메뉴 건너뛰기




Volumn 34, Issue 4, 2014, Pages 1169-1180

Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation

Author keywords

Artificial neural network; Hydrological drought; Monte carlo simulation; Standardized hydrological drought index; Uncertainty

Indexed keywords

CONFIDENCE INTERVAL; FEED-FORWARD ARTIFICIAL NEURAL NETWORKS; FORWARD SELECTION; HYDROLOGICAL DROUGHTS; INPUT VARIABLES; MONTE-CARLO SIMULATIONS; STANDARDIZED PRECIPITATION INDEX; UNCERTAINTY;

EID: 84900591331     PISSN: 08998418     EISSN: 10970088     Source Type: Journal    
DOI: 10.1002/joc.3754     Document Type: Article
Times cited : (128)

References (46)
  • 2
    • 84900648435 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff
    • Aqil M, Kita I, Yano A, Nishiyama S. 2006. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology 10: 1-13.
    • (2006) Journal of Hydrology , vol.10 , pp. 1-13
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 8844227567 scopus 로고    scopus 로고
    • Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs
    • Camdevyren H, Demyr N, Kanik A, Keskyn S. 2005. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling 181: 581-589.
    • (2005) Ecological Modelling , vol.181 , pp. 581-589
    • Camdevyren, H.1    Demyr, N.2    Kanik, A.3    Keskyn, S.4
  • 6
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230: 244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 8
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for flow forecasting in River Yangtze, China
    • Dawson CW, Wilby RL, Chen Y. 2002. Evaluation of artificial neural network techniques for flow forecasting in River Yangtze, China. Hydrology and Earth System Sciences 6: 619-626.
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 619-626
    • Dawson, C.W.1    Wilby, R.L.2    Chen, Y.3
  • 9
    • 33846798345 scopus 로고    scopus 로고
    • Hydrotest: a web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts
    • Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: a web-based toolbox of evaluation metrics for the standardized assessment of hydrological forecasts. Environmental Modelling and Software 22: 1034-1052.
    • (2007) Environmental Modelling and Software , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 11
    • 23144439109 scopus 로고    scopus 로고
    • Subset selection in multiple linear regression: a new mathematical programming approach
    • Eksioglu B, Demirer R, Capar I. 2005. Subset selection in multiple linear regression: a new mathematical programming approach. Computers and Industrial Engineering 49: 155-167.
    • (2005) Computers and Industrial Engineering , vol.49 , pp. 155-167
    • Eksioglu, B.1    Demirer, R.2    Capar, I.3
  • 14
    • 0033992165 scopus 로고    scopus 로고
    • Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis
    • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research 34: 807-816.
    • (2000) Water Research , vol.34 , pp. 807-816
    • Helena, B.1    Pardo, R.2    Vega, M.3    Barrado, E.4    Fernandez, J.M.5    Fernandez, L.6
  • 15
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feed forward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 0036129501 scopus 로고    scopus 로고
    • Longitudinal dispersion coefficients in natural channels
    • Kashefipour MS, Falconer RA. 2002. Longitudinal dispersion coefficients in natural channels. Water Research 36: 1596-1608.
    • (2002) Water Research , vol.36 , pp. 1596-1608
    • Kashefipour, M.S.1    Falconer, R.A.2
  • 18
    • 32044447474 scopus 로고    scopus 로고
    • Uncertainty analysis of statistical downscaling methods
    • Khan MS, Coulibaly P, Dibike P. 2006. Uncertainty analysis of statistical downscaling methods. Journal of Hydrology 319: 357-382.
    • (2006) Journal of Hydrology , vol.319 , pp. 357-382
    • Khan, M.S.1    Coulibaly, P.2    Dibike, P.3
  • 19
  • 20
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim TW, Valdes JB. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8(6): 319-328.
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 21
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks: comparison of network types
    • Kumar ARS, Sudheer KP, Jain SK, Agarwal PK. 2005. Rainfall-runoff modeling using artificial neural networks: comparison of network types. Hydrological Processes 19: 1277-1291.
    • (2005) Hydrological Processes , vol.19 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 24
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marce R, Comerma M, Garcia JC, Armengol J. 2004. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography Methods. 2: 342-355.
    • (2004) Limnology and Oceanography Methods. , vol.2 , pp. 342-355
    • Marce, R.1    Comerma, M.2    Garcia, J.C.3    Armengol, J.4
  • 26
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time steps, Preprints
    • January - Anaheim, California. 179-184.
    • McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time steps, Preprints, 8th Conference on Applied Climatology, January 17-22 Anaheim, California. 179-184.
    • (1993) 8th Conference on Applied Climatology , pp. 17-22
    • McKee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 28
    • 63149104793 scopus 로고    scopus 로고
    • Multi-criteria validation of artificial neural network rainfall-runoff modeling
    • Modarres R. 2009. Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrology and Earth System Sciences 13: 411-421.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 411-421
    • Modarres, R.1
  • 29
  • 30
    • 67649417415 scopus 로고    scopus 로고
    • Assessment of importance of water quality monitoring stations using principal component and factor analyses: a case study of the Karoon River
    • Persian).
    • Noori R, Kerachian R, Khodadadi A, Shakibayinia A. 2007. Assessment of importance of water quality monitoring stations using principal component and factor analyses: a case study of the Karoon River. Journal of Water and Wastewater 63: 60-69 (Persian).
    • (2007) Journal of Water and Wastewater , vol.63 , pp. 60-69
    • Noori, R.1    Kerachian, R.2    Khodadadi, A.3    Shakibayinia, A.4
  • 31
    • 64049092449 scopus 로고    scopus 로고
    • Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network
    • Noori R, Abdoli MA, Farokhnia A, Abbasi M. 2009. Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Systems with Applications 36(6): 9991-9999.
    • (2009) Expert Systems with Applications , vol.36 , Issue.6 , pp. 9991-9999
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4
  • 32
    • 77951204309 scopus 로고    scopus 로고
    • Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic
    • Noori R, Khakpour A, Omidvar B, Farokhnia A. 2010a. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications 37(8): 5856-5862.
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 5856-5862
    • Noori, R.1    Khakpour, A.2    Omidvar, B.3    Farokhnia, A.4
  • 33
    • 72149102122 scopus 로고    scopus 로고
    • Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction
    • Noori R, Karbassi AR, Sabahi MS. 2010b. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management 91(3): 767-771.
    • (2010) Journal of Environmental Management , vol.91 , Issue.3 , pp. 767-771
    • Noori, R.1    Karbassi, A.R.2    Sabahi, M.S.3
  • 34
    • 73749085391 scopus 로고    scopus 로고
    • Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
    • Noori R, Hoshiyaripour GA, Ashrafi K, Araabi BN. 2010c. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment 44(4): 476-482.
    • (2010) Atmospheric Environment , vol.44 , Issue.4 , pp. 476-482
    • Noori, R.1    Hoshiyaripour, G.A.2    Ashrafi, K.3    Araabi, B.N.4
  • 35
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, Ghafari GM. 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology 401(3-4): 177-189.
    • (2011) Journal of Hydrology , vol.401 , Issue.3-4 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Ghafari, G.M.7
  • 36
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar MP, Kothyarib UC, Chaube UC. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285: 96-113.
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyarib, U.C.2    Chaube, U.C.3
  • 37
    • 77958008013 scopus 로고    scopus 로고
    • Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets
    • Raziei T, Bordi I, Pereira LS, Sutera A. 2010. Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets. Hydrology and Earth System Sciences 14: 1919-1930.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 1919-1930
    • Raziei, T.1    Bordi, I.2    Pereira, L.S.3    Sutera, A.4
  • 39
    • 11644276139 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural Streams
    • Seo IW, Cheong TS. 1998. Predicting longitudinal dispersion coefficient in natural Streams. Journal of Hydraulic Engineering 124: 25-32.
    • (1998) Journal of Hydraulic Engineering , vol.124 , pp. 25-32
    • Seo, I.W.1    Cheong, T.S.2
  • 40
    • 84871434337 scopus 로고    scopus 로고
    • Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI)
    • DOI: 10.1007/s11269-012-0173-3
    • Tabari H, Nikbakht J, Hosseinzadeh Talaee P. 2012. Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI). Water Resources Management 27: 137-151. DOI: 10.1007/s11269-012-0173-3
    • (2012) Water Resources Management , vol.27 , pp. 137-151
    • Tabari, H.1    Nikbakht, J.2    Hosseinzadeh Talaee, P.3
  • 41
    • 27644468479 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams by artificial neural network
    • Tayfur G, Singh VP. 2005. Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. Journal of Hydraulic Engineering 131: 991-1000.
    • (2005) Journal of Hydraulic Engineering , vol.131 , pp. 991-1000
    • Tayfur, G.1    Singh, V.P.2
  • 42
    • 79952104129 scopus 로고    scopus 로고
    • Water balance derived drought index for Pinios river basin, Greece
    • Vasiliades L, Loukas A, Liberis NA. 2010. Water balance derived drought index for Pinios river basin, Greece. Water Resources Management. 25(4): 1087-1101.
    • (2010) Water Resources Management. , vol.25 , Issue.4 , pp. 1087-1101
    • Vasiliades, L.1    Loukas, A.2    Liberis, N.A.3
  • 45
    • 0022195325 scopus 로고
    • Understanding the drought phenomenon: definitions
    • Wilhite DA, Glantz MH. 1985. Understanding the drought phenomenon: definitions. Water International 10: 111-120.
    • (1985) Water International , vol.10 , pp. 111-120
    • Wilhite, D.A.1    Glantz, M.H.2
  • 46


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.