메뉴 건너뛰기




Volumn 10, Issue 1, 2015, Pages 84-90

A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst

Author keywords

[No Author keywords available]

Indexed keywords

ENVIRONMENTAL IMPACT; FOSSIL FUELS; HYDROGEN FUELS; HYDROGEN PRODUCTION; METAL INSULATOR BOUNDARIES; MIS DEVICES; MOLECULAR BEAM EPITAXY; NANOCATALYSTS; PHOTOCATHODES; PHOTOELECTROCHEMICAL CELLS; SILICON; SILICON COMPOUNDS; SOLAR ENERGY; SOLAR POWER GENERATION; STRONTIUM TITANATES;

EID: 84925955995     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2014.277     Document Type: Article
Times cited : (368)

References (49)
  • 1
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima A. & Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 2
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Lewis N. S., et al. Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010
    • (2010) Chem. Rev , vol.110 , pp. 6446-6473
    • Lewis, N.S.1
  • 3
    • 84878256387 scopus 로고    scopus 로고
    • H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover
    • Esposito D. V., Levin I., Moffat T. P. & Talin A. A. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nature Mater. 12, 562-568 (2013
    • (2013) Nature Mater , vol.12 , pp. 562-568
    • Esposito, D.V.1    Levin, I.2    Moffat, T.P.3    Talin, A.A.4
  • 4
    • 84880770439 scopus 로고    scopus 로고
    • Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution
    • Kye J., et al. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 7, 6017-6023 (2013
    • (2013) ACS Nano , vol.7 , pp. 6017-6023
    • Kye, J.1
  • 5
    • 84863084936 scopus 로고    scopus 로고
    • Nickel oxide functionalized silicon for efficient photo-oxidation of water
    • Sun K., et al. Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 5, 7872-7877 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 7872-7877
    • Sun, K.1
  • 6
    • 79959495747 scopus 로고    scopus 로고
    • Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
    • Chen Y. W., et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Mater. 10, 539-544 (2011
    • (2011) Nature Mater , vol.10 , pp. 539-544
    • Chen, Y.W.1
  • 7
    • 84865852020 scopus 로고    scopus 로고
    • Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode
    • Seger B., et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode. Angew. Chem. Int. Ed. 51, 9128-9131 (2012
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9128-9131
    • Seger, B.1
  • 8
    • 84872776117 scopus 로고    scopus 로고
    • Using TiO2 as a conductive protective layer for photocathodic H2 evolution
    • Seger B., et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057-1064 (2013
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 1057-1064
    • Seger, B.1
  • 9
    • 84887776735 scopus 로고    scopus 로고
    • High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
    • Kenney M. J., et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836-840 (2013
    • (2013) Science , vol.342 , pp. 836-840
    • Kenney, M.J.1
  • 10
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece S. Y., et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645-648 (2011
    • (2011) Science , vol.334 , pp. 645-648
    • Reece, S.Y.1
  • 11
    • 79959926122 scopus 로고    scopus 로고
    • Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst
    • Pijpers J. J. H., et al. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl Acad. Sci. USA 108, 10056-10061 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 10056-10061
    • Pijpers, J.J.H.1
  • 12
    • 84877313095 scopus 로고    scopus 로고
    • Metal oxide composite enabled nanotextured si photoanode for efficient solar driven water oxidation
    • Sun K., et al. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Nano Lett. 13, 2064-2072 (2013
    • (2013) Nano Lett , vol.13 , pp. 2064-2072
    • Sun, K.1
  • 13
    • 84883689281 scopus 로고    scopus 로고
    • Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction
    • Dasgupta N. P., et al. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135, 12932-12935 (2013
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 12932-12935
    • Dasgupta, N.P.1
  • 14
    • 79957496297 scopus 로고    scopus 로고
    • Highly active oxide photocathode for photoelectrochemical water reduction
    • Paracchino A., et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater. 10, 456-461 (2011
    • (2011) Nature Mater , vol.10 , pp. 456-461
    • Paracchino, A.1
  • 15
    • 0037183946 scopus 로고    scopus 로고
    • Efficient photochemical water splitting by a chemically modified n-TiO2
    • Khan S. U. M., Al-Shahry M. & Ingler W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243-2245 (2002
    • (2002) Science , vol.297 , pp. 2243-2245
    • Khan, S.U.M.1    Al-Shahry, M.2    Ingler, W.B.3
  • 16
    • 79951513799 scopus 로고    scopus 로고
    • Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
    • Chen X. B., Liu L., Yu, P. Y. & Mao S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-750 (2011
    • (2011) Science , vol.331 , pp. 746-750
    • Chen, X.B.1    Liu, L.2    Yu, P.Y.3    Mao, S.S.4
  • 17
    • 84883143705 scopus 로고    scopus 로고
    • Identifying champion nanostructures for solar watersplitting
    • Warren S. C., et al. Identifying champion nanostructures for solar watersplitting. Nature Mater. 12, 842-849 (2013
    • (2013) Nature Mater , vol.12 , pp. 842-849
    • Warren, S.C.1
  • 18
    • 83655164327 scopus 로고    scopus 로고
    • Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode
    • Shi J., et al. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587-5593 (2011
    • (2011) Nano Lett , vol.11 , pp. 5587-5593
    • Shi, J.1
  • 19
    • 84872104910 scopus 로고    scopus 로고
    • Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes
    • McKone J. R., Pieterick A. P., Gray H. B. & Lewis N. S. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J. Am. Chem. Soc. 135, 223-231 (2012
    • (2012) J. Am. Chem. Soc , vol.135 , pp. 223-231
    • McKone, J.R.1    Pieterick, A.P.2    Gray, H.B.3    Lewis, N.S.4
  • 20
    • 84891830926 scopus 로고    scopus 로고
    • Efficient solar water-splitting using a nanocrystalline CoO photocatalyst
    • Liao L., et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nature Nanotech. 9, 69-73 (2013
    • (2013) Nature Nanotech , vol.9 , pp. 69-73
    • Liao, L.1
  • 21
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev O. & Turner J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427 (1998
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 22
    • 84885155807 scopus 로고    scopus 로고
    • Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency
    • Li Y., et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nature Commun. 4, 2566 (2013
    • (2013) Nature Commun , vol.4 , pp. 2566
    • Li, Y.1
  • 23
    • 84860336470 scopus 로고    scopus 로고
    • Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation
    • Higashi M., Domen K. & Abe R. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 134, 6968-6971 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 6968-6971
    • Higashi, M.1    Domen, K.2    Abe, R.3
  • 24
    • 84872015504 scopus 로고    scopus 로고
    • Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting
    • Li Y., et al. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125-131 (2013
    • (2013) Adv. Mater , vol.25 , pp. 125-131
    • Li, Y.1
  • 25
    • 84857568078 scopus 로고    scopus 로고
    • Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs
    • Powell D. M., et al. Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874-5883 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 5874-5883
    • Powell, D.M.1
  • 26
    • 33746088448 scopus 로고    scopus 로고
    • A vision for crystalline silicon photovoltaics
    • Swanson R. M. A vision for crystalline silicon photovoltaics. Prog. Photovoltaics Res. Appl. 14, 443-453 (2006
    • (2006) Prog. Photovoltaics Res. Appl , vol.14 , pp. 443-453
    • Swanson, R.M.1
  • 27
    • 84887892249 scopus 로고    scopus 로고
    • N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production
    • Sim U., et al. N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 6, 3658-3664 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 3658-3664
    • Sim, U.1
  • 28
    • 80053900165 scopus 로고    scopus 로고
    • High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification
    • Wang X., et al. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem. Int. Ed. 50, 9861-9865 (2011
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 9861-9865
    • Wang, X.1
  • 29
    • 36148964748 scopus 로고    scopus 로고
    • Rhenium electrodeposition process onto p-si(100) and electrochemical behaviour of the hydrogen evolution reaction onto p-si/re/0.1 m h2so4 interface
    • Munoz E. C., Schrebler R. S., Orellana M. A. & Cordova R. Rhenium electrodeposition process onto p-Si(100) and electrochemical behaviour of the hydrogen evolution reaction onto p-Si/Re/0.1 M H2SO4 interface. J. Electroanal. Chem. 611, 35-42 (2007
    • (2007) J. Electroanal. Chem , vol.611 , pp. 35-42
    • Munoz, E.C.1    Schrebler, R.S.2    Orellana, M.A.3    Cordova, R.4
  • 30
    • 84875180625 scopus 로고    scopus 로고
    • Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition
    • Strandwitz N. C., et al. Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition. J. Phys. Chem. C 117, 4931-4936 (2013
    • (2013) J. Phys. Chem. C , vol.117 , pp. 4931-4936
    • Strandwitz, N.C.1
  • 31
    • 34249317284 scopus 로고    scopus 로고
    • Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films
    • Lana-Villarreal T., Straboni A., Pichon L. & Alonso-Vante N. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films. Thin Solid Films 515, 7376-7381 (2007
    • (2007) Thin Solid Films , vol.515 , pp. 7376-7381
    • Lana-Villarreal, T.1    Straboni, A.2    Pichon, L.3    Alonso-Vante, N.4
  • 32
    • 4244101024 scopus 로고    scopus 로고
    • Crystalline oxides on silicon: The first five monolayers
    • McKee R. A., Walker F. J. & Chisholm M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014-3017 (1998
    • (1998) Phys. Rev. Lett , vol.81 , pp. 3014-3017
    • McKee, R.A.1    Walker, F.J.2    Chisholm, M.F.3
  • 33
    • 4344630862 scopus 로고    scopus 로고
    • Advances in heteroepitaxy of oxides on silicon
    • Yu, Z., et al. Advances in heteroepitaxy of oxides on silicon. Thin Solid Films 462-463, 51-56 (2004
    • (2004) Thin Solid Films , vol.462-463 , pp. 51-56
    • Yu, Z.1
  • 34
    • 65249136446 scopus 로고    scopus 로고
    • A ferroelectric oxide made directly on silicon
    • Warusawithana M. P., et al. A ferroelectric oxide made directly on silicon. Science 324, 367-370 (2009
    • (2009) Science , vol.324 , pp. 367-370
    • Warusawithana, M.P.1
  • 35
    • 84885620473 scopus 로고    scopus 로고
    • Monolithic integration of oxides on semiconductors
    • Demkov A. A., et al. Monolithic integration of oxides on semiconductors. ECS Transactions 54, 255-269 (2013
    • (2013) ECS Transactions , vol.54 , pp. 255-269
    • Demkov, A.A.1
  • 36
    • 0035919629 scopus 로고    scopus 로고
    • Physical structure and inversion charge at a semiconductor interface with a crystalline oxide
    • McKee R. A., Walker F. J. & Chisholm M. F. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science 293, 468-471 (2001
    • (2001) Science , vol.293 , pp. 468-471
    • McKee, R.A.1    Walker, F.J.2    Chisholm, M.F.3
  • 37
    • 0001094129 scopus 로고    scopus 로고
    • Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions
    • Chambers S. A., et al. Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions. Appl. Phys. Lett. 77, 1662-1664 (2000
    • (2000) Appl. Phys. Lett , vol.77 , pp. 1662-1664
    • Chambers, S.A.1
  • 38
    • 0035333228 scopus 로고    scopus 로고
    • Band offset and structure of SrTiO3/Si(001) heterojunctions
    • Chambers S., et al. Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vac. Sci. Technol. A 19, 934-939 (2001
    • (2001) J. Vac. Sci. Technol. A , vol.19 , pp. 934-939
    • Chambers, S.1
  • 39
    • 0242523727 scopus 로고    scopus 로고
    • Atomic and electronic structure of the Si/SrTiO3 interface
    • Zhang X., et al. Atomic and electronic structure of the Si/SrTiO3 interface. Phys. Rev. B 68, 125323 (2003
    • (2003) Phys. Rev. B , vol.68 , pp. 125323
    • Zhang, X.1
  • 40
    • 4043172828 scopus 로고    scopus 로고
    • Band offsets at heterojunctions between SrTiO3 and BaTiO3 and Si(100
    • Amy F., et al. Band offsets at heterojunctions between SrTiO3 and BaTiO3 and Si(100). J. Appl. Phys. 96, 1635-1639 (2004
    • (2004) J. Appl. Phys , vol.96 , pp. 1635-1639
    • Amy, F.1
  • 41
    • 0034187380 scopus 로고    scopus 로고
    • Band offsets of wide-band-gap oxides and implications for future electronic devices
    • Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785-1791 (2000
    • (2000) J. Vac. Sci. Technol. B , vol.18 , pp. 1785-1791
    • Robertson, J.1
  • 42
    • 0034187912 scopus 로고    scopus 로고
    • Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy
    • Yu, Z., et al. Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy. J. Vac. Sci. Technol. B 18, 1653-1657 (2000
    • (2000) J. Vac. Sci. Technol. B , vol.18 , pp. 1653-1657
    • Yu, Z.1
  • 44
    • 0035928129 scopus 로고    scopus 로고
    • Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics
    • Haynes C. L. & Van Duyne R. P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599-5611 (2001
    • (2001) J. Phys. Chem. B , vol.105 , pp. 5599-5611
    • Haynes, C.L.1    Van Duyne, R.P.2
  • 45
    • 53349143988 scopus 로고    scopus 로고
    • Wafer-scale silicon nanopillars and nanocones by langmuir-blodgett assembly and etching
    • Hsu C. M., Connor S. T., Tang M. X. & Cui Y. Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008
    • (2008) Appl. Phys. Lett , vol.93 , pp. 133109
    • Hsu, C.M.1    Connor, S.T.2    Tang, M.X.3    Cui, Y.4
  • 47
    • 0035982548 scopus 로고    scopus 로고
    • Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films
    • Wei Y., et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films. J. Vac. Sci. Technol. B 20, 1402-1405 (2002
    • (2002) J. Vac. Sci. Technol. B , vol.20 , pp. 1402-1405
    • Wei, Y.1
  • 48
    • 2642531577 scopus 로고
    • Sensitivity factors for XPS analysis of surface atoms
    • Wagner C. D. Sensitivity factors for XPS analysis of surface atoms. J. Electron Spectrosc. 32, 99-102 (1983
    • (1983) J. Electron Spectrosc , vol.32 , pp. 99-102
    • Wagner, C.D.1
  • 49
    • 0019002651 scopus 로고
    • The energy dependence of the electron mean free path
    • Wagner C. D., Davis L. E. & Riggs W. M. The energy dependence of the electron mean free path. Surf. Interface Anal. 2, 53-55 (1980
    • (1980) Surf. Interface Anal , vol.2 , pp. 53-55
    • Wagner, C.D.1    Davis, L.E.2    Riggs, W.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.