메뉴 건너뛰기




Volumn 63, Issue 4, 2001, Pages 673-689

Dynamic models for spatiotemporal data

Author keywords

Bayesian inference; Locally weighted mixture; On line inference; Space time modelling; State space models

Indexed keywords


EID: 0035650158     PISSN: 13697412     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9868.00305     Document Type: Article
Times cited : (176)

References (31)
  • 3
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter, C. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541-553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.1    Kohn, R.2
  • 6
    • 84981426681 scopus 로고
    • Data augmentation and dynamic linear models
    • Frühwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models. J. Time. Ser. Anal., 15, 183-202.
    • (1994) J. Time. Ser. Anal. , vol.15 , pp. 183-202
    • Frühwirth-Schnatter, S.1
  • 7
    • 0007189604 scopus 로고    scopus 로고
    • A high frequency kriging approach
    • Fuentes, M. (2001) A high frequency kriging approach. Environmetrics, 12, 1-15.
    • (2001) Environmetrics , vol.12 , pp. 1-15
    • Fuentes, M.1
  • 9
    • 0028590677 scopus 로고
    • A space-time analysis of ground-level ozone data
    • Guttorp, P., Meiring, W. and Sampson, P. (1994) A space-time analysis of ground-level ozone data. Environmetrics, 5, 241-254.
    • (1994) Environmetrics , vol.5 , pp. 241-254
    • Guttorp, P.1    Meiring, W.2    Sampson, P.3
  • 10
    • 84950427374 scopus 로고
    • An approach to statistical spatial-temporal modeling of meteorological fields
    • Handcock, M. and Wallis, J. (1994) An approach to statistical spatial-temporal modeling of meteorological fields. J. Am. Statist. Ass., 89, 368-390.
    • (1994) J. Am. Statist. Ass. , vol.89 , pp. 368-390
    • Handcock, M.1    Wallis, J.2
  • 11
    • 0001917942 scopus 로고
    • Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource
    • Haslett, J. and Raftery, A. E. (1989) Space-time modelling with long-memory dependence: assessing Ireland's wind power resource (with discussion). Appl. Statist., 38, 1-50.
    • (1989) Appl. Statist. , vol.38 , pp. 1-50
    • Haslett, J.1    Raftery, A.E.2
  • 12
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modeling temperatures in the North Atlantic Ocean
    • Higdon, D. (1999) A process-convolution approach to modeling temperatures in the north Atlantic Ocean. Environ. Ecol. Statist., 5, 173-190.
    • (1999) Environ. Ecol. Statist. , vol.5 , pp. 173-190
    • Higdon, D.1
  • 13
    • 0000439277 scopus 로고    scopus 로고
    • Non-stationary spatial modeling
    • (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), Oxford: Oxford University Press
    • Higdon, D., Swall, J. and Kern, J. (1999) Non-stationary spatial modeling. In Bayesian Statistics 6 (eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 761-768. Oxford: Oxford University Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 761-768
    • Higdon, D.1    Swall, J.2    Kern, J.3
  • 14
    • 0030184050 scopus 로고    scopus 로고
    • Spatio-temporal prediction of snow water equivalent using the Kalman filter
    • Huang, H.-C. and Cressie, N. (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput. Statist. Data Anal., 22, 159-175.
    • (1996) Comput. Statist. Data Anal. , vol.22 , pp. 159-175
    • Huang, H.-C.1    Cressie, N.2
  • 16
    • 0033380721 scopus 로고    scopus 로고
    • A Markov random field spatio-temporal analysis of ocean temperature
    • Lavine, M. and Lozier, S. (1999) A Markov random field spatio-temporal analysis of ocean temperature. Environ. Ecol. Statist., 6, 249-273.
    • (1999) Environ. Ecol. Statist. , vol.6 , pp. 249-273
    • Lavine, M.1    Lozier, S.2
  • 18
    • 0028184126 scopus 로고
    • Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years
    • Parrilla, G., Lavín, A., Bryden, H., García, M. and Millard, R. (1994) Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years. Nature, 369, 48-51.
    • (1994) Nature , vol.369 , pp. 48-51
    • Parrilla, G.1    Lavín, A.2    Bryden, H.3    García, M.4    Millard, R.5
  • 19
    • 0007266890 scopus 로고
    • Independence and sphericity tests for the residuals of space-time ARMA models
    • Pfeifer, P. and Deutsch, S. (1980a) Independence and sphericity tests for the residuals of space-time ARMA models. Communs Statist. Simuln Computn, 9, 533-549.
    • (1980) Communs Statist. Simuln Computn , vol.9 , pp. 533-549
    • Pfeifer, P.1    Deutsch, S.2
  • 20
    • 0000238436 scopus 로고
    • Stationarity and invertibility regions for low order STARMA models
    • _(1980b) Stationarity and invertibility regions for low order STARMA models. Communs Statist. Simuln Computn, 9, 551-562.
    • (1980) Communs Statist. Simuln Computn , vol.9 , pp. 551-562
  • 21
    • 0000832522 scopus 로고
    • Nonparametric estimation of nonstationary spatial covariance structure
    • Sampson, P. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Statist. Ass., 87, 108-119.
    • (1992) J. Am. Statist. Ass. , vol.87 , pp. 108-119
    • Sampson, P.1    Guttorp, P.2
  • 22
    • 0033426717 scopus 로고    scopus 로고
    • Venezuelan rainfall data analysed by using a Bayesian space - Time model
    • Sansó, B. and Guenni, L. (1999) Venezuelan rainfall data analysed by using a Bayesian space - time model. Appl. Statist., 48, 345-362.
    • (1999) Appl. Statist. , vol.48 , pp. 345-362
    • Sansó, B.1    Guenni, L.2
  • 23
    • 0442325059 scopus 로고    scopus 로고
    • A non-stationary multisite model for rainfall
    • _(2000) A non-stationary multisite model for rainfall. J. Am. Statist. Ass., 95, 1089-1100.
    • (2000) J. Am. Statist. Ass. , vol.95 , pp. 1089-1100
  • 24
    • 0344425961 scopus 로고    scopus 로고
    • A Bayesian approach to the modelling of spatial-temporal precipitation data
    • Smith, R. and Robinson, P. (1997) A Bayesian approach to the modelling of spatial-temporal precipitation data. Lect. Notes Statist., 121, 237-269.
    • (1997) Lect. Notes Statist. , vol.121 , pp. 237-269
    • Smith, R.1    Robinson, P.2
  • 25
    • 84950903921 scopus 로고
    • Estimation and identification of space-time ARMAX models in the presence of missing data
    • Stoffer, D. (1986) Estimation and identification of space-time ARMAX models in the presence of missing data. J. Am. Statist. Ass., 81, 762-772.
    • (1986) J. Am. Statist. Ass. , vol.81 , pp. 762-772
    • Stoffer, D.1
  • 26
    • 0003751469 scopus 로고    scopus 로고
    • Technical Report 5/1997. Dipartimento di Statistica, Università Ca' Foscari di Venezia, Venice
    • Tonellato, S. (1997) Bayesian dynamic linear models for spatial time series. Technical Report 5/1997. Dipartimento di Statistica, Università Ca' Foscari di Venezia, Venice.
    • (1997) Bayesian Dynamic Linear Models for Spatial Time Series
    • Tonellato, S.1
  • 27
    • 84879162871 scopus 로고    scopus 로고
    • Technical Report 2/1998. Dipartimento di Statistica, Università Ca' Foscari di Venezia, Venice
    • _(1998) Spatial prediction with space-time models. Technical Report 2/1998. Dipartimento di Statistica, Università Ca' Foscari di Venezia, Venice.
    • (1998) Spatial Prediction with Space-time Models
  • 28
    • 0031534349 scopus 로고    scopus 로고
    • Hierarchical spatio-temporal mapping of disease rates
    • Waller, L., Carlin, B., Xia, H. and Gelfand, A. (1997) Hierarchical spatio-temporal mapping of disease rates. J. Am. Statist. Ass., 92, 607-617.
    • (1997) J. Am. Statist. Ass. , vol.92 , pp. 607-617
    • Waller, L.1    Carlin, B.2    Xia, H.3    Gelfand, A.4
  • 31
    • 0000414912 scopus 로고    scopus 로고
    • A dimension reduced approach to space-time Kalman filtering
    • Wikle, C. and Cressie, N. (1999) A dimension reduced approach to space-time Kalman filtering. Biometrika, 86, 815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.1    Cressie, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.