메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages

Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast

Author keywords

Complex trait; Evolutionary engineering; Genome shuffling; Reverse engineering; Tolerance; Yeast

Indexed keywords

BIOCATALYSTS; BIOLOGY; FITS AND TOLERANCES; GENE EXPRESSION; REVERSE ENGINEERING; YEAST;

EID: 84927537696     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0241-z     Document Type: Article
Times cited : (22)

References (92)
  • 1
    • 84857061668 scopus 로고    scopus 로고
    • Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
    • 1:CAS:528:DC%2BC38XjsV2gur4%3D
    • Oud B, van Maris AJ, Daran JM, Pronk JT. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res. 2012;12:183-96.
    • (2012) FEMS Yeast Res , vol.12 , pp. 183-196
    • Oud, B.1    Van Maris, A.J.2    Daran, J.M.3    Pronk, J.T.4
  • 2
    • 53549085971 scopus 로고    scopus 로고
    • Rapid whole-genome mutational profiling using next-generation sequencing technologies
    • 1:CAS:528:DC%2BD1cXht1elu7zK
    • Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res. 2008;18:1638-42.
    • (2008) Genome Res , vol.18 , pp. 1638-1642
    • Smith, D.R.1    Quinlan, A.R.2    Peckham, H.E.3    Makowsky, K.4    Tao, W.5    Woolf, B.6
  • 3
    • 70349482673 scopus 로고    scopus 로고
    • Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing
    • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:16151-6.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 16151-16156
    • Le Crom, S.1    Schackwitz, W.2    Pennacchio, L.3    Magnuson, J.K.4    Culley, D.E.5    Collett, J.R.6
  • 4
    • 77955486655 scopus 로고    scopus 로고
    • Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing
    • 1:CAS:528:DC%2BC3cXhsFOnu7%2FI
    • Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, et al. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics. 2010;185:417-30.
    • (2010) Genetics , vol.185 , pp. 417-430
    • Sarin, S.1    Bertrand, V.2    Bigelow, H.3    Boyanov, A.4    Doitsidou, M.5    Poole, R.J.6
  • 5
    • 79951996636 scopus 로고    scopus 로고
    • Phenotype sequencing: Identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants
    • 1:CAS:528:DC%2BC3MXisl2hur0%3D
    • Harper MA, Chen Z, Toy T, Machado IM, Nelson SF, Liao JC, et al. Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. PLoS One. 2011;6:e16517.
    • (2011) PLoS One , vol.6 , pp. 16517
    • Harper, M.A.1    Chen, Z.2    Toy, T.3    Machado, I.M.4    Nelson, S.F.5    Liao, J.C.6
  • 6
    • 79956073707 scopus 로고    scopus 로고
    • Revealing the genetic structure of a trait by sequencing a population under selection
    • 1:CAS:528:DC%2BC3MXovVKkur0%3D
    • Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 2011;21:1131-8.
    • (2011) Genome Res , vol.21 , pp. 1131-1138
    • Parts, L.1    Cubillos, F.A.2    Warringer, J.3    Jain, K.4    Salinas, F.5    Bumpstead, S.J.6
  • 8
    • 79961088508 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor
    • 1:CAS:528:DC%2BC3MXhtVWlsb3P
    • Pinel D, D'Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJJ. Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol. 2011;77:4736-43.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 4736-4743
    • Pinel, D.1    D'Aoust, F.2    Del Cardayre, S.B.3    Bajwa, P.K.4    Lee, H.5    Martin, V.J.J.6
  • 10
    • 3543063259 scopus 로고    scopus 로고
    • Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723
    • 1:CAS:528:DC%2BD2cXjtlOhs78%3D
    • Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol. 2004;70:2391-7.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2391-2397
    • Dai, M.H.1    Copley, S.D.2
  • 11
    • 84899902128 scopus 로고    scopus 로고
    • Evolutionary engineering by genome shuffling
    • 1:CAS:528:DC%2BC2cXjsVKksLw%3D
    • Biot-Pelletier D, Martin VJJ. Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol. 2014;98(9):3877-87.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.9 , pp. 3877-3887
    • Biot-Pelletier, D.1    Martin, V.J.J.2
  • 13
    • 79954648688 scopus 로고    scopus 로고
    • Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
    • 1:CAS:528:DC%2BC3MXks1Wnt7k%3D
    • Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011;90:809-25.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 809-825
    • Liu, Z.L.1
  • 14
    • 76949102663 scopus 로고    scopus 로고
    • Lignocellulosic biomass conversion to ethanol by Saccharomyces
    • A. Vertes N. Qureshi H. Yukawa H. Blaschek (eds) John Wiley & Sons, Ltd West Sussex, U. K
    • Liu ZL, Blaschek HP. Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Vertes A, Qureshi N, Yukawa H, Blaschek H, editors. Biomass to biofuels: strategies for global industries. West Sussex, U. K: John Wiley & Sons, Ltd; 2010. p. 17-36.
    • (2010) Biomass to Biofuels: Strategies for Global Industries , pp. 17-36
    • Liu, Z.L.1    Blaschek, H.P.2
  • 15
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
    • 1:CAS:528:DC%2BD3cXjt1Kgtbk%3D
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Biores Technol. 2000;74:17-24.
    • (2000) Biores Technol , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 16
    • 84861535036 scopus 로고    scopus 로고
    • Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates
    • 1:CAS:528:DC%2BC3MXhs1ansbfP
    • Richardson TL, Harner NK, Bajwa PK, Trevors JT, Lee H. Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates. Acs Sym Ser. 2011;1067:171-202.
    • (2011) Acs Sym ser , vol.1067 , pp. 171-202
    • Richardson, T.L.1    Harner, N.K.2    Bajwa, P.K.3    Trevors, J.T.4    Lee, H.5
  • 17
    • 80455125978 scopus 로고    scopus 로고
    • 'Omics' technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production
    • 1:CAS:528:DC%2BC3MXhtl2rsrjJ
    • Pinel D, Gawand P, Mahadevan R, Martin VJJ. 'Omics' technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production. Biofuels. 2011;2:659-75.
    • (2011) Biofuels , vol.2 , pp. 659-675
    • Pinel, D.1    Gawand, P.2    Mahadevan, R.3    Martin, V.J.J.4
  • 18
    • 79961097525 scopus 로고    scopus 로고
    • Physiological responses to furfural and HMF and the link to other stress pathways
    • Gorsich SW, Slininger PJ, Liu ZL. Physiological responses to furfural and HMF and the link to other stress pathways. J Biotechnol. 2005;118:S91-1.
    • (2005) J Biotechnol , vol.118 , pp. 91-101
    • Gorsich, S.W.1    Slininger, P.J.2    Liu, Z.L.3
  • 19
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • 1:CAS:528:DC%2BD28XltVyqurs%3D
    • Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23:455-64.
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.M.2    Modig, T.3    Karhumaa, K.4    Hahn-Hägerdal, B.5    Gorwa-Grauslund, M.F.6
  • 20
    • 33646048327 scopus 로고    scopus 로고
    • Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
    • 1:CAS:528:DC%2BD28Xjslyksrk%3D
    • Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006;93:1196-206.
    • (2006) Biotechnol Bioeng , vol.93 , pp. 1196-1206
    • Keating, J.D.1    Panganiban, C.2    Mansfield, S.D.3
  • 21
    • 84886323402 scopus 로고    scopus 로고
    • Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for increased inhibitor tolerance to lignocellulosic substrate toxicity
    • R. Patnaik (eds) 1 John Wiley & Sons, Inc Hoboken, New Jersey
    • Pinel D, Martin VJJ. Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for increased inhibitor tolerance to lignocellulosic substrate toxicity. In: Patnaik R, editor. Engineering complex phenotypes in industrial strains. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2012. p. 233-50.
    • (2012) Engineering Complex Phenotypes in Industrial Strains , pp. 233-250
    • Pinel, D.1    Martin, V.J.J.2
  • 22
    • 0347601907 scopus 로고    scopus 로고
    • Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor
    • 1:CAS:528:DC%2BD3sXpvFyltrk%3D
    • Helle SS, Murray A, Lam J, Cameron DR, Duff SJ. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol. 2004;92:163-71.
    • (2004) Bioresour Technol , vol.92 , pp. 163-171
    • Helle, S.S.1    Murray, A.2    Lam, J.3    Cameron, D.R.4    Duff, S.J.5
  • 23
    • 17044443785 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates for ethanol production
    • 1:CAS:528:DyaK28XhvV2ntrs%3D
    • Olsson L, HahnHagerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Tech. 1996;18:312-31.
    • (1996) Enzyme Microb Tech , vol.18 , pp. 312-331
    • Olsson, L.1    Hahnhagerdal, B.2
  • 24
    • 0032192737 scopus 로고    scopus 로고
    • Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates
    • Parajó JC, Domíngues H, Domínguez JM. Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol. 1998;66:25-40.
    • (1998) Bioresour Technol , vol.66 , pp. 25-40
    • Parajó, J.C.1    Domíngues, H.2    Domínguez, J.M.3
  • 25
    • 84927532699 scopus 로고    scopus 로고
    • Supplementing spent sulfite liquor with a lignocellulosic hydrolysate to increase pentose/hexose co-fermentation efficiency and ethanol yield
    • Helle S, Duff S. Supplementing spent sulfite liquor with a lignocellulosic hydrolysate to increase pentose/hexose co-fermentation efficiency and ethanol yield. Final report-Natural Resources Canada-Tembec Industries; 2004. http://www.lifesciencesbc.ca/files/dufffinal-report.pdf.
    • (2004) Final Report-Natural Resources Canada-Tembec Industries
    • Helle, S.1    Duff, S.2
  • 26
    • 62549126083 scopus 로고    scopus 로고
    • Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing
    • 1:CAS:528:DC%2BD1MXivF2js7g%3D
    • Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A. 2009;106:3264-9.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 3264-3269
    • Yassour, M.1    Kaplan, T.2    Fraser, H.B.3    Levin, J.Z.4    Pfiffner, J.5    Adiconis, X.6
  • 27
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • 1:CAS:528:DC%2BD1cXmslWgtbY%3D
    • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320:1344-9.
    • (2008) Science , vol.320 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3    Shou, C.4    Raha, D.5    Gerstein, M.6
  • 28
    • 68149165614 scopus 로고    scopus 로고
    • Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
    • 1:CAS:528:DC%2BD1MXovVyns78%3D
    • Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073-81.
    • (2009) Nat Protoc , vol.4 , pp. 1073-1081
    • Kumar, P.1    Henikoff, S.2    Ng, P.C.3
  • 29
    • 0043122919 scopus 로고    scopus 로고
    • SIFT: Predicting amino acid changes that affect protein function
    • 1:CAS:528:DC%2BD3sXltVWjs7s%3D
    • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812-4.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3812-3814
    • Ng, P.C.1    Henikoff, S.2
  • 30
    • 84864430562 scopus 로고    scopus 로고
    • SIFT web server: Predicting effects of amino acid substitutions on proteins
    • 1:CAS:528:DC%2BC3sXjtVCqtLw%3D
    • Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452-7.
    • (2012) Nucleic Acids Res , vol.40 , pp. 452-457
    • Sim, N.L.1    Kumar, P.2    Hu, J.3    Henikoff, S.4    Schneider, G.5    Ng, P.C.6
  • 31
    • 0023336183 scopus 로고
    • The yeast ubiquitin genes: A family of natural gene fusions
    • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 1987;6:1429-39.
    • (1987) EMBO J , vol.6 , pp. 1429-1439
    • Ozkaynak, E.1    Finley, D.2    Solomon, M.J.3    Varshavsky, A.4
  • 32
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
    • 1:CAS:528:DC%2BD38XjvFemsLw%3D
    • Modig T, Lidén G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002;363:769-76.
    • (2002) Biochem J , vol.363 , pp. 769-776
    • Modig, T.1    Lidén, G.2    Taherzadeh, M.J.3
  • 33
    • 0346727127 scopus 로고    scopus 로고
    • Protein degradation and protection against misfolded or damaged proteins
    • 1:CAS:528:DC%2BD3sXpvVGmtbc%3D
    • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895-9.
    • (2003) Nature , vol.426 , pp. 895-899
    • Goldberg, A.L.1
  • 34
    • 0030457014 scopus 로고    scopus 로고
    • Ubiquitin-dependent protein degradation
    • 1:CAS:528:DyaK2sXht1yk
    • Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405-39.
    • (1996) Annu Rev Genet , vol.30 , pp. 405-439
    • Hochstrasser, M.1
  • 35
    • 77953715170 scopus 로고    scopus 로고
    • Regulatory mechanisms involved in the control of ubiquitin homeostasis
    • 1:CAS:528:DC%2BC3cXmslSlsrg%3D
    • Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147:793-8.
    • (2010) J Biochem , vol.147 , pp. 793-798
    • Kimura, Y.1    Tanaka, K.2
  • 36
    • 0031657807 scopus 로고    scopus 로고
    • The ubiquitin system
    • 1:CAS:528:DyaK1cXlsFOmsLc%3D
    • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425-79.
    • (1998) Annu Rev Biochem , vol.67 , pp. 425-479
    • Hershko, A.1    Ciechanover, A.2
  • 37
    • 33846471122 scopus 로고    scopus 로고
    • Proteasome-independent functions of ubiquitin in endocytosis and signaling
    • 1:CAS:528:DC%2BD2sXivFOisw%3D%3D
    • Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201-5.
    • (2007) Science , vol.315 , pp. 201-205
    • Mukhopadhyay, D.1    Riezman, H.2
  • 38
    • 0023666139 scopus 로고
    • The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
    • 1:CAS:528:DyaL1cXltVCqtg%3D%3D
    • Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987;48:1035-46.
    • (1987) Cell , vol.48 , pp. 1035-1046
    • Finley, D.1    Ozkaynak, E.2    Varshavsky, A.3
  • 39
    • 34249007126 scopus 로고    scopus 로고
    • A ubiquitin stress response induces altered proteasome composition
    • 1:CAS:528:DC%2BD2sXmtFGqu7k%3D
    • Hanna J, Meides A, Zhang DP, Finley D. A ubiquitin stress response induces altered proteasome composition. Cell. 2007;129:747-59.
    • (2007) Cell , vol.129 , pp. 747-759
    • Hanna, J.1    Meides, A.2    Zhang, D.P.3    Finley, D.4
  • 40
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • 1:CAS:528:DC%2BD38XnvFSlt70%3D
    • Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell. 2002;10:495-507.
    • (2002) Mol Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1    Hanna, J.2    Borodovsky, A.3    Crosas, B.4    Schmidt, M.5    Baker, R.T.6
  • 41
    • 0344629427 scopus 로고    scopus 로고
    • Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
    • 1:CAS:528:DC%2BD3sXpslGqtLc%3D
    • Hanna J, Leggett DS, Finley D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol Cell Biol. 2003;23:9251-61.
    • (2003) Mol Cell Biol , vol.23 , pp. 9251-9261
    • Hanna, J.1    Leggett, D.S.2    Finley, D.3
  • 42
    • 0347993105 scopus 로고    scopus 로고
    • Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool
    • 1:CAS:528:DC%2BD3sXpvFCqtLg%3D
    • Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J Biol Chem. 2003;278:52102-15.
    • (2003) J Biol Chem , vol.278 , pp. 52102-52115
    • Chernova, T.A.1    Allen, K.D.2    Wesoloski, L.M.3    Shanks, J.R.4    Chernoff, Y.O.5    Wilkinson, K.D.6
  • 43
    • 83155191055 scopus 로고    scopus 로고
    • Multicopy suppression screening of Saccharomyces cerevisiae identifies the ubiquitination machinery as a main target for improving growth at low temperatures
    • Hernández-López MJ, Garcia-Marqués S, Randez-Gil F, Prieto JA. Multicopy suppression screening of Saccharomyces cerevisiae identifies the ubiquitination machinery as a main target for improving growth at low temperatures. Appl Environ Microbiol. 2011;77:7517-25.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 7517-7525
    • Hernández-López, M.J.1    Garcia-Marqués, S.2    Randez-Gil, F.3    Prieto, J.A.4
  • 44
    • 0028277963 scopus 로고
    • The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants
    • Kolling R, Hollenberg CP. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 1994;13:3261-71.
    • (1994) EMBO J , vol.13 , pp. 3261-3271
    • Kolling, R.1    Hollenberg, C.P.2
  • 45
    • 0028971506 scopus 로고
    • NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase
    • 1:CAS:528:DyaK2MXptlersLY%3D
    • Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, Andre B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol. 1995;18:77-87.
    • (1995) Mol Microbiol , vol.18 , pp. 77-87
    • Hein, C.1    Springael, J.Y.2    Volland, C.3    Haguenauer-Tsapis, R.4    Andre, B.5
  • 46
    • 0030054178 scopus 로고    scopus 로고
    • Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis
    • 1:CAS:528:DyaK28Xnt1egtg%3D%3D
    • Hicke L, Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell. 1996;84:277-87.
    • (1996) Cell , vol.84 , pp. 277-287
    • Hicke, L.1    Riezman, H.2
  • 47
    • 55549102963 scopus 로고    scopus 로고
    • Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface
    • 1:CAS:528:DC%2BD1cXhsVCls7vI
    • Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell. 2008;135:714-25.
    • (2008) Cell , vol.135 , pp. 714-725
    • Lin, C.H.1    Macgurn, J.A.2    Chu, T.3    Stefan, C.J.4    Emr, S.D.5
  • 48
    • 76749107562 scopus 로고    scopus 로고
    • Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local
    • Goh WS, Orlov Y, Li J, Clarke ND. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol. 2010;6:e1000649.
    • (2010) PLoS Comput Biol , vol.6 , pp. 1000649
    • Goh, W.S.1    Orlov, Y.2    Li, J.3    Clarke, N.D.4
  • 50
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD38XotFSntL0%3D
    • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799-804.
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1    Rinaldi, N.J.2    Robert, F.3    Odom, D.T.4    Bar-Joseph, Z.5    Gerber, G.K.6
  • 51
    • 33646748283 scopus 로고    scopus 로고
    • A systems approach to mapping DNA damage response pathways
    • 1:CAS:528:DC%2BD28Xks1Wqurw%3D
    • Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, et al. A systems approach to mapping DNA damage response pathways. Science. 2006;312:1054-9.
    • (2006) Science , vol.312 , pp. 1054-1059
    • Workman, C.T.1    Mak, H.C.2    McCuine, S.3    Tagne, J.B.4    Agarwal, M.5    Ozier, O.6
  • 52
    • 63849315606 scopus 로고    scopus 로고
    • High-resolution DNA-binding specificity analysis of yeast transcription factors
    • 1:CAS:528:DC%2BD1MXksVKns70%3D
    • Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, et al. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 2009;19:556-66.
    • (2009) Genome Res , vol.19 , pp. 556-566
    • Zhu, C.1    Byers, K.J.2    McCord, R.P.3    Shi, Z.4    Berger, M.F.5    Newburger, D.E.6
  • 53
    • 27744587276 scopus 로고    scopus 로고
    • Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2MXht1Cgur7O
    • Vyas VK, Berkey CD, Miyao T, Carlson M. Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell. 2005;4:1882-91.
    • (2005) Eukaryot Cell , vol.4 , pp. 1882-1891
    • Vyas, V.K.1    Berkey, C.D.2    Miyao, T.3    Carlson, M.4
  • 54
    • 0036265376 scopus 로고    scopus 로고
    • Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
    • 1:CAS:528:DC%2BD38XktlSmtbo%3D
    • Kuchin S, Vyas VK, Carlson M. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002;22:3994-4000.
    • (2002) Mol Cell Biol , vol.22 , pp. 3994-4000
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 55
    • 0037144584 scopus 로고    scopus 로고
    • Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes
    • 1:CAS:528:DC%2BD38Xnt1Wlt74%3D
    • Mayordomo I, Estruch F, Sanz P. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem. 2002;277:35650-6.
    • (2002) J Biol Chem , vol.277 , pp. 35650-35656
    • Mayordomo, I.1    Estruch, F.2    Sanz, P.3
  • 56
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • 1:CAS:528:DC%2BC3cXhtlyqur%2FO
    • Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587-601.
    • (2010) OMICS , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sá-Correia, I.3
  • 57
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • 1:CAS:528:DC%2BD2MXhtVKis7vO
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sá-Correia, I.5
  • 58
    • 0142153893 scopus 로고    scopus 로고
    • Ammonia assimilation by Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3sXos1Gkt7c%3D
    • Magasanik B. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell. 2003;2:827-9.
    • (2003) Eukaryot Cell , vol.2 , pp. 827-829
    • Magasanik, B.1
  • 59
    • 84865434614 scopus 로고    scopus 로고
    • Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
    • 1:CAS:528:DC%2BC38Xht1Olt7rF
    • Ding MZ, Wang X, Liu W, Cheng JS, Yang Y, Yuan YJ. Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One. 2012;7:e43474.
    • (2012) PLoS One , vol.7 , pp. 43474
    • Ding, M.Z.1    Wang, X.2    Liu, W.3    Cheng, J.S.4    Yang, Y.5    Yuan, Y.J.6
  • 60
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sá-Correia, I.4
  • 61
  • 63
    • 4644278673 scopus 로고    scopus 로고
    • Hsp70 and Hsp90-a relay team for protein folding
    • 1:CAS:528:DC%2BD2cXotFWqtrg%3D
    • Wegele H, Müller L, Buchner J. Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004;151:1-44.
    • (2004) Rev Physiol Biochem Pharmacol , vol.151 , pp. 1-44
    • Wegele, H.1    Müller, L.2    Buchner, J.3
  • 64
    • 84862550502 scopus 로고    scopus 로고
    • Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system
    • 1:CAS:528:DC%2BC38XhtV2nt7vE
    • Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev. 2012;76:115-58.
    • (2012) Microbiol Mol Biol Rev , vol.76 , pp. 115-158
    • Verghese, J.1    Abrams, J.2    Wang, Y.3    Morano, K.A.4
  • 65
    • 0037297381 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]
    • Jones GW, Masison DC. Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics. 2003;163:495-506.
    • (2003) Genetics , vol.163 , pp. 495-506
    • Jones, G.W.1    Masison, D.C.2
  • 66
    • 34247899009 scopus 로고    scopus 로고
    • Importance of the Hsp70 ATPase domain in yeast prion propagation
    • 1:CAS:528:DC%2BD2sXkt1Wgsbg%3D
    • Loovers HM, Guinan E, Jones GW. Importance of the Hsp70 ATPase domain in yeast prion propagation. Genetics. 2007;175:621-30.
    • (2007) Genetics , vol.175 , pp. 621-630
    • Loovers, H.M.1    Guinan, E.2    Jones, G.W.3
  • 67
    • 0023414737 scopus 로고
    • The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains
    • Duncan K, Edwards RM, Coggins JR. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem J. 1987;246:375-86.
    • (1987) Biochem J , vol.246 , pp. 375-386
    • Duncan, K.1    Edwards, R.M.2    Coggins, J.R.3
  • 68
    • 0041767568 scopus 로고    scopus 로고
    • Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
    • 1:CAS:528:DC%2BD3sXmt1SktrY%3D
    • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem. 2003;270:3189-95.
    • (2003) Eur J Biochem , vol.270 , pp. 3189-3195
    • Bauer, B.E.1    Rossington, D.2    Mollapour, M.3    Mamnun, Y.4    Kuchler, K.5    Piper, P.W.6
  • 69
    • 58149337066 scopus 로고    scopus 로고
    • Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1MXhtlGitb0%3D
    • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. Fems Yeast Research. 2009;9:32-44.
    • (2009) Fems Yeast Research , vol.9 , pp. 32-44
    • Yoshikawa, K.1    Tanaka, T.2    Furusawa, C.3    Nagahisa, K.4    Hirasawa, T.5    Shimizu, H.6
  • 70
    • 0032495560 scopus 로고    scopus 로고
    • Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae
    • 1:CAS:528:DyaK1cXhsFarsg%3D%3D
    • Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS. Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta. 1998;1379:118-28.
    • (1998) Biochim Biophys Acta , vol.1379 , pp. 118-128
    • Stambuk, B.U.1    Panek, A.D.2    Crowe, J.H.3    Crowe, L.M.4    De Araujo, P.S.5
  • 71
    • 2442665707 scopus 로고    scopus 로고
    • Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD2cXktlCns7o%3D
    • Jules M, Guillou V, Francois J, Parrou JL. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2004;70:2771-8.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2771-2778
    • Jules, M.1    Guillou, V.2    Francois, J.3    Parrou, J.L.4
  • 72
    • 84864319268 scopus 로고    scopus 로고
    • Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1
    • 1:CAS:528:DC%2BC38XnsFGqsbg%3D
    • Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, et al. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics. 2012;287:485-94.
    • (2012) Mol Genet Genomics , vol.287 , pp. 485-494
    • Babrzadeh, F.1    Jalili, R.2    Wang, C.3    Shokralla, S.4    Pierce, S.5    Robinson-Mosher, A.6
  • 74
    • 25444432042 scopus 로고    scopus 로고
    • Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures
    • Dunn B, Levine RP, Sherlock G. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics. 2005;6:53.
    • (2005) BMC Genomics , vol.6 , pp. 53
    • Dunn, B.1    Levine, R.P.2    Sherlock, G.3
  • 75
    • 84884791723 scopus 로고    scopus 로고
    • Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
    • Ask M, Mapelli V, Hock H, Olsson L, Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact. 2013;12:87.
    • (2013) Microb Cell Fact , vol.12 , pp. 87
    • Ask, M.1    Mapelli, V.2    Hock, H.3    Olsson, L.4    Bettiga, M.5
  • 76
    • 0031034766 scopus 로고    scopus 로고
    • Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide
    • 1:CAS:528:DyaK2sXpsVCmuw%3D%3D
    • Stephen DW, Jamieson DJ. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol. 1997;23:203-10.
    • (1997) Mol Microbiol , vol.23 , pp. 203-210
    • Stephen, D.W.1    Jamieson, D.J.2
  • 77
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
    • 1:CAS:528:DC%2BC38Xpt1ajtLY%3D
    • Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact. 2012;11:36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.F.1    Van Den Broek, M.2    Datema, E.3    De Kok, S.4    Bosman, L.5    Luttik, M.A.6
  • 78
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
    • (2009) Genome Biol , vol.10 , pp. 25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 79
    • 55549097836 scopus 로고    scopus 로고
    • Mapping short DNA sequencing reads and calling variants using mapping quality scores
    • 1:CAS:528:DC%2BD1cXhtlKhsrrN
    • Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18:1851-8.
    • (2008) Genome Res , vol.18 , pp. 1851-1858
    • Li, H.1    Ruan, J.2    Durbin, R.3
  • 81
    • 84855219212 scopus 로고    scopus 로고
    • Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes
    • 1:CAS:528:DC%2BC38Xmt1eitb0%3D
    • Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics. 2012;13:1.
    • (2012) BMC Genomics , vol.13 , pp. 1
    • Oyola, S.O.1    Otto, T.D.2    Gu, Y.3    Maslen, G.4    Manske, M.5    Campino, S.6
  • 82
    • 64849083125 scopus 로고    scopus 로고
    • CNV-seq, a new method to detect copy number variation using high-throughput sequencing
    • Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. Bmc Bioinformatics. 2009;10:80.
    • (2009) Bmc Bioinformatics , vol.10 , pp. 80
    • Xie, C.1    Tammi, M.T.2
  • 84
    • 0043009767 scopus 로고    scopus 로고
    • Differential expression in SAGE: Accounting for normal between-library variation
    • 1:CAS:528:DC%2BD3sXntlKmsrs%3D
    • Baggerly KA, Deng L, Morris JS, Aldaz CM. Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics. 2003;19:1477-83.
    • (2003) Bioinformatics , vol.19 , pp. 1477-1483
    • Baggerly, K.A.1    Deng, L.2    Morris, J.S.3    Aldaz, C.M.4
  • 85
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • 1:CAS:528:DC%2BD1cXhsFCkurnI
    • da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.
    • (2009) Nat Protoc , vol.4 , pp. 44-57
    • Da Huang, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 86
    • 80054761009 scopus 로고    scopus 로고
    • Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map
    • 1:CAS:528:DC%2BC38XhvVClsb3I
    • Merico D, Isserlin R, Bader GD. Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. Methods Mol Biol. 2011;781:257-77.
    • (2011) Methods Mol Biol , vol.781 , pp. 257-277
    • Merico, D.1    Isserlin, R.2    Bader, G.D.3
  • 87
    • 78649775562 scopus 로고    scopus 로고
    • Enrichment map: A network-based method for gene-set enrichment visualization and interpretation
    • Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5:e13984.
    • (2010) PLoS One , vol.5 , pp. 13984
    • Merico, D.1    Isserlin, R.2    Stueker, O.3    Emili, A.4    Bader, G.D.5
  • 89
    • 78651272522 scopus 로고    scopus 로고
    • YEASTRACT: Providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface
    • 1:CAS:528:DC%2BC3sXivF2muro%3D
    • Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenco AB, dos Santos SC, et al. YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res. 2011;39:D136-40.
    • (2011) Nucleic Acids Res , vol.39 , pp. 136-140
    • Abdulrehman, D.1    Monteiro, P.T.2    Teixeira, M.C.3    Mira, N.P.4    Lourenco, A.B.5    Dos Santos, S.C.6
  • 90
    • 38549135468 scopus 로고    scopus 로고
    • YEASTRACT-DISCOVERER: New tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXhtVSrt78%3D
    • Monteiro PT, Mendes ND, Teixeira MC, d'Orey S, Tenreiro S, Mira NP, et al. YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2008;36:D132-6.
    • (2008) Nucleic Acids Res , vol.36 , pp. 132-136
    • Monteiro, P.T.1    Mendes, N.D.2    Teixeira, M.C.3    D'Orey, S.4    Tenreiro, S.5    Mira, N.P.6
  • 91
    • 33644873683 scopus 로고    scopus 로고
    • The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD28XisFOhtQ%3D%3D
    • Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2006;34:D446-51.
    • (2006) Nucleic Acids Res , vol.34 , pp. 446-451
    • Teixeira, M.C.1    Monteiro, P.2    Jain, P.3    Tenreiro, S.4    Fernandes, A.R.5    Mira, N.P.6
  • 92
    • 0023020664 scopus 로고
    • Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region
    • Russell DW, Jensen R, Zoller MJ, Burke J, Errede B, Smith M, et al. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol Cell Biol. 1986;6:4281-94.
    • (1986) Mol Cell Biol , vol.6 , pp. 4281-4294
    • Russell, D.W.1    Jensen, R.2    Zoller, M.J.3    Burke, J.4    Errede, B.5    Smith, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.