-
1
-
-
84857061668
-
Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
-
1:CAS:528:DC%2BC38XjsV2gur4%3D
-
Oud B, van Maris AJ, Daran JM, Pronk JT. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res. 2012;12:183-96.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 183-196
-
-
Oud, B.1
Van Maris, A.J.2
Daran, J.M.3
Pronk, J.T.4
-
2
-
-
53549085971
-
Rapid whole-genome mutational profiling using next-generation sequencing technologies
-
1:CAS:528:DC%2BD1cXht1elu7zK
-
Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res. 2008;18:1638-42.
-
(2008)
Genome Res
, vol.18
, pp. 1638-1642
-
-
Smith, D.R.1
Quinlan, A.R.2
Peckham, H.E.3
Makowsky, K.4
Tao, W.5
Woolf, B.6
-
3
-
-
70349482673
-
Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing
-
Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:16151-6.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 16151-16156
-
-
Le Crom, S.1
Schackwitz, W.2
Pennacchio, L.3
Magnuson, J.K.4
Culley, D.E.5
Collett, J.R.6
-
4
-
-
77955486655
-
Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing
-
1:CAS:528:DC%2BC3cXhsFOnu7%2FI
-
Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, et al. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics. 2010;185:417-30.
-
(2010)
Genetics
, vol.185
, pp. 417-430
-
-
Sarin, S.1
Bertrand, V.2
Bigelow, H.3
Boyanov, A.4
Doitsidou, M.5
Poole, R.J.6
-
5
-
-
79951996636
-
Phenotype sequencing: Identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants
-
1:CAS:528:DC%2BC3MXisl2hur0%3D
-
Harper MA, Chen Z, Toy T, Machado IM, Nelson SF, Liao JC, et al. Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. PLoS One. 2011;6:e16517.
-
(2011)
PLoS One
, vol.6
, pp. 16517
-
-
Harper, M.A.1
Chen, Z.2
Toy, T.3
Machado, I.M.4
Nelson, S.F.5
Liao, J.C.6
-
6
-
-
79956073707
-
Revealing the genetic structure of a trait by sequencing a population under selection
-
1:CAS:528:DC%2BC3MXovVKkur0%3D
-
Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 2011;21:1131-8.
-
(2011)
Genome Res
, vol.21
, pp. 1131-1138
-
-
Parts, L.1
Cubillos, F.A.2
Warringer, J.3
Jain, K.4
Salinas, F.5
Bumpstead, S.J.6
-
7
-
-
0037034007
-
Genome shuffling leads to rapid phenotypic improvement in bacteria
-
1:CAS:528:DC%2BD38XhsVCjsbk%3D
-
Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002;415:644-6.
-
(2002)
Nature
, vol.415
, pp. 644-646
-
-
Zhang, Y.X.1
Perry, K.2
Vinci, V.A.3
Powell, K.4
Stemmer, W.P.C.5
Del Cardayre, S.B.6
-
8
-
-
79961088508
-
Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor
-
1:CAS:528:DC%2BC3MXhtVWlsb3P
-
Pinel D, D'Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJJ. Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol. 2011;77:4736-43.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 4736-4743
-
-
Pinel, D.1
D'Aoust, F.2
Del Cardayre, S.B.3
Bajwa, P.K.4
Lee, H.5
Martin, V.J.J.6
-
9
-
-
0035989644
-
Genome shuffling of Lactobacillus for improved acid tolerance
-
1:CAS:528:DC%2BD38XkvVGmu7Y%3D
-
Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol. 2002;20:707-12.
-
(2002)
Nat Biotechnol
, vol.20
, pp. 707-712
-
-
Patnaik, R.1
Louie, S.2
Gavrilovic, V.3
Perry, K.4
Stemmer, W.P.C.5
Ryan, C.M.6
-
10
-
-
3543063259
-
Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723
-
1:CAS:528:DC%2BD2cXjtlOhs78%3D
-
Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol. 2004;70:2391-7.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 2391-2397
-
-
Dai, M.H.1
Copley, S.D.2
-
11
-
-
84899902128
-
Evolutionary engineering by genome shuffling
-
1:CAS:528:DC%2BC2cXjsVKksLw%3D
-
Biot-Pelletier D, Martin VJJ. Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol. 2014;98(9):3877-87.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, Issue.9
, pp. 3877-3887
-
-
Biot-Pelletier, D.1
Martin, V.J.J.2
-
12
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD2sXkvFCjtbo%3D
-
Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82:340-9.
-
(2007)
J Chem Technol Biotechnol
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hägerdal, B.4
Lidén, G.5
Gorwa-Grauslund, M.F.6
-
13
-
-
79954648688
-
Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
-
1:CAS:528:DC%2BC3MXks1Wnt7k%3D
-
Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011;90:809-25.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 809-825
-
-
Liu, Z.L.1
-
14
-
-
76949102663
-
Lignocellulosic biomass conversion to ethanol by Saccharomyces
-
A. Vertes N. Qureshi H. Yukawa H. Blaschek (eds) John Wiley & Sons, Ltd West Sussex, U. K
-
Liu ZL, Blaschek HP. Lignocellulosic biomass conversion to ethanol by Saccharomyces. In: Vertes A, Qureshi N, Yukawa H, Blaschek H, editors. Biomass to biofuels: strategies for global industries. West Sussex, U. K: John Wiley & Sons, Ltd; 2010. p. 17-36.
-
(2010)
Biomass to Biofuels: Strategies for Global Industries
, pp. 17-36
-
-
Liu, Z.L.1
Blaschek, H.P.2
-
15
-
-
0343183325
-
Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
-
1:CAS:528:DC%2BD3cXjt1Kgtbk%3D
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Biores Technol. 2000;74:17-24.
-
(2000)
Biores Technol
, vol.74
, pp. 17-24
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
16
-
-
84861535036
-
Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates
-
1:CAS:528:DC%2BC3MXhs1ansbfP
-
Richardson TL, Harner NK, Bajwa PK, Trevors JT, Lee H. Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates. Acs Sym Ser. 2011;1067:171-202.
-
(2011)
Acs Sym ser
, vol.1067
, pp. 171-202
-
-
Richardson, T.L.1
Harner, N.K.2
Bajwa, P.K.3
Trevors, J.T.4
Lee, H.5
-
17
-
-
80455125978
-
'Omics' technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production
-
1:CAS:528:DC%2BC3MXhtl2rsrjJ
-
Pinel D, Gawand P, Mahadevan R, Martin VJJ. 'Omics' technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production. Biofuels. 2011;2:659-75.
-
(2011)
Biofuels
, vol.2
, pp. 659-675
-
-
Pinel, D.1
Gawand, P.2
Mahadevan, R.3
Martin, V.J.J.4
-
18
-
-
79961097525
-
Physiological responses to furfural and HMF and the link to other stress pathways
-
Gorsich SW, Slininger PJ, Liu ZL. Physiological responses to furfural and HMF and the link to other stress pathways. J Biotechnol. 2005;118:S91-1.
-
(2005)
J Biotechnol
, vol.118
, pp. 91-101
-
-
Gorsich, S.W.1
Slininger, P.J.2
Liu, Z.L.3
-
19
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
1:CAS:528:DC%2BD28XltVyqurs%3D
-
Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23:455-64.
-
(2006)
Yeast
, vol.23
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.M.2
Modig, T.3
Karhumaa, K.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
20
-
-
33646048327
-
Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
-
1:CAS:528:DC%2BD28Xjslyksrk%3D
-
Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006;93:1196-206.
-
(2006)
Biotechnol Bioeng
, vol.93
, pp. 1196-1206
-
-
Keating, J.D.1
Panganiban, C.2
Mansfield, S.D.3
-
21
-
-
84886323402
-
Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for increased inhibitor tolerance to lignocellulosic substrate toxicity
-
R. Patnaik (eds) 1 John Wiley & Sons, Inc Hoboken, New Jersey
-
Pinel D, Martin VJJ. Meiotic recombination-based genome shuffling of Saccharomyces cerevisiae and Schefferomyces stiptis for increased inhibitor tolerance to lignocellulosic substrate toxicity. In: Patnaik R, editor. Engineering complex phenotypes in industrial strains. 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc; 2012. p. 233-50.
-
(2012)
Engineering Complex Phenotypes in Industrial Strains
, pp. 233-250
-
-
Pinel, D.1
Martin, V.J.J.2
-
22
-
-
0347601907
-
Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor
-
1:CAS:528:DC%2BD3sXpvFyltrk%3D
-
Helle SS, Murray A, Lam J, Cameron DR, Duff SJ. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol. 2004;92:163-71.
-
(2004)
Bioresour Technol
, vol.92
, pp. 163-171
-
-
Helle, S.S.1
Murray, A.2
Lam, J.3
Cameron, D.R.4
Duff, S.J.5
-
23
-
-
17044443785
-
Fermentation of lignocellulosic hydrolysates for ethanol production
-
1:CAS:528:DyaK28XhvV2ntrs%3D
-
Olsson L, HahnHagerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Tech. 1996;18:312-31.
-
(1996)
Enzyme Microb Tech
, vol.18
, pp. 312-331
-
-
Olsson, L.1
Hahnhagerdal, B.2
-
24
-
-
0032192737
-
Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates
-
Parajó JC, Domíngues H, Domínguez JM. Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol. 1998;66:25-40.
-
(1998)
Bioresour Technol
, vol.66
, pp. 25-40
-
-
Parajó, J.C.1
Domíngues, H.2
Domínguez, J.M.3
-
25
-
-
84927532699
-
Supplementing spent sulfite liquor with a lignocellulosic hydrolysate to increase pentose/hexose co-fermentation efficiency and ethanol yield
-
Helle S, Duff S. Supplementing spent sulfite liquor with a lignocellulosic hydrolysate to increase pentose/hexose co-fermentation efficiency and ethanol yield. Final report-Natural Resources Canada-Tembec Industries; 2004. http://www.lifesciencesbc.ca/files/dufffinal-report.pdf.
-
(2004)
Final Report-Natural Resources Canada-Tembec Industries
-
-
Helle, S.1
Duff, S.2
-
26
-
-
62549126083
-
Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing
-
1:CAS:528:DC%2BD1MXivF2js7g%3D
-
Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, Adiconis X, et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A. 2009;106:3264-9.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3264-3269
-
-
Yassour, M.1
Kaplan, T.2
Fraser, H.B.3
Levin, J.Z.4
Pfiffner, J.5
Adiconis, X.6
-
27
-
-
45549088326
-
The transcriptional landscape of the yeast genome defined by RNA sequencing
-
1:CAS:528:DC%2BD1cXmslWgtbY%3D
-
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320:1344-9.
-
(2008)
Science
, vol.320
, pp. 1344-1349
-
-
Nagalakshmi, U.1
Wang, Z.2
Waern, K.3
Shou, C.4
Raha, D.5
Gerstein, M.6
-
28
-
-
68149165614
-
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm
-
1:CAS:528:DC%2BD1MXovVyns78%3D
-
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073-81.
-
(2009)
Nat Protoc
, vol.4
, pp. 1073-1081
-
-
Kumar, P.1
Henikoff, S.2
Ng, P.C.3
-
29
-
-
0043122919
-
SIFT: Predicting amino acid changes that affect protein function
-
1:CAS:528:DC%2BD3sXltVWjs7s%3D
-
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812-4.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3812-3814
-
-
Ng, P.C.1
Henikoff, S.2
-
30
-
-
84864430562
-
SIFT web server: Predicting effects of amino acid substitutions on proteins
-
1:CAS:528:DC%2BC3sXjtVCqtLw%3D
-
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452-7.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 452-457
-
-
Sim, N.L.1
Kumar, P.2
Hu, J.3
Henikoff, S.4
Schneider, G.5
Ng, P.C.6
-
31
-
-
0023336183
-
The yeast ubiquitin genes: A family of natural gene fusions
-
Ozkaynak E, Finley D, Solomon MJ, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 1987;6:1429-39.
-
(1987)
EMBO J
, vol.6
, pp. 1429-1439
-
-
Ozkaynak, E.1
Finley, D.2
Solomon, M.J.3
Varshavsky, A.4
-
32
-
-
0036566476
-
Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
-
1:CAS:528:DC%2BD38XjvFemsLw%3D
-
Modig T, Lidén G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002;363:769-76.
-
(2002)
Biochem J
, vol.363
, pp. 769-776
-
-
Modig, T.1
Lidén, G.2
Taherzadeh, M.J.3
-
33
-
-
0346727127
-
Protein degradation and protection against misfolded or damaged proteins
-
1:CAS:528:DC%2BD3sXpvVGmtbc%3D
-
Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895-9.
-
(2003)
Nature
, vol.426
, pp. 895-899
-
-
Goldberg, A.L.1
-
34
-
-
0030457014
-
Ubiquitin-dependent protein degradation
-
1:CAS:528:DyaK2sXht1yk
-
Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405-39.
-
(1996)
Annu Rev Genet
, vol.30
, pp. 405-439
-
-
Hochstrasser, M.1
-
35
-
-
77953715170
-
Regulatory mechanisms involved in the control of ubiquitin homeostasis
-
1:CAS:528:DC%2BC3cXmslSlsrg%3D
-
Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147:793-8.
-
(2010)
J Biochem
, vol.147
, pp. 793-798
-
-
Kimura, Y.1
Tanaka, K.2
-
37
-
-
33846471122
-
Proteasome-independent functions of ubiquitin in endocytosis and signaling
-
1:CAS:528:DC%2BD2sXivFOisw%3D%3D
-
Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201-5.
-
(2007)
Science
, vol.315
, pp. 201-205
-
-
Mukhopadhyay, D.1
Riezman, H.2
-
38
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
1:CAS:528:DyaL1cXltVCqtg%3D%3D
-
Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987;48:1035-46.
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
39
-
-
34249007126
-
A ubiquitin stress response induces altered proteasome composition
-
1:CAS:528:DC%2BD2sXmtFGqu7k%3D
-
Hanna J, Meides A, Zhang DP, Finley D. A ubiquitin stress response induces altered proteasome composition. Cell. 2007;129:747-59.
-
(2007)
Cell
, vol.129
, pp. 747-759
-
-
Hanna, J.1
Meides, A.2
Zhang, D.P.3
Finley, D.4
-
40
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
1:CAS:528:DC%2BD38XnvFSlt70%3D
-
Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell. 2002;10:495-507.
-
(2002)
Mol Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
Crosas, B.4
Schmidt, M.5
Baker, R.T.6
-
41
-
-
0344629427
-
Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
-
1:CAS:528:DC%2BD3sXpslGqtLc%3D
-
Hanna J, Leggett DS, Finley D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol Cell Biol. 2003;23:9251-61.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 9251-9261
-
-
Hanna, J.1
Leggett, D.S.2
Finley, D.3
-
42
-
-
0347993105
-
Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool
-
1:CAS:528:DC%2BD3sXpvFCqtLg%3D
-
Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J Biol Chem. 2003;278:52102-15.
-
(2003)
J Biol Chem
, vol.278
, pp. 52102-52115
-
-
Chernova, T.A.1
Allen, K.D.2
Wesoloski, L.M.3
Shanks, J.R.4
Chernoff, Y.O.5
Wilkinson, K.D.6
-
43
-
-
83155191055
-
Multicopy suppression screening of Saccharomyces cerevisiae identifies the ubiquitination machinery as a main target for improving growth at low temperatures
-
Hernández-López MJ, Garcia-Marqués S, Randez-Gil F, Prieto JA. Multicopy suppression screening of Saccharomyces cerevisiae identifies the ubiquitination machinery as a main target for improving growth at low temperatures. Appl Environ Microbiol. 2011;77:7517-25.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 7517-7525
-
-
Hernández-López, M.J.1
Garcia-Marqués, S.2
Randez-Gil, F.3
Prieto, J.A.4
-
44
-
-
0028277963
-
The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants
-
Kolling R, Hollenberg CP. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 1994;13:3261-71.
-
(1994)
EMBO J
, vol.13
, pp. 3261-3271
-
-
Kolling, R.1
Hollenberg, C.P.2
-
45
-
-
0028971506
-
NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase
-
1:CAS:528:DyaK2MXptlersLY%3D
-
Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, Andre B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol. 1995;18:77-87.
-
(1995)
Mol Microbiol
, vol.18
, pp. 77-87
-
-
Hein, C.1
Springael, J.Y.2
Volland, C.3
Haguenauer-Tsapis, R.4
Andre, B.5
-
46
-
-
0030054178
-
Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis
-
1:CAS:528:DyaK28Xnt1egtg%3D%3D
-
Hicke L, Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell. 1996;84:277-87.
-
(1996)
Cell
, vol.84
, pp. 277-287
-
-
Hicke, L.1
Riezman, H.2
-
47
-
-
55549102963
-
Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface
-
1:CAS:528:DC%2BD1cXhsVCls7vI
-
Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell. 2008;135:714-25.
-
(2008)
Cell
, vol.135
, pp. 714-725
-
-
Lin, C.H.1
Macgurn, J.A.2
Chu, T.3
Stefan, C.J.4
Emr, S.D.5
-
48
-
-
76749107562
-
Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local
-
Goh WS, Orlov Y, Li J, Clarke ND. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol. 2010;6:e1000649.
-
(2010)
PLoS Comput Biol
, vol.6
, pp. 1000649
-
-
Goh, W.S.1
Orlov, Y.2
Li, J.3
Clarke, N.D.4
-
49
-
-
4544352942
-
Transcriptional regulatory code of a eukaryotic genome
-
1:CAS:528:DC%2BD2cXntFClu7k%3D
-
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431:99-104.
-
(2004)
Nature
, vol.431
, pp. 99-104
-
-
Harbison, C.T.1
Gordon, D.B.2
Lee, T.I.3
Rinaldi, N.J.4
Macisaac, K.D.5
Danford, T.W.6
-
50
-
-
0037174671
-
Transcriptional regulatory networks in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD38XotFSntL0%3D
-
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799-804.
-
(2002)
Science
, vol.298
, pp. 799-804
-
-
Lee, T.I.1
Rinaldi, N.J.2
Robert, F.3
Odom, D.T.4
Bar-Joseph, Z.5
Gerber, G.K.6
-
51
-
-
33646748283
-
A systems approach to mapping DNA damage response pathways
-
1:CAS:528:DC%2BD28Xks1Wqurw%3D
-
Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, et al. A systems approach to mapping DNA damage response pathways. Science. 2006;312:1054-9.
-
(2006)
Science
, vol.312
, pp. 1054-1059
-
-
Workman, C.T.1
Mak, H.C.2
McCuine, S.3
Tagne, J.B.4
Agarwal, M.5
Ozier, O.6
-
52
-
-
63849315606
-
High-resolution DNA-binding specificity analysis of yeast transcription factors
-
1:CAS:528:DC%2BD1MXksVKns70%3D
-
Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, et al. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 2009;19:556-66.
-
(2009)
Genome Res
, vol.19
, pp. 556-566
-
-
Zhu, C.1
Byers, K.J.2
McCord, R.P.3
Shi, Z.4
Berger, M.F.5
Newburger, D.E.6
-
53
-
-
27744587276
-
Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD2MXht1Cgur7O
-
Vyas VK, Berkey CD, Miyao T, Carlson M. Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell. 2005;4:1882-91.
-
(2005)
Eukaryot Cell
, vol.4
, pp. 1882-1891
-
-
Vyas, V.K.1
Berkey, C.D.2
Miyao, T.3
Carlson, M.4
-
54
-
-
0036265376
-
Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
-
1:CAS:528:DC%2BD38XktlSmtbo%3D
-
Kuchin S, Vyas VK, Carlson M. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002;22:3994-4000.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 3994-4000
-
-
Kuchin, S.1
Vyas, V.K.2
Carlson, M.3
-
55
-
-
0037144584
-
Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes
-
1:CAS:528:DC%2BD38Xnt1Wlt74%3D
-
Mayordomo I, Estruch F, Sanz P. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem. 2002;277:35650-6.
-
(2002)
J Biol Chem
, vol.277
, pp. 35650-35656
-
-
Mayordomo, I.1
Estruch, F.2
Sanz, P.3
-
56
-
-
77958169154
-
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
-
1:CAS:528:DC%2BC3cXhtlyqur%2FO
-
Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587-601.
-
(2010)
OMICS
, vol.14
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sá-Correia, I.3
-
57
-
-
25844432253
-
Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
-
1:CAS:528:DC%2BD2MXhtVKis7vO
-
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
-
(2005)
Biochem Biophys Res Commun
, vol.337
, pp. 95-103
-
-
Fernandes, A.R.1
Mira, N.P.2
Vargas, R.C.3
Canelhas, I.4
Sá-Correia, I.5
-
58
-
-
0142153893
-
Ammonia assimilation by Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD3sXos1Gkt7c%3D
-
Magasanik B. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell. 2003;2:827-9.
-
(2003)
Eukaryot Cell
, vol.2
, pp. 827-829
-
-
Magasanik, B.1
-
59
-
-
84865434614
-
Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
-
1:CAS:528:DC%2BC38Xht1Olt7rF
-
Ding MZ, Wang X, Liu W, Cheng JS, Yang Y, Yuan YJ. Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One. 2012;7:e43474.
-
(2012)
PLoS One
, vol.7
, pp. 43474
-
-
Ding, M.Z.1
Wang, X.2
Liu, W.3
Cheng, J.S.4
Yang, Y.5
Yuan, Y.J.6
-
60
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
-
(2010)
Microb Cell Fact
, vol.9
, pp. 79
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
62
-
-
60649091920
-
Synthetic control of a fitness tradeoff in yeast nitrogen metabolism
-
Bayer TS, Hoff KG, Beisel CL, Lee JJ, Smolke CD. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism. J Biol Eng. 2009;3:1.
-
(2009)
J Biol Eng
, vol.3
, pp. 1
-
-
Bayer, T.S.1
Hoff, K.G.2
Beisel, C.L.3
Lee, J.J.4
Smolke, C.D.5
-
64
-
-
84862550502
-
Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system
-
1:CAS:528:DC%2BC38XhtV2nt7vE
-
Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev. 2012;76:115-58.
-
(2012)
Microbiol Mol Biol Rev
, vol.76
, pp. 115-158
-
-
Verghese, J.1
Abrams, J.2
Wang, Y.3
Morano, K.A.4
-
65
-
-
0037297381
-
Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]
-
Jones GW, Masison DC. Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics. 2003;163:495-506.
-
(2003)
Genetics
, vol.163
, pp. 495-506
-
-
Jones, G.W.1
Masison, D.C.2
-
66
-
-
34247899009
-
Importance of the Hsp70 ATPase domain in yeast prion propagation
-
1:CAS:528:DC%2BD2sXkt1Wgsbg%3D
-
Loovers HM, Guinan E, Jones GW. Importance of the Hsp70 ATPase domain in yeast prion propagation. Genetics. 2007;175:621-30.
-
(2007)
Genetics
, vol.175
, pp. 621-630
-
-
Loovers, H.M.1
Guinan, E.2
Jones, G.W.3
-
67
-
-
0023414737
-
The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains
-
Duncan K, Edwards RM, Coggins JR. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem J. 1987;246:375-86.
-
(1987)
Biochem J
, vol.246
, pp. 375-386
-
-
Duncan, K.1
Edwards, R.M.2
Coggins, J.R.3
-
68
-
-
0041767568
-
Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
-
1:CAS:528:DC%2BD3sXmt1SktrY%3D
-
Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem. 2003;270:3189-95.
-
(2003)
Eur J Biochem
, vol.270
, pp. 3189-3195
-
-
Bauer, B.E.1
Rossington, D.2
Mollapour, M.3
Mamnun, Y.4
Kuchler, K.5
Piper, P.W.6
-
69
-
-
58149337066
-
Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1MXhtlGitb0%3D
-
Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. Fems Yeast Research. 2009;9:32-44.
-
(2009)
Fems Yeast Research
, vol.9
, pp. 32-44
-
-
Yoshikawa, K.1
Tanaka, T.2
Furusawa, C.3
Nagahisa, K.4
Hirasawa, T.5
Shimizu, H.6
-
70
-
-
0032495560
-
Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae
-
1:CAS:528:DyaK1cXhsFarsg%3D%3D
-
Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS. Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta. 1998;1379:118-28.
-
(1998)
Biochim Biophys Acta
, vol.1379
, pp. 118-128
-
-
Stambuk, B.U.1
Panek, A.D.2
Crowe, J.H.3
Crowe, L.M.4
De Araujo, P.S.5
-
71
-
-
2442665707
-
Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD2cXktlCns7o%3D
-
Jules M, Guillou V, Francois J, Parrou JL. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2004;70:2771-8.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 2771-2778
-
-
Jules, M.1
Guillou, V.2
Francois, J.3
Parrou, J.L.4
-
72
-
-
84864319268
-
Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1
-
1:CAS:528:DC%2BC38XnsFGqsbg%3D
-
Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, et al. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics. 2012;287:485-94.
-
(2012)
Mol Genet Genomics
, vol.287
, pp. 485-494
-
-
Babrzadeh, F.1
Jalili, R.2
Wang, C.3
Shokralla, S.4
Pierce, S.5
Robinson-Mosher, A.6
-
73
-
-
57049101718
-
Comparative genomics of wild type yeast strains unveils important genome diversity
-
Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MA. Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics. 2008;9:524.
-
(2008)
BMC Genomics
, vol.9
, pp. 524
-
-
Carreto, L.1
Eiriz, M.F.2
Gomes, A.C.3
Pereira, P.M.4
Schuller, D.5
Santos, M.A.6
-
74
-
-
25444432042
-
Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures
-
Dunn B, Levine RP, Sherlock G. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics. 2005;6:53.
-
(2005)
BMC Genomics
, vol.6
, pp. 53
-
-
Dunn, B.1
Levine, R.P.2
Sherlock, G.3
-
75
-
-
84884791723
-
Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
-
Ask M, Mapelli V, Hock H, Olsson L, Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact. 2013;12:87.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 87
-
-
Ask, M.1
Mapelli, V.2
Hock, H.3
Olsson, L.4
Bettiga, M.5
-
76
-
-
0031034766
-
Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide
-
1:CAS:528:DyaK2sXpsVCmuw%3D%3D
-
Stephen DW, Jamieson DJ. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol. 1997;23:203-10.
-
(1997)
Mol Microbiol
, vol.23
, pp. 203-210
-
-
Stephen, D.W.1
Jamieson, D.J.2
-
77
-
-
84858729135
-
De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
-
1:CAS:528:DC%2BC38Xpt1ajtLY%3D
-
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact. 2012;11:36.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 36
-
-
Nijkamp, J.F.1
Van Den Broek, M.2
Datema, E.3
De Kok, S.4
Bosman, L.5
Luttik, M.A.6
-
78
-
-
62349130698
-
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
-
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
-
(2009)
Genome Biol
, vol.10
, pp. 25
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
79
-
-
55549097836
-
Mapping short DNA sequencing reads and calling variants using mapping quality scores
-
1:CAS:528:DC%2BD1cXhtlKhsrrN
-
Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18:1851-8.
-
(2008)
Genome Res
, vol.18
, pp. 1851-1858
-
-
Li, H.1
Ruan, J.2
Durbin, R.3
-
80
-
-
80052226692
-
Sequence-specific error profile of Illumina sequencers
-
1:CAS:528:DC%2BC3MXptlOqtbY%3D
-
Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011;39:e90.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 90
-
-
Nakamura, K.1
Oshima, T.2
Morimoto, T.3
Ikeda, S.4
Yoshikawa, H.5
Shiwa, Y.6
-
81
-
-
84855219212
-
Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes
-
1:CAS:528:DC%2BC38Xmt1eitb0%3D
-
Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics. 2012;13:1.
-
(2012)
BMC Genomics
, vol.13
, pp. 1
-
-
Oyola, S.O.1
Otto, T.D.2
Gu, Y.3
Maslen, G.4
Manske, M.5
Campino, S.6
-
82
-
-
64849083125
-
CNV-seq, a new method to detect copy number variation using high-throughput sequencing
-
Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. Bmc Bioinformatics. 2009;10:80.
-
(2009)
Bmc Bioinformatics
, vol.10
, pp. 80
-
-
Xie, C.1
Tammi, M.T.2
-
83
-
-
84864434718
-
ExPASy: SIB bioinformatics resource portal
-
1:CAS:528:DC%2BC3sXjtVCqu7c%3D
-
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597-603.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 597-603
-
-
Artimo, P.1
Jonnalagedda, M.2
Arnold, K.3
Baratin, D.4
Csardi, G.5
De Castro, E.6
-
84
-
-
0043009767
-
Differential expression in SAGE: Accounting for normal between-library variation
-
1:CAS:528:DC%2BD3sXntlKmsrs%3D
-
Baggerly KA, Deng L, Morris JS, Aldaz CM. Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics. 2003;19:1477-83.
-
(2003)
Bioinformatics
, vol.19
, pp. 1477-1483
-
-
Baggerly, K.A.1
Deng, L.2
Morris, J.S.3
Aldaz, C.M.4
-
85
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
1:CAS:528:DC%2BD1cXhsFCkurnI
-
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57.
-
(2009)
Nat Protoc
, vol.4
, pp. 44-57
-
-
Da Huang, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
86
-
-
80054761009
-
Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map
-
1:CAS:528:DC%2BC38XhvVClsb3I
-
Merico D, Isserlin R, Bader GD. Visualizing gene-set enrichment results using the Cytoscape plug-in enrichment map. Methods Mol Biol. 2011;781:257-77.
-
(2011)
Methods Mol Biol
, vol.781
, pp. 257-277
-
-
Merico, D.1
Isserlin, R.2
Bader, G.D.3
-
87
-
-
78649775562
-
Enrichment map: A network-based method for gene-set enrichment visualization and interpretation
-
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5:e13984.
-
(2010)
PLoS One
, vol.5
, pp. 13984
-
-
Merico, D.1
Isserlin, R.2
Stueker, O.3
Emili, A.4
Bader, G.D.5
-
88
-
-
84858588614
-
Saccharomyces Genome Database: The genomics resource of budding yeast
-
1:CAS:528:DC%2BC3MXhs12htLfF
-
Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700-5.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 700-705
-
-
Cherry, J.M.1
Hong, E.L.2
Amundsen, C.3
Balakrishnan, R.4
Binkley, G.5
Chan, E.T.6
-
89
-
-
78651272522
-
YEASTRACT: Providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface
-
1:CAS:528:DC%2BC3sXivF2muro%3D
-
Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenco AB, dos Santos SC, et al. YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res. 2011;39:D136-40.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 136-140
-
-
Abdulrehman, D.1
Monteiro, P.T.2
Teixeira, M.C.3
Mira, N.P.4
Lourenco, A.B.5
Dos Santos, S.C.6
-
90
-
-
38549135468
-
YEASTRACT-DISCOVERER: New tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1cXhtVSrt78%3D
-
Monteiro PT, Mendes ND, Teixeira MC, d'Orey S, Tenreiro S, Mira NP, et al. YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2008;36:D132-6.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 132-136
-
-
Monteiro, P.T.1
Mendes, N.D.2
Teixeira, M.C.3
D'Orey, S.4
Tenreiro, S.5
Mira, N.P.6
-
91
-
-
33644873683
-
The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XisFOhtQ%3D%3D
-
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2006;34:D446-51.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 446-451
-
-
Teixeira, M.C.1
Monteiro, P.2
Jain, P.3
Tenreiro, S.4
Fernandes, A.R.5
Mira, N.P.6
-
92
-
-
0023020664
-
Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region
-
Russell DW, Jensen R, Zoller MJ, Burke J, Errede B, Smith M, et al. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol Cell Biol. 1986;6:4281-94.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 4281-4294
-
-
Russell, D.W.1
Jensen, R.2
Zoller, M.J.3
Burke, J.4
Errede, B.5
Smith, M.6
|