메뉴 건너뛰기




Volumn 1, Issue , 2006, Pages 459-512

Chapter 9 Approximate Nonlinear Forecasting Methods

Author keywords

approximation; artificial neural networks; forecast explanation; highly nonlinear methods; misspecification; model selection; nonlinear methods; prediction; QuickNet; ridgelets

Indexed keywords


EID: 67649359701     PISSN: 15740706     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S1574-0706(05)01009-8     Document Type: Review
Times cited : (69)

References (61)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the likelihood principle
    • Petrov B.N., and Csaki F. (Eds), Akademiai Kiado, Budapest
    • Akaike H. Information theory and an extension of the likelihood principle. In: Petrov B.N., and Csaki F. (Eds). Proceedings of the Second International Symposium of Information Theory (1973), Akademiai Kiado, Budapest
    • (1973) Proceedings of the Second International Symposium of Information Theory
    • Akaike, H.1
  • 3
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen D. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16 (1974) 125-127
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.1
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y., and Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57 (1995) 289-300
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0039012351 scopus 로고
    • A cross validatory method for dependent data
    • Burman P., Chow E., and Nolan D. A cross validatory method for dependent data. Biometrika 81 (1994) 351-358
    • (1994) Biometrika , vol.81 , pp. 351-358
    • Burman, P.1    Chow, E.2    Nolan, D.3
  • 6
    • 0000932315 scopus 로고
    • A consistent conditional moment test of functional form
    • Bierens H. A consistent conditional moment test of functional form. Econometrica 58 (1990) 1443-1458
    • (1990) Econometrica , vol.58 , pp. 1443-1458
    • Bierens, H.1
  • 7
    • 0004089243 scopus 로고    scopus 로고
    • Ridgelets: Theory and applications
    • Ph.D. Dissertation, Department of Statistics, Stanford University
    • Candes, E. (1998). "Ridgelets: Theory and applications". Ph.D. Dissertation, Department of Statistics, Stanford University
    • (1998)
    • Candes, E.1
  • 9
    • 4243320074 scopus 로고    scopus 로고
    • On the representation of mutilated Sobolev functions
    • Candes E. On the representation of mutilated Sobolev functions. SIAM Journal of Mathematical Analysis 33 (1999) 2495-2509
    • (1999) SIAM Journal of Mathematical Analysis , vol.33 , pp. 2495-2509
    • Candes, E.1
  • 10
    • 0242679765 scopus 로고    scopus 로고
    • Ridgelets: Estimating with ridge functions
    • Candes E. Ridgelets: Estimating with ridge functions. Annals of Statistics 33 (2003) 1561-1599
    • (2003) Annals of Statistics , vol.33 , pp. 1561-1599
    • Candes, E.1
  • 11
    • 67649357323 scopus 로고    scopus 로고
    • Chen, X. (2005). Large sample sieve estimation of semi-nonparametric models. C.V. Starr Center Working Paper, New York University
    • Chen, X. (2005). "Large sample sieve estimation of semi-nonparametric models". C.V. Starr Center Working Paper, New York University
  • 13
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven P., and Wahba G. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics 31 (1979) 377-403
    • (1979) Numerical Mathematics , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 16
    • 1242330927 scopus 로고    scopus 로고
    • Adaptive multivariate piecewise polynomial approximation
    • Dekel S., and Leviatan D. Adaptive multivariate piecewise polynomial approximation. SPIE Proceedings 5207 (2003) 125-133
    • (2003) SPIE Proceedings , vol.5207 , pp. 125-133
    • Dekel, S.1    Leviatan, D.2
  • 17
    • 85009724776 scopus 로고    scopus 로고
    • Nonlinear approximation
    • DeVore R. Nonlinear approximation. Acta Numerica 7 (1998) 51-150
    • (1998) Acta Numerica , vol.7 , pp. 51-150
    • DeVore, R.1
  • 19
    • 0001968889 scopus 로고
    • On the bias in flexible functional forms and an essentially unbiased form: The Fourier flexible form
    • Gallant A.R. On the bias in flexible functional forms and an essentially unbiased form: The Fourier flexible form. Journal of Econometrics 15 (1981) 211-245
    • (1981) Journal of Econometrics , vol.15 , pp. 211-245
    • Gallant, A.R.1
  • 23
    • 0000858149 scopus 로고    scopus 로고
    • On the role of the propensity score in efficient semiparametric estimation of average treatment effects
    • Hahn J. On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66 (1998) 315-331
    • (1998) Econometrica , vol.66 , pp. 315-331
    • Hahn, J.1
  • 26
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to right heart catheterization
    • Hirano K., and Imbens G. Estimation of causal effects using propensity score weighting: An application to right heart catheterization. Health Services & Outcomes Research 2 (2001) 259-278
    • (2001) Health Services & Outcomes Research , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.2
  • 27
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones L.K. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20 (1992) 608-613
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 28
    • 0030736446 scopus 로고    scopus 로고
    • The computational intractability of training sigmoid neural networks
    • Jones L.K. The computational intractability of training sigmoid neural networks. IEEE Transactions on Information Theory 43 (1997) 167-173
    • (1997) IEEE Transactions on Information Theory , vol.43 , pp. 167-173
    • Jones, L.K.1
  • 29
    • 33645021852 scopus 로고    scopus 로고
    • Estimation, inference, and specification testing for possibly misspecified quantile regressions
    • Fomby T., and Hill R.C. (Eds), Elsevier, New York
    • Kim T., and White H. Estimation, inference, and specification testing for possibly misspecified quantile regressions. In: Fomby T., and Hill R.C. (Eds). Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later (2003), Elsevier, New York 107-132
    • (2003) Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later , pp. 107-132
    • Kim, T.1    White, H.2
  • 30
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker R., and Basset G. Regression quantiles. Econometrica 46 (1978) 33-50
    • (1978) Econometrica , vol.46 , pp. 33-50
    • Koenker, R.1    Basset, G.2
  • 31
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • Kuan C.-M., and White H. Artificial neural networks: An econometric perspective. Econometric Reviews 13 (1994) 1-92
    • (1994) Econometric Reviews , vol.13 , pp. 1-92
    • Kuan, C.-M.1    White, H.2
  • 32
    • 23744439164 scopus 로고    scopus 로고
    • Generalizations of the familywise error rate
    • Lehmann E.L., and Romano J.P. Generalizations of the familywise error rate. Annals of Statistics 33 (2005) 1138-1154
    • (2005) Annals of Statistics , vol.33 , pp. 1138-1154
    • Lehmann, E.L.1    Romano, J.P.2
  • 34
    • 0041656193 scopus 로고    scopus 로고
    • Nonparametric estimation of distributions with categorical and continuous data
    • Li Q., and Racine J. Nonparametric estimation of distributions with categorical and continuous data. Journal of Multivariate Analysis 86 (2003) 266-292
    • (2003) Journal of Multivariate Analysis , vol.86 , pp. 266-292
    • Li, Q.1    Racine, J.2
  • 36
    • 0346307420 scopus 로고    scopus 로고
    • A flexible tool for model building: The RElevant Transformation of the Inputs Network Approach (RETINA)
    • Pérez-Amaral T., Gallo G.M., and White H. A flexible tool for model building: The RElevant Transformation of the Inputs Network Approach (RETINA). Oxford Bulletin of Economics and Statistics 65 (2003) 821-838
    • (2003) Oxford Bulletin of Economics and Statistics , vol.65 , pp. 821-838
    • Pérez-Amaral, T.1    Gallo, G.M.2    White, H.3
  • 37
    • 15744381394 scopus 로고    scopus 로고
    • A comparison of complementary automatic modeling methods: RETINA and PcGets
    • Pérez-Amaral T., Gallo G.M., and White H. A comparison of complementary automatic modeling methods: RETINA and PcGets. Econometric Theory 21 (2005) 262-277
    • (2005) Econometric Theory , vol.21 , pp. 262-277
    • Pérez-Amaral, T.1    Gallo, G.M.2    White, H.3
  • 38
    • 0003345901 scopus 로고
    • Remarques sur un resultat non publie de B. Maurey
    • Ecole Polytechnique, Centre de Mathematiques, Palaiseau
    • Pisier G. (1980). "Remarques sur un resultat non publie de B. Maurey". Seminaire d'Analyse Fonctionelle 1980-81, Ecole Polytechnique, Centre de Mathematiques, Palaiseau
    • (1980) Seminaire d'Analyse Fonctionelle 1980-81
    • Pisier, G.1
  • 39
    • 0001355838 scopus 로고
    • Radial basis functions for multivariate interpolation: A review
    • Mason J.C., and Cox M.G. (Eds), Oxford University Press, Oxford
    • Powell M. Radial basis functions for multivariate interpolation: A review. In: Mason J.C., and Cox M.G. (Eds). Algorithms for Approximation (1987), Oxford University Press, Oxford 143-167
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.1
  • 40
    • 0041195148 scopus 로고    scopus 로고
    • Feasible cross-validatory model selection for general stationary processes
    • Racine J. Feasible cross-validatory model selection for general stationary processes. Journal of Applied Econometrics 12 (1997) 169-179
    • (1997) Journal of Applied Econometrics , vol.12 , pp. 169-179
    • Racine, J.1
  • 41
    • 0347948988 scopus 로고    scopus 로고
    • A consistent cross-validatory method for dependent data: hv-block cross-validation
    • Racine J. A consistent cross-validatory method for dependent data: hv-block cross-validation. Journal of Econometrics 99 (2000) 39-61
    • (2000) Journal of Econometrics , vol.99 , pp. 39-61
    • Racine, J.1
  • 42
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica 14 (1978) 465-471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 43
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 45
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • Shao J. An asymptotic theory for linear model selection. Statistica Sinica 7 (1997) 221-264
    • (1997) Statistica Sinica , vol.7 , pp. 221-264
    • Shao, J.1
  • 46
    • 0032343771 scopus 로고    scopus 로고
    • Consistent specification testing with nuisance parameters present only under the alternative
    • Stinchcombe M., and White H. Consistent specification testing with nuisance parameters present only under the alternative. Econometric Theory 14 (1998) 295-325
    • (1998) Econometric Theory , vol.14 , pp. 295-325
    • Stinchcombe, M.1    White, H.2
  • 47
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B 36 (1974) 111-147
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 48
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone M. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of the Royal Statistical Society, Series B 39 (1976) 44-47
    • (1976) Journal of the Royal Statistical Society, Series B , vol.39 , pp. 44-47
    • Stone, M.1
  • 49
    • 0005865794 scopus 로고    scopus 로고
    • Data snooping, technical trading rule performance, and the bootstrap
    • Sullivan R., Timmermann A., and White H. Data snooping, technical trading rule performance, and the bootstrap. Journal of Finance 54 (1999) 1647-1692
    • (1999) Journal of Finance , vol.54 , pp. 1647-1692
    • Sullivan, R.1    Timmermann, A.2    White, H.3
  • 50
    • 21844518145 scopus 로고
    • A model selection approach to assessing the information in the term structure using linear models and artificial neural networks
    • Swanson N., and White H. A model selection approach to assessing the information in the term structure using linear models and artificial neural networks. Journal of Business and Economic Statistics 13 (1995) 265-276
    • (1995) Journal of Business and Economic Statistics , vol.13 , pp. 265-276
    • Swanson, N.1    White, H.2
  • 51
    • 67649306575 scopus 로고    scopus 로고
    • Forecasting economic variables with nonlinear models
    • Elliott G., Granger C.W.J., and Timmermann A. (Eds), Elsevier, Amsterdam Chapter 8 in this volume
    • Teräsvirta T. Forecasting economic variables with nonlinear models. In: Elliott G., Granger C.W.J., and Timmermann A. (Eds). Handbook of Economic Forecasting (2006), Elsevier, Amsterdam Chapter 8 in this volume
    • (2006) Handbook of Economic Forecasting
    • Teräsvirta, T.1
  • 54
    • 0032202061 scopus 로고    scopus 로고
    • On the infeasibility of training neural networks with small mean-squared error
    • Vu V.H. On the infeasibility of training neural networks with small mean-squared error. IEEE Transactions on Information Theory 44 (1998) 2892-2900
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 2892-2900
    • Vu, V.H.1
  • 56
    • 0002617598 scopus 로고
    • A completely automatic French curve: Fitting spline functions by cross-validation
    • Wahba G., and Wold S. A completely automatic French curve: Fitting spline functions by cross-validation. Communications in Statistics 4 (1975) 1-17
    • (1975) Communications in Statistics , vol.4 , pp. 1-17
    • Wahba, G.1    Wold, S.2
  • 58
    • 0019220709 scopus 로고
    • Using least squares to approximate unknown regression functions
    • White H. Using least squares to approximate unknown regression functions. International Economic Review 21 (1980) 149-170
    • (1980) International Economic Review , vol.21 , pp. 149-170
    • White, H.1
  • 59
    • 84950860747 scopus 로고
    • Consequences and detection of misspecified nonlinear regression models
    • White H. Consequences and detection of misspecified nonlinear regression models. Journal of the American Statistical Association 76 (1981) 419-433
    • (1981) Journal of the American Statistical Association , vol.76 , pp. 419-433
    • White, H.1
  • 61
    • 67649327557 scopus 로고    scopus 로고
    • Essays in multiple comparison testing
    • Ph.D. Dissertation, Department of Economics, University of California, San Diego, CA
    • Williams, E. (2003). "Essays in multiple comparison testing". Ph.D. Dissertation, Department of Economics, University of California, San Diego, CA
    • (2003)
    • Williams, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.