. Yang, Y. Wang, and X. Yuan, "Bidirectional extreme learning machine for regression problem and its learning effectiveness," IEEE Trans. Neural Networks Learning Syst., vol. 23, no. 9, pp. 1498-1505, 2012.
    • (2012) IEEE Trans. Neural Networks Learning Syst. , vol.23 , Issue.9 , pp. 1498-1505
    • Yang, Y.1    Wang, Y.2    Yuan, X.3
  • 18
    • 84897626373 scopus 로고    scopus 로고
    • Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
    • Z. Yan and J. Wang, "Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks," IEEE Trans. Neural Networks Learning Syst., vol. 25, no. 3, pp. 457-469, 2014.
    • (2014) IEEE Trans. Neural Networks Learning Syst. , vol.25 , Issue.3 , pp. 457-469
    • Yan, Z.1    Wang, J.2
  • 19
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • A. Nizar, Z. Dong, and Y. Wang, "Power utility nontechnical loss analysis with extreme learning machine method," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 946-955, 2008.
    • (2008) IEEE Trans. Power Syst. , vol.23 , Issue.3 , pp. 946-955
    • Nizar, A.1    Dong, Z.2    Wang, Y.3
  • 20
    • 84882574291 scopus 로고    scopus 로고
    • Incremental learning in human action recognition based on snippets
    • R. Minhas, A. A. Mohammed, and Q. M. J. Wu, "Incremental learning in human action recognition based on snippets," IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 11, pp. 1529-1541, 2012.
    • (2012) IEEE Trans. Circuits Syst. Video Technol. , vol.22 , Issue.11 , pp. 1529-1541
    • Minhas, R.1    Mohammed, A.A.2    Wu, Q.M.J.3
  • 23
    • 84907219786 scopus 로고    scopus 로고
    • Sparse extreme learning machine for classification
    • Z. Bai, G.-B. Huang, D. Wang, H. Wang, and M. B. Westover, "Sparse extreme learning machine for classification," IEEE Trans. Cybern., vol. 44, no. 10, pp. 1858-1870, 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.10 , pp. 1858-1870
    • Bai, Z.1    Huang, G.-B.2    Wang, D.3    Wang, H.4    Westover, M.B.5
  • 24
    • 0030737097 scopus 로고    scopus 로고
    • Face recognition: A convolutional neural-network approach
    • S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, "Face recognition: A convolutional neural-network approach," IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 98-113, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.1 , pp. 98-113
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3    Back, A.D.4
  • 26
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • G. Huang, G.-B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review," Neural Netw., vol. 61, no. 1, pp. 32-48, 2015.
    • (2015) Neural Netw. , vol.61 , Issue.1 , pp. 32-48
    • Huang, G.1    Huang, G.-B.2    Song, S.3    You, K.4
  • 27
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Apr.
    • Y.-H. Pao, G.-H. Park, and D. J. Sobajic, "Learning and generalization characteristics of the random vector functional-link net," Neurocomputing, vol. 6, pp. 163-180, Apr. 1994.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 28
    • 0030242096 scopus 로고    scopus 로고
    • A rapid supervised learning neural network for function interpolation and approximation
    • C. P. Chen, "A rapid supervised learning neural network for function interpolation and approximation," IEEE Trans. Neural Networks, vol. 7, no. 5, pp. 1220-1230, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.5 , pp. 1220-1230
    • Chen, C.P.1
  • 29
    • 0031907489 scopus 로고    scopus 로고
    • An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification
    • C. Chen, S. R. LeClair, and Y.-H. Pao, "An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification," Neurocomputing, vol. 18, no. 1, pp. 11-31, 1998.
    • (1998) Neurocomputing , vol.18 , Issue.1 , pp. 11-31
    • Chen, C.1    Leclair, S.R.2    Pao, Y.-H.3
  • 30
    • 0033078284 scopus 로고    scopus 로고
    • A rapid learning and dynamic stepwise updating algorithm for f lat neural networks and the application to time-series prediction
    • C. P. Chen and J. Z. Wan, "A rapid learning and dynamic stepwise updating algorithm for f lat neural networks and the application to time-series prediction," IEEE Trans. Syst. Man, Cybern. B, vol. 29, no. 1, pp. 62-72, 1999.
    • (1999) IEEE Trans. Syst. Man, Cybern. B , vol.29 , Issue.1 , pp. 62-72
    • Chen, C.P.1    Wan, J.Z.2
  • 32
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • B. Igelnik and Y.-H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net," IEEE Trans. Neural Networks, vol. 6, no. 6, pp. 1320-1329, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 33
    • 0024944645 scopus 로고
    • An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
    • H. White, "An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks," in Proc. Int. Conf. Neural Networks, 1989, pp. 451-455.
    • (1989) Proc. Int. Conf. Neural Networks , pp. 451-455
    • White, H.1
  • 34
    • 43949168783 scopus 로고
    • Testing for neglected nonlinearity in time series models: A comparison of neural network methods and standard tests
    • T.-H. Lee, H. White, and C. W. J. Granger, "Testing for neglected nonlinearity in time series models: A comparison of neural network methods and standard tests," J. Econometrics, vol. 56, pp. 269-290, 1993.
    • (1993) J. Econometrics , vol.56 , pp. 269-290
    • Lee, T.-H.1    White, H.2    Granger, C.W.J.3
  • 35
    • 0032343771 scopus 로고    scopus 로고
    • Consistent specification testing with nuisance parameters present only under the alternative
    • M. B. Stinchcombe and H. White, "Consistent specification testing with nuisance parameters present only under the alternative," Econometric Theory, vol. 14, no. 3, pp. 295-324, 1998.
    • (1998) Econometric Theory , vol.14 , Issue.3 , pp. 295-324
    • Stinchcombe, M.B.1    White, H.2
  • 36
    • 67649359701 scopus 로고    scopus 로고
    • Approximate nonlinear forecasting methods
    • G. Elliott, C. W. J. Granger, and A. Timmermann, Eds. New York: Elsevier
    • H. White, "Approximate nonlinear forecasting methods," in Handbook of Economics Forecasting, G. Elliott, C. W. J. Granger, and A. Timmermann, Eds. New York: Elsevier, 2006, pp. 460-512.
    • (2006) Handbook of Economics Forecasting , pp. 460-512
    • White, H.1
  • 37
    • 84911944987 scopus 로고    scopus 로고
    • Semi-supervised and unsupervised extreme learning machines
    • G. Huang, S. Song, J. N. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2405-2417, 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.12 , pp. 2405-2417
    • Huang, G.1    Song, S.2    Gupta, J.N.3    Wu, C.4
  • 41
    • 84870473129 scopus 로고    scopus 로고
    • The no-prop algorithm: A new learning algorithm for multilayer neural networks
    • Jan.
    • B. Widrow, A. Greenblatt, Y. Kim, and D. Park, "The no-prop algorithm: A new learning algorithm for multilayer neural networks," Neural Netw., vol. 37, pp. 182-188, Jan. 2013.
    • (2013) Neural Netw. , vol.37 , pp. 182-188
    • Widrow, B.1    Greenblatt, A.2    Kim, Y.3    Park, D.4
  • 42
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Dec.
    • G.-B. Huang, X. Ding, and H. Zhou, "Optimization method based extreme learning machine for classification," Neurocomputing, vol. 74, pp. 155-163, Dec. 2010.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 44
    • 84887012141 scopus 로고    scopus 로고
    • Using SVMs with randomised feature spaces: An extreme learning approach
    • Apr. 28-30
    • B. Frénay and M. Verleysen, "Using SVMs with randomised feature spaces: An extreme learning approach," in Proc. 18th European Symp. Artificial Neural Networks, Apr. 28-30, 2010, pp. 315-320.
    • (2010) Proc. 18th European Symp. Artificial Neural Networks , pp. 315-320
    • Frénay, B.1    Verleysen, M.2
  • 45
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 46
    • 84928140071 scopus 로고    scopus 로고
    • "b," A.I. Memo No. 2001-011, CBCL Memo 198, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
    • T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri, "b," A.I. Memo No. 2001-011, CBCL Memo 198, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 2001.
    • (2001)
    • Poggio, T.1    Mukherjee, S.2    Rifkin, R.3    Rakhlin, A.4    Verri, A.5
  • 48
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 525-536, 1998.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 49
    • 0014266913 scopus 로고
    • Receptive fields and functional architecture of monkey striate cortex
    • D. H. Hubel and T. N. Wiesel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol., vol. 195, no. 1, pp. 215-243, 1968.
    • (1968) J. Physiol. , vol.195 , Issue.1 , pp. 215-243
    • Hubel, D.H.1    Wiesel, T.N.2
  • 50
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • D. Scherer, A. Müller, and S. Behnke, "Evaluation of pooling operations in convolutional architectures for object recognition," in Proc. Int. Conf. Artificial Neural Networks, 2010, pp. 92-101.
    • (2010) Proc. Int. Conf. Artificial Neural Networks , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 51
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-based extreme learning machine for remote-sensing image classification
    • M. Pal, A. E. Maxwell, and T. A. Warner, "Kernel-based extreme learning machine for remote-sensing image classification," Remote Sensing Lett., vol. 4, no. 9, pp. 853-862, 2013.
    • (2013) Remote Sensing Lett. , vol.4 , Issue.9 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 52
    • 84871651156 scopus 로고    scopus 로고
    • Reservoir computing and extreme learning machines for non-linear time-series data analysis
    • Feb.
    • J. Butcher, D. Verstraeten, B. Schrauwen, C. Day, and P. Haycock, "Reservoir computing and extreme learning machines for non-linear time-series data analysis," Neural Netw., vol. 38, pp. 76-89, Feb. 2013.
    • (2013) Neural Netw. , vol.38 , pp. 76-89
    • Butcher, J.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.4    Haycock, P.5
  • 53
    • 84874022486 scopus 로고    scopus 로고
    • Text categorization based on regularization extreme learning machine
    • W. Zheng, Y. Qian, and H. Lu, "Text categorization based on regularization extreme learning machine," Neural Comput. Applicat., vol. 22, nos. 3-4, pp. 447-456, 2013.
    • (2013) Neural Comput. Applicat. , vol.22 , Issue.3-4 , pp. 447-456
    • Zheng, W.1    Qian, Y.2    Lu, H.3
  • 54
    • 0141680950 scopus 로고    scopus 로고
    • Efficacy of retinal spikes in driving cortical responses
    • P. Kara and R. C. Reid, "Efficacy of retinal spikes in driving cortical responses," J. Neurosci., vol. 23, no. 24, pp. 8547-8557, 2003.
    • (2003) J. Neurosci. , vol.23 , Issue.24 , pp. 8547-8557
    • Kara, P.1    Reid, R.C.2
  • 55
    • 79954619539 scopus 로고    scopus 로고
    • Distinct representations of olfactory information in different cortical centres
    • D. L. Sosulski, M. L. Bloom, T. Cutforth, R. Axel, and S. R. Datta, "Distinct representations of olfactory information in different cortical centres," Nature, vol. 472, no. 7342, pp. 213-216, 2011.
    • (2011) Nature , vol.472 , Issue.7342 , pp. 213-216
    • Sosulski, D.L.1    Bloom, M.L.2    Cutforth, T.3    Axel, R.4    Datta, S.R.5
  • 56
    • 84874626374 scopus 로고    scopus 로고
    • The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off
    • O. Barak, M. Rigotti, and S. Fusi, "The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off," J. Neurosci., vol. 33, no. 9, pp. 3844-3856, 2013.
    • (2013) J. Neurosci. , vol.33 , Issue.9 , pp. 3844-3856
    • Barak, O.1    Rigotti, M.2    Fusi, S.3
  • 59
    • 79958697382 scopus 로고    scopus 로고
    • Beyond simple features: A large-scale feature search approach to unconstrained face recognition
    • D. Cox and N. Pinto, "Beyond simple features: A large-scale feature search approach to unconstrained face recognition," in Proc. IEEE Int. Conf. Automatic Face Gesture Recognition Workshops, 2011, pp. 8-15.
    • (2011) Proc. IEEE Int. Conf. Automatic Face Gesture Recognition Workshops , pp. 8-15
    • Cox, D.1    Pinto, N.2
  • 61
    • 84944477553 scopus 로고
    • Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
    • D. W. Marquaridt, "Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation," Technometrics, vol. 12, no. 3, pp. 591-612, 1970.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 591-612
    • Marquaridt, D.W.1
  • 62
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • July
    • Y. LeCun, F. J. Huang, and L. Bottou, "Learning methods for generic object recognition with invariance to pose and lighting," in Proc. Int. Conf. Computer Vision Pattern Recognition, July 2004, vol. 2, pp. II-97-104.
    • (2004) Proc. Int. Conf. Computer Vision Pattern Recognition , vol.2 , pp. II97-104
    • Lecun, Y.1    Huang, F.J.2    Bottou, L.3
  • 64
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Foundations Trends R Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Foundations Trends R Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 66
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. Int. Conf. Machine Learning, 2009, pp. 609-616.
    • (2009) Proc. Int. Conf. Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.