메뉴 건너뛰기




Volumn , Issue , 2011, Pages 8-15

Beyond simple features: A large-scale feature search approach to unconstrained face recognition

Author keywords

[No Author keywords available]

Indexed keywords

BLENDING TECHNIQUES; COMPUTER VISION ALGORITHMS; FEATURE REPRESENTATION; FEATURE SETS; LOW-LEVEL FEATURES; NEUROMORPHIC; PIXEL VALUES; STANDARD MACHINES; STATE-OF-THE-ART APPROACH; STATE-OF-THE-ART PERFORMANCE; TRAINING DATA;

EID: 79958697382     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FG.2011.5771385     Document Type: Conference Paper
Times cited : (182)

References (42)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
    • (2004) IJCV
    • Lowe, D.G.1
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR (2005)
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 5
    • 26444564954 scopus 로고    scopus 로고
    • Face Recognition with Local Binary Patterns
    • Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. ECCV (2004)
    • (2004) ECCV
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 6
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • Ahonen, T., Hadid, A., et al.: Face description with local binary patterns: Application to face recognition. PAMI (2006)
    • (2006) PAMI
    • Ahonen, T.1    Hadid, A.2
  • 8
    • 70450159884 scopus 로고    scopus 로고
    • Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
    • Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. PAMI (2002)
    • (2002) PAMI
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 9
    • 84905388890 scopus 로고    scopus 로고
    • Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods
    • Yang, M.: kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. FG (2002)
    • (2002) FG
    • Yang, M.1
  • 10
    • 33751582540 scopus 로고    scopus 로고
    • Multilinear image analysis for facial recognition
    • Vasilescu, M., Terzopoulos, D.: Multilinear image analysis for facial recognition. ICPR (2002)
    • (2002) ICPR
    • Vasilescu, M.1    Terzopoulos, D.2
  • 13
    • 34948860604 scopus 로고    scopus 로고
    • Face recognition using discriminatively trained orthogonal rank one tensor projections
    • Hua, G., Viola, P., Drucker, S.: Face recognition using discriminatively trained orthogonal rank one tensor projections. CVPR (2007)
    • (2007) CVPR
    • Hua, G.1    Viola, P.2    Drucker, S.3
  • 14
    • 77953190428 scopus 로고    scopus 로고
    • A robust elastic and partial matching metric for face recognition
    • Hua, G., Akbarzadeh, A.: A robust elastic and partial matching metric for face recognition. ICCV (2009)
    • (2009) ICCV
    • Hua, G.1    Akbarzadeh, A.2
  • 15
    • 77953178820 scopus 로고    scopus 로고
    • Is that you? Metric learning approaches for face identification
    • Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches for face identification. ICCV (2009)
    • (2009) ICCV
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 16
    • 70450207542 scopus 로고    scopus 로고
    • Implicit elastic matching with random projections for pose-variant face recognition
    • Wright, J., Hua, G.: Implicit elastic matching with random projections for pose-variant face recognition. CVPR (2009)
    • (2009) CVPR
    • Wright, J.1    Hua, G.2
  • 18
    • 79958745409 scopus 로고    scopus 로고
    • ORL Face Set Accessed 06/20/2010
    • ORL Face Set: http://www.cl.cam.ac.uk/research/dtg/ attarchive/ facedatabase.html (Accessed 06/20/2010)
  • 19
    • 79958694819 scopus 로고    scopus 로고
    • Yale Face Set Accessed 06/20/2010
    • Yale Face Set: http://cvc.yale.edu (Accessed 06/20/2010)
  • 20
    • 79958712570 scopus 로고    scopus 로고
    • CVL Face Set Accessed 06/20/2010
    • CVL Face Set: http://www.lrv.fri.uni-lj.si/facedb.html (Accessed 06/20/2010)
  • 21
    • 79958695928 scopus 로고    scopus 로고
    • AR Face Set Accessed 06/20/2010
    • AR Face Set: http://cobweb.ecn.purdue.edu/ aleix/ar.html (Accessed 06/20/2010)
  • 22
    • 0034290919 scopus 로고    scopus 로고
    • The FERET evaluation methodology for face-recognition algorithms
    • Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. PAMI (2000)
    • (2000) PAMI
    • Phillips, P.1    Moon, H.2    Rizvi, S.3    Rauss, P.4
  • 24
    • 79952501854 scopus 로고    scopus 로고
    • Establishing good benchmarks and baselines for face recognition
    • Pinto, N., DiCarlo, J.J., Cox, D.D.: Establishing Good Benchmarks and Baselines for Face Recognition. ECCV (2008)
    • (2008) ECCV
    • Pinto, N.1    Dicarlo, J.J.2    Cox, D.D.3
  • 25
    • 70450172604 scopus 로고    scopus 로고
    • How far can you get with a modern face recognition test set using only simple features?
    • Pinto, N., DiCarlo, J.J., Cox, D.D.: How far can you get with a modern face recognition test set using only simple features? CVPR (2009)
    • (2009) CVPR
    • Pinto, N.1    Dicarlo, J.J.2    Cox, D.D.3
  • 26
    • 84898923300 scopus 로고    scopus 로고
    • Multiple one-shots for utilizing class label information
    • Taigman, Y., Wolf, L., Hassner, T., Tel-Aviv, I.: Multiple one-shots for utilizing class label information. BMVC (2009)
    • (2009) BMVC
    • Taigman, Y.1    Wolf, L.2    Hassner, T.3    Tel-Aviv, I.4
  • 27
    • 79958695571 scopus 로고    scopus 로고
    • Similarity scores based on background samples
    • Wolf, L., Hassner, T., Taigman, Y.: Similarity Scores based on Background Samples. ACCV (2009)
    • (2009) ACCV
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 28
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and Simile Classifiers for Face Verification. ICCV (2009)
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 29
    • 77955988832 scopus 로고    scopus 로고
    • Face recognition with learningbased descriptor
    • Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learningbased descriptor. CVPR (2010)
    • (2010) CVPR
    • Cao, Z.1    Yin, Q.2    Tang, X.3    Sun, J.4
  • 30
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernetics (1980)
    • (1980) Biol Cybernetics
    • Fukushima, K.1
  • 32
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. IJCV (2008)
    • (2008) IJCV
    • Mutch, J.1    Lowe, D.G.2
  • 34
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? ICCV (2009)
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 35
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol (2009)
    • (2009) PLoS Comput Biol
    • Pinto, N.1    Doukhan, D.2    Dicarlo, J.J.3    Cox, D.D.4
  • 36
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. CVPR (2004)
    • (2004) CVPR
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 38
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. ICCV (2009)
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 39
    • 0026659955 scopus 로고
    • Cortical neurons: Isolation of contrast gain control
    • Geisler, W.S., Albrecht, D.G.: Cortical neurons: isolation of contrast gain control. Vision Research (1992)
    • (1992) Vision Research
    • Geisler, W.S.1    Albrecht, D.G.2
  • 42
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR (2006)
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.