메뉴 건너뛰기




Volumn 29, Issue 3, 2015, Pages 861-874

Monthly stream flow forecasting via dynamic spatio-temporal models

Author keywords

DLSTM; Expectation maximization algorithm; Forecasting; Kalman filter; Streamflow

Indexed keywords

DROUGHT; FORECASTING; KALMAN FILTERS;

EID: 84925496254     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-014-0967-3     Document Type: Article
Times cited : (13)

References (46)
  • 1
    • 27644545575 scopus 로고    scopus 로고
    • Using a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series
    • Amisigo BA, Van de Giesen NC (2005) Using a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series. Hydrol Earth Syst Sci 9:209–224
    • (2005) Hydrol Earth Syst Sci , vol.9 , pp. 209-224
    • Amisigo, B.A.1    Van de Giesen, N.C.2
  • 2
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36(4):7624–7629
    • (2009) Expert Syst Appl , vol.36 , Issue.4 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 3
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu HK (2003) Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14:417–427
    • (2003) Environmetrics , vol.14 , pp. 417-427
    • Cigizoglu, H.K.1
  • 5
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in River Yangtze
    • Dawson CW, Wilby RL, Chen Y (2002) Evaluation of artificial neural network techniques for flow forecasting in River Yangtze. China Hydrol Earth Syst Sci 6:619–626
    • (2002) China Hydrol Earth Syst Sci , vol.6 , pp. 619-626
    • Dawson, C.W.1    Wilby, R.L.2    Chen, Y.3
  • 6
    • 33846798345 scopus 로고    scopus 로고
    • Hydrotest: A web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts
    • Dawson CW, Abrahart RJ, See LM (2007) Hydrotest: A web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts. Environ Model Softw 22:1034–1052
    • (2007) Environ Model Softw , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 7
    • 84900591331 scopus 로고    scopus 로고
    • Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation
    • Dehghani M, Saghafian B, Nasiri Saleh F, Farokhnia A, Noori R (2014) Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int J Climatol 34:1169–1180
    • (2014) Int J Climatol , vol.34 , pp. 1169-1180
    • Dehghani, M.1    Saghafian, B.2    Nasiri Saleh, F.3    Farokhnia, A.4    Noori, R.5
  • 9
    • 0027681974 scopus 로고
    • ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition
    • Digalakis V, Rohlicek JR, Ostendorf M (1993) ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Trans Speech Audio Process 1(4):431–442
    • (1993) IEEE Trans Speech Audio Process , vol.1 , Issue.4 , pp. 431-442
    • Digalakis, V.1    Rohlicek, J.R.2    Ostendorf, M.3
  • 10
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk DO (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng App Artif Intel 23(4):586–594
    • (2010) Eng App Artif Intel , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.O.1
  • 12
    • 0003423085 scopus 로고    scopus 로고
    • Parameter Estimation for Linear Dynamical Systems, Technical Report CRG-TR-96-2
    • University of, Toronto, Toronto:
    • Ghahramani Z, Hinton GE (1996) Parameter Estimation for Linear Dynamical Systems, Technical Report CRG-TR-96-2, Department of Computer Science, University of Toronto, Toronto
    • (1996) Department of Computer Science
    • Ghahramani, Z.1    Hinton, G.E.2
  • 13
    • 70350342868 scopus 로고
    • Methods for estimating heterogeneous spatial covariance functions with environmental applications, Environmental Statistics
    • Patil GP, Rao CR, (eds), 12, Elsevier, Amsterdam:
    • Guttorp P, Sampson PD (1994) Methods for estimating heterogeneous spatial covariance functions with environmental applications, Environmental Statistics. In: Patil GP, Rao CR (eds) Handbook of Statistics, vol 12. Elsevier, Amsterdam, pp 661–689
    • (1994) Handbook of Statistics , pp. 661-689
    • Guttorp, P.1    Sampson, P.D.2
  • 14
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. App Soft Comp 7(2):585–592
    • (2007) App Soft Comp , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 15
    • 0036129501 scopus 로고    scopus 로고
    • Longitudinal dispersion coefficients in natural channels
    • COI: 1:CAS:528:DC%2BD38Xhslyns74%3D
    • Kashefipour MS, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36:1596–1608
    • (2002) Water Res , vol.36 , pp. 1596-1608
    • Kashefipour, M.S.1    Falconer, R.A.2
  • 16
    • 32044447474 scopus 로고    scopus 로고
    • Uncertainty analysis of statistical downscaling methods
    • Khan MS, Coulibaly P, Dibike P (2006) Uncertainty analysis of statistical downscaling methods. J Hydrol 319:357–382
    • (2006) J Hydrol , vol.319 , pp. 357-382
    • Khan, M.S.1    Coulibaly, P.2    Dibike, P.3
  • 17
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi O (2005) Daily river flow forecasting using artificial neural networks and auto-regressive models. Turk J Eng Environ Sci 29:9–20
    • (2005) Turk J Eng Environ Sci , vol.29 , pp. 9-20
    • Kisi, O.1
  • 18
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399(1–2):132–140
    • (2011) J Hydrol , vol.399 , Issue.1-2 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 19
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks: comparison of network types
    • Kumar ARS, Sudheer KP, Jain SK, Agarwal PK (2005) Rainfall-runoff modeling using artificial neural networks: comparison of network types. Hydrol Process 19:1277–1291
    • (2005) Hydrol Process , vol.19 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 20
    • 85008843519 scopus 로고    scopus 로고
    • A reparametrization approach for dynamic space-time models
    • Lee H, Ghosh SK (2008) A reparametrization approach for dynamic space-time models. J Stat Theory Pract 2:1–14
    • (2008) J stat theory pract , vol.2 , pp. 1-14
    • Lee, H.1    Ghosh, S.K.2
  • 21
    • 25444457509 scopus 로고    scopus 로고
    • The kriged kalman filter (with discussion)
    • Mardia K, Goodall C, Redfern E, Alonso F (1998) The kriged kalman filter (with discussion). Test 7:217–285
    • (1998) Test , vol.7 , pp. 217-285
    • Mardia, K.1    Goodall, C.2    Redfern, E.3    Alonso, F.4
  • 23
    • 33846093833 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting
    • Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk Assess 21:223–233
    • (2007) Stoch Environ Res Risk Assess , vol.21 , pp. 223-233
    • Modarres, R.1
  • 24
    • 63149104793 scopus 로고    scopus 로고
    • Multi-criteria validation of artificial neural network rainfall-runoff modeling
    • Modarres R (2009) Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrol Earth Syst Sci 13:411–421
    • (2009) Hydrol Earth Syst Sci , vol.13 , pp. 411-421
    • Modarres, R.1
  • 25
    • 73949113911 scopus 로고    scopus 로고
    • Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (a case study of Karaj)
    • Mohammadi K, Eslami HR, Dayyani Dardashti Sh (2005) Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (a case study of Karaj). J Agric Sci Technol 7:17–30
    • (2005) J Agric Sci Technol , vol.7 , pp. 17-30
    • Mohammadi, K.1    Eslami, H.R.2    Dayyani Dardashti, S.3
  • 26
    • 33750442194 scopus 로고    scopus 로고
    • Parameter estimation of an ARMA model for river flow forecasting using goal programming
    • Mohammadi K, Eslami HR, Kahawita R (2006) Parameter estimation of an ARMA model for river flow forecasting using goal programming. J Hydrol 331(1–2):293–299
    • (2006) J Hydrol , vol.331 , Issue.1-2 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 27
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • Mukerji A, Chatterjee Ch, Raghuwanshi NS (2009) Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng 14(6):647–652
    • (2009) J Hydrol Eng , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 28
    • 77951204309 scopus 로고    scopus 로고
    • Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic
    • Noori R, Khakpour A, Omidvar B, Farokhnia A (2010) Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst Appl 37:5856–5862
    • (2010) Expert Syst Appl , vol.37 , pp. 5856-5862
    • Noori, R.1    Khakpour, A.2    Omidvar, B.3    Farokhnia, A.4
  • 29
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly streamflow prediction
    • Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, Ghafari Gousheh M (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly streamflow prediction. J Hydrol 401:177–189
    • (2011) J Hydrol , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Ghafari Gousheh, M.7
  • 30
    • 27644496488 scopus 로고    scopus 로고
    • Concept, Derivation and Properties:
    • Riberiro M (2004) Kalman and Extended Kalman Filters: Concept, Derivation and Properties. http://omni.isr.ist.utl.pt/_mir/pub/kalman.pdf
    • (2004) Kalman and Extended Kalman Filters
    • Riberiro, M.1
  • 31
    • 84883764647 scopus 로고    scopus 로고
    • Effect of SOI and spatially distributed climate data on improving the accuracy of ANN, ANFIS and K-NN streamflow forecasting models
    • Saghafian B, Anvari S, Morid S (2013) Effect of SOI and spatially distributed climate data on improving the accuracy of ANN, ANFIS and K-NN streamflow forecasting models. Expert Syst 30–4:367–380
    • (2013) Expert Syst , vol.30-4 , pp. 367-380
    • Saghafian, B.1    Anvari, S.2    Morid, S.3
  • 32
    • 84877837814 scopus 로고    scopus 로고
    • M5 model tree application in daily river flow forecasting in Sohu Stream, Turkey
    • Sattari MT, Pal M, Apaydin H, Ozturk F (2013) M5 model tree application in daily river flow forecasting in Sohu Stream, Turkey. Water Resour 40–3:233–242
    • (2013) Water Resour , vol.40-3 , pp. 233-242
    • Sattari, M.T.1    Pal, M.2    Apaydin, H.3    Ozturk, F.4
  • 33
    • 11644276139 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams
    • Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124:25–32
    • (1998) J Hydraul Eng , vol.124 , pp. 25-32
    • Seo, I.W.1    Cheong, T.S.2
  • 34
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algortihm
    • Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algortihm. J Time Ser Anal 3(4):253–264
    • (1982) J Time Ser Anal , vol.3 , Issue.4 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 36
    • 84910605311 scopus 로고    scopus 로고
    • Evaluation of novel fuzzy method and conceptual model in the long-term daily streamflow simulation
    • Taheri Shahraiyni H, Ghafouri M, Saghafian B, Bagheri S (2013) Evaluation of novel fuzzy method and conceptual model in the long-term daily streamflow simulation. J River Syst 20(3–4):249–260
    • (2013) J River Syst , vol.20 , Issue.3-4 , pp. 249-260
    • Taheri Shahraiyni, H.1    Ghafouri, M.2    Saghafian, B.3    Bagheri, S.4
  • 37
    • 78650697073 scopus 로고    scopus 로고
    • Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models
    • Talebizadeh M, Moridnejad A (2011) Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models. Expert Syst Appl 38–4:4126–4135
    • (2011) Expert Syst Appl , vol.38-4 , pp. 4126-4135
    • Talebizadeh, M.1    Moridnejad, A.2
  • 38
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by adaptive network-based fuzzy inference systems (ANFIS) in rainfall–runoff modeling
    • Talei A, Lloyd Hock Ch, Tommy Ch, Wong SW (2010) Evaluation of rainfall and discharge inputs used by adaptive network-based fuzzy inference systems (ANFIS) in rainfall–runoff modeling. J Hydrol 391(3–4):248–262
    • (2010) J Hydrol , vol.391 , Issue.3-4 , pp. 248-262
    • Talei, A.1    Lloyd Hock, C.2    Tommy, C.3    Wong, S.W.4
  • 39
    • 27644468479 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams by artificial neural network
    • Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131:991–1000
    • (2005) J Hydraul Eng , vol.131 , pp. 991-1000
    • Tayfur, G.1    Singh, V.P.2
  • 40
    • 84871416150 scopus 로고    scopus 로고
    • Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting
    • Valipour M, Banihabib ME, Behbahani SMR (2012) Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J Math Stat 8(3):330–338
    • (2012) J Math Stat , vol.8 , Issue.3 , pp. 330-338
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 41
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang WCh, Cheng ChT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306
    • (2009) J Hydrol , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Cheng, C.T.2    Qiu, L.3
  • 42
    • 79955750805 scopus 로고    scopus 로고
    • An Introduction to the Kalman Filter
    • University of North Carolina, Chapel Hill:
    • Welch G, Bishop G (2006) An Introduction to the Kalman Filter. TR 95-041 Department of Computer Science, University of North Carolina, Chapel Hill
    • (2006) TR 95-041 Department of Computer Science
    • Welch, G.1    Bishop, G.2
  • 43
    • 85067714354 scopus 로고
    • Sediment transport: an appraisal method, vol. 2: performance of theoretical methods when applied to flume and field data. Hydraulics Research Station, Report No. 1T119
    • White WR, Milli H, Crabbe AD (1973) Sediment transport: an appraisal method, vol. 2: performance of theoretical methods when applied to flume and field data. Hydraulics Research Station, Report No. 1T119, Wallingford
    • (1973) Wallingford
    • White, W.R.1    Milli, H.2    Crabbe, A.D.3
  • 44
    • 78449244115 scopus 로고    scopus 로고
    • A general science-based framework for dynamical spatio-temporal models
    • Wikle CK, Hooten MB (2010) A general science-based framework for dynamical spatio-temporal models. Test 19:417–451
    • (2010) Test , vol.19 , pp. 417-451
    • Wikle, C.K.1    Hooten, M.B.2
  • 46
    • 33749362015 scopus 로고    scopus 로고
    • Estimation of parameterized spatio-temporal dynamic models
    • Xu K, Wikle CK (2007) Estimation of parameterized spatio-temporal dynamic models. J Stat Plan Infer 137:567–588
    • (2007) J stat plan Infer , vol.137 , pp. 567-588
    • Xu, K.1    Wikle, C.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.