-
1
-
-
85047684282
-
The application of Gaussian Processes to the prediction of percutaneous absorption
-
G.P. Moss, Y. Sun, M. Prapopoulou, N. Davey, R. Adams, W.J. Pugh, and M.B. Brown, The application of Gaussian Processes to the prediction of percutaneous absorption, J. Pharm. Pharmacol. 61 (2009), pp. 1147–1153.
-
(2009)
J. Pharm. Pharmacol.
, vol.61
, pp. 1147-1153
-
-
Moss, G.P.1
Sun, Y.2
Prapopoulou, M.3
Davey, N.4
Adams, R.5
Pugh, W.J.6
Brown, M.B.7
-
2
-
-
77953557596
-
The application of feature selection to the development of Gaussian Process models for percutaneous absorption
-
L.T. Lam, Y. Sun, N. Davey, R.G. Adams, M. Prapopoulou, M.B. Brown, and G.P. Moss, The application of feature selection to the development of Gaussian Process models for percutaneous absorption, J. Pharm. Pharmacol. 62 (2010), pp. 738–749.
-
(2010)
J. Pharm. Pharmacol.
, vol.62
, pp. 738-749
-
-
Lam, L.T.1
Sun, Y.2
Davey, N.3
Adams, R.G.4
Prapopoulou, M.5
Brown, M.B.6
Moss, G.P.7
-
4
-
-
0026606514
-
Predicting skin permeability
-
R.O. Potts and R.H. Guy, Predicting skin permeability, Pharm. Res. 9 (1992), pp. 663–669.
-
(1992)
Pharm. Res.
, vol.9
, pp. 663-669
-
-
Potts, R.O.1
Guy, R.H.2
-
5
-
-
2342599148
-
Molecular size as the main determinant of solute maximum flux across the skin
-
B.M. Magnusson, Y.G. Anissimov, S.E. Cross, and M.S. Roberts, Molecular size as the main determinant of solute maximum flux across the skin, J. Invest. Dermatol. 122 (2004), pp. 993–999.
-
(2004)
J. Invest. Dermatol.
, vol.122
, pp. 993-999
-
-
Magnusson, B.M.1
Anissimov, Y.G.2
Cross, S.E.3
Roberts, M.S.4
-
6
-
-
0037093709
-
Quantitative structure–permeability relationships for percutaneous absorption: Re-analysis of steroid data
-
G.P. Moss and M.T.D. Cronin, Quantitative structure–permeability relationships for percutaneous absorption: Re-analysis of steroid data, Int. J. Pharm. 238 (2002), pp. 105–109.
-
(2002)
Int. J. Pharm.
, vol.238
, pp. 105-109
-
-
Moss, G.P.1
Cronin, M.T.D.2
-
7
-
-
0036675501
-
Quantitative structure–activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals
-
H. Patel, W. ten Berge, and M.T.D. Cronin, Quantitative structure–activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals, Chemosphere 48 (2002), pp. 603–613.
-
(2002)
Chemosphere
, vol.48
, pp. 603-613
-
-
Patel, H.1
ten Berge, W.2
Cronin, M.T.D.3
-
8
-
-
0036096659
-
Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption
-
G.P. Moss, J.C. Dearden, H. Patel, and M.T.D. Cronin, Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption, Toxicol. In Vitro 16 (2002), pp. 299–317.
-
(2002)
Toxicol. In Vitro
, vol.16
, pp. 299-317
-
-
Moss, G.P.1
Dearden, J.C.2
Patel, H.3
Cronin, M.T.D.4
-
10
-
-
0002584744
-
Physicochemical determinants of skin absorption
-
Gerrity T.R., Henry C.J., (eds), Elsevier, New York:
-
G.L. Flynn, Physicochemical determinants of skin absorption, in Principles of Route-to-Route Extrapolation for Risk Assessment, T.R. Gerrity and C.J. Henry, eds., Elsevier, New York, 1990, pp. 93–127.
-
(1990)
Principles of Route-to-Route Extrapolation for Risk Assessment
, pp. 93-127
-
-
Flynn, G.L.1
-
11
-
-
0029618807
-
A predictive algorithm for skin permeability: The effects of molecular size and hydrogen bond activity
-
R.O. Potts and R.H. Guy, A predictive algorithm for skin permeability: The effects of molecular size and hydrogen bond activity, Pharm. Res. 12 (1995), pp. 1628–1633.
-
(1995)
Pharm. Res.
, vol.12
, pp. 1628-1633
-
-
Potts, R.O.1
Guy, R.H.2
-
12
-
-
80052835638
-
Mathematical models of skin permeability: An overview
-
S. Mitragotri, Y.G. Anissimov, A.L. Bunge, H.F. Frasch, R.H. Guy, J. Hadgraft, G.B. Kasting, M.E. Lane, and M.S. Roberts, Mathematical models of skin permeability: An overview, Int. J. Pharm. 418 (2011), pp. 115–129.
-
(2011)
Int. J. Pharm.
, vol.418
, pp. 115-129
-
-
Mitragotri, S.1
Anissimov, Y.G.2
Bunge, A.L.3
Frasch, H.F.4
Guy, R.H.5
Hadgraft, J.6
Kasting, G.B.7
Lane, M.E.8
Roberts, M.S.9
-
13
-
-
0037331609
-
Fuzzy modelling of skin permeability coefficients
-
A.K. Pannier, R.M. Brand, and D.D. Jones, Fuzzy modelling of skin permeability coefficients, Pharm. Res. 20 (2003), pp. 143–148.
-
(2003)
Pharm. Res.
, vol.20
, pp. 143-148
-
-
Pannier, A.K.1
Brand, R.M.2
Jones, D.D.3
-
14
-
-
26444486428
-
Tagaki–Sugeno fuzzy modelling of skin permeability
-
D.R. Keshwani, D.D. Jones, and R.M. Brand, Tagaki–Sugeno fuzzy modelling of skin permeability, Cutan. Ocul. Toxicol. 24 (2005), pp. 149–163.
-
(2005)
Cutan. Ocul. Toxicol.
, vol.24
, pp. 149-163
-
-
Keshwani, D.R.1
Jones, D.D.2
Brand, R.M.3
-
15
-
-
0034213103
-
Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research
-
S. Agatonovic-Kustrin and R. Beresford, Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research, J. Pharm. Biomed. Anal. 22 (2000), pp. 717–727.
-
(2000)
J. Pharm. Biomed. Anal.
, vol.22
, pp. 717-727
-
-
Agatonovic-Kustrin, S.1
Beresford, R.2
-
16
-
-
0034904843
-
ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors
-
S. Agatonovic-Kustrin, R. Beresford, A. Pauzi, and M. Yusof, ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors, J. Pharm. Biomed. Anal. 26 (2001), pp. 241–254.
-
(2001)
J. Pharm. Biomed. Anal.
, vol.26
, pp. 241-254
-
-
Agatonovic-Kustrin, S.1
Beresford, R.2
Pauzi, A.3
Yusof, M.4
-
17
-
-
0031393965
-
Application of artificial neural networks (ANN) in the development of solid dosage forms
-
J. Bourquin, H. Schmidt, P. Van Hoogevest, and H. Leuen-Berger, Application of artificial neural networks (ANN) in the development of solid dosage forms, Pharm. Dev. Technol. 2 (1997), pp. 111–121.
-
(1997)
Pharm. Dev. Technol.
, vol.2
, pp. 111-121
-
-
Bourquin, J.1
Schmidt, H.2
Van Hoogevest, P.3
Leuen-Berger, H.4
-
18
-
-
0013645825
-
Comparison of artificial neural networks (ANN) with classical modelling technologies using different experimental designs and data from a galenical study on a solid dosage form
-
J. Bourquin, H. Schmidt, P. Van Hoogevest, and H. Leuen-Berger, Comparison of artificial neural networks (ANN) with classical modelling technologies using different experimental designs and data from a galenical study on a solid dosage form, Eur. J. Pharm. Sci. 7 (1998), pp. 1–12.
-
(1998)
Eur. J. Pharm. Sci.
, vol.7
, pp. 1-12
-
-
Bourquin, J.1
Schmidt, H.2
Van Hoogevest, P.3
Leuen-Berger, H.4
-
19
-
-
0030760466
-
Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations
-
J. Takahara, K. Takayama, and T. Nagai, Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations, J. Cont. Rel. 49 (1998), pp. 11–20.
-
(1998)
J. Cont. Rel.
, vol.49
, pp. 11-20
-
-
Takahara, J.1
Takayama, K.2
Nagai, T.3
-
20
-
-
0033008788
-
Use of artificial neural network to predict quaternary phase systems from limited experimental data
-
R.G. Alany, S. Agatonovic-Kustrin, T. Rades, and I.G. Tucker, Use of artificial neural network to predict quaternary phase systems from limited experimental data, J. Pharm. Biomed. Anal. 19 (1999), pp. 443–452.
-
(1999)
J. Pharm. Biomed. Anal.
, vol.19
, pp. 443-452
-
-
Alany, R.G.1
Agatonovic-Kustrin, S.2
Rades, T.3
Tucker, I.G.4
-
21
-
-
21644468970
-
Formulation optimisation of paclitaxel carried by PEGylated emulsions based on artificial neural network
-
T. Fan, K. Takayama, Y. Hattori, and Y. Maitani, Formulation optimisation of paclitaxel carried by PEGylated emulsions based on artificial neural network, Pharm. Res. 21 (2004), pp. 1692–1697.
-
(2004)
Pharm. Res.
, vol.21
, pp. 1692-1697
-
-
Fan, T.1
Takayama, K.2
Hattori, Y.3
Maitani, Y.4
-
22
-
-
82255162804
-
Reliability of nonlinear design space in pharmaceutical product development
-
Y. Hayashi, S. Kikuchi, Y. Onuki, and K. Takayama, Reliability of nonlinear design space in pharmaceutical product development, J. Pharm. Sci. 101 (2012), pp. 333–341.
-
(2012)
J. Pharm. Sci.
, vol.101
, pp. 333-341
-
-
Hayashi, Y.1
Kikuchi, S.2
Onuki, Y.3
Takayama, K.4
-
23
-
-
0030810006
-
Prediction of protein supersecondary structures based on the artificial neural network method
-
Z. Sun, X. Rao, L. Peng, and D. Xu, Prediction of protein supersecondary structures based on the artificial neural network method, Protein Eng. 10 (1997), pp. 763–769.
-
(1997)
Protein Eng.
, vol.10
, pp. 763-769
-
-
Sun, Z.1
Rao, X.2
Peng, L.3
Xu, D.4
-
24
-
-
0031283308
-
Artificial neural networks for molecular sequence analysis
-
C.H. Wu, Artificial neural networks for molecular sequence analysis, Comput. Chem. 21 (1997), pp. 237–256.
-
(1997)
Comput. Chem.
, vol.21
, pp. 237-256
-
-
Wu, C.H.1
-
25
-
-
0029363235
-
Analysis of tRNA gene sequences by neural network
-
J. Sun, W.Y. Song, L.H. Zhu, and R.S. Chen, Analysis of tRNA gene sequences by neural network, J. Comput. Biol. 2 (1995), pp. 409–416.
-
(1995)
J. Comput. Biol.
, vol.2
, pp. 409-416
-
-
Sun, J.1
Song, W.Y.2
Zhu, L.H.3
Chen, R.S.4
-
26
-
-
0030444757
-
Algorithm independent properties of RNA secondary structure predictions
-
M. Tacker, P.F. Stadler, E.G. Bornbergbauer, I.L. Hofacker, and P. Schuster, Algorithm independent properties of RNA secondary structure predictions, Eur. Biophys. J. 25 (1996), pp. 115–130.
-
(1996)
Eur. Biophys. J.
, vol.25
, pp. 115-130
-
-
Tacker, M.1
Stadler, P.F.2
Bornbergbauer, E.G.3
Hofacker, I.L.4
Schuster, P.5
-
27
-
-
0031105866
-
Generic properties of combinatory maps – Neural networks of RNA secondary structures
-
C.M. Reidys, P.F. Stadler, and P. Schuster, Generic properties of combinatory maps – Neural networks of RNA secondary structures, Bull. Math. Biol. 59 (1997), pp. 339–397.
-
(1997)
Bull. Math. Biol.
, vol.59
, pp. 339-397
-
-
Reidys, C.M.1
Stadler, P.F.2
Schuster, P.3
-
28
-
-
0028863971
-
Genetic algorithms in molecular recognition and design
-
P. Willett, Genetic algorithms in molecular recognition and design, Trends Biotechnol. 13 (1995), pp. 516–521.
-
(1995)
Trends Biotechnol.
, vol.13
, pp. 516-521
-
-
Willett, P.1
-
29
-
-
0029970338
-
Evolutionary optimization in quantitative structure–activity relationship: An application of genetic neural networks
-
S.S. So and M. Karplus, Evolutionary optimization in quantitative structure–activity relationship: An application of genetic neural networks, J. Med. Chem. 39 (1996), pp. 1521–1530.
-
(1996)
J. Med. Chem.
, vol.39
, pp. 1521-1530
-
-
So, S.S.1
Karplus, M.2
-
30
-
-
0031434910
-
Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Methods and validations
-
S.S. So and M. Karplus, Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Methods and validations, J. Med. Chem. 40 (1997), pp. 4347–4359.
-
(1997)
J. Med. Chem.
, vol.40
, pp. 4347-4359
-
-
So, S.S.1
Karplus, M.2
-
31
-
-
0031466773
-
Three-dimensional quantitative structure–activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications
-
S.S. So and M. Karplus, Three-dimensional quantitative structure–activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications, J. Med. Chem. 40 (1997), pp. 4360–4371.
-
(1997)
J. Med. Chem.
, vol.40
, pp. 4360-4371
-
-
So, S.S.1
Karplus, M.2
-
32
-
-
0037372694
-
Prediction of skin penetration using artificial neural network (ANN) modelling
-
T. Degim, J. Hadgraft, S. Illbasmis, and Y. Ozkan, Prediction of skin penetration using artificial neural network (ANN) modelling, J. Pharm. Sci. 92 (2003), pp. 656–664.
-
(2003)
J. Pharm. Sci.
, vol.92
, pp. 656-664
-
-
Degim, T.1
Hadgraft, J.2
Illbasmis, S.3
Ozkan, Y.4
-
33
-
-
0031260659
-
Using artificial neural networks to classify the activity of capsaicin and its analogues
-
M. Hosseini, D.J. Madalena, and I. Spence, Using artificial neural networks to classify the activity of capsaicin and its analogues, J. Chem. Inf. Comput. 37 (1997), pp. 1129–1137.
-
(1997)
J. Chem. Inf. Comput.
, vol.37
, pp. 1129-1137
-
-
Hosseini, M.1
Madalena, D.J.2
Spence, I.3
-
34
-
-
33947704073
-
Prediction of human skin permeability using artificial neural network (ANN) modelling
-
L.J. Chen, G.P. Lian, and L.J. Han, Prediction of human skin permeability using artificial neural network (ANN) modelling, Acta Pharmacol. Sinica. 28 (2007), pp. 591–600.
-
(2007)
Acta Pharmacol. Sinica.
, vol.28
, pp. 591-600
-
-
Chen, L.J.1
Lian, G.P.2
Han, L.J.3
-
35
-
-
0030769232
-
Algorithms for skin permeability using hydrogen bond descriptors: The problem of steroids
-
M.H. Abraham, F. Martins, and R.C. Mitchell, Algorithms for skin permeability using hydrogen bond descriptors: The problem of steroids, J. Pharm. Pharmacol. 49 (1997), pp. 858–865.
-
(1997)
J. Pharm. Pharmacol.
, vol.49
, pp. 858-865
-
-
Abraham, M.H.1
Martins, F.2
Mitchell, R.C.3
-
36
-
-
0036513217
-
Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network
-
C.W. Lim, S. Fujiwara, F. Yamashita, and M. Hashida, Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network, Bio. Pharm. Bull. 25 (2002), pp. 361–366.
-
(2002)
Bio. Pharm. Bull.
, vol.25
, pp. 361-366
-
-
Lim, C.W.1
Fujiwara, S.2
Yamashita, F.3
Hashida, M.4
-
37
-
-
79959726175
-
Prediction of skin penetration using artificial neural network
-
S. Siani, S.K. Singh, A. Garg, K. Khanna, A. Shandil, and D.N. Mishra, Prediction of skin penetration using artificial neural network, Int. J. Eng. Sci. Tech. 2 (2010), pp. 1526–1531.
-
(2010)
Int. J. Eng. Sci. Tech.
, vol.2
, pp. 1526-1531
-
-
Siani, S.1
Singh, S.K.2
Garg, A.3
Khanna, K.4
Shandil, A.5
Mishra, D.N.6
-
38
-
-
78751628653
-
The application of stochastic Machine Learning methods in the prediction of skin penetration
-
Y. Sun, G.P. Moss, N. Davey, R. Adams, and M.B. Brown, The application of stochastic Machine Learning methods in the prediction of skin penetration, App. Soft Comput. 11 (2011), pp. 2367–2375.
-
(2011)
App. Soft Comput.
, vol.11
, pp. 2367-2375
-
-
Sun, Y.1
Moss, G.P.2
Davey, N.3
Adams, R.4
Brown, M.B.5
-
39
-
-
84876437454
-
Computer-aided diagnosis (CAD) of the skin disease based an intelligent classification of sonogram using neural network
-
S. Kia, S. Setayeshi, M. Shamsaei, and M. Kia, Computer-aided diagnosis (CAD) of the skin disease based an intelligent classification of sonogram using neural network, Neural Comput. Applic. 22 (2013), pp. 1049–1062.
-
(2013)
Neural Comput. Applic.
, vol.22
, pp. 1049-1062
-
-
Kia, S.1
Setayeshi, S.2
Shamsaei, M.3
Kia, M.4
-
40
-
-
34548863911
-
Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds
-
B. Baert, E. Deconinck, M. van Gele, M. Slodicka, P. Stoppie, S. Bode, G. Slegers, Y. van der Heyden, J. Lambert, J. Beetens, and B. de Spiegeleer, Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds, Bioorg. Med. Chem. 15 (2007), pp. 6943–6955.
-
(2007)
Bioorg. Med. Chem.
, vol.15
, pp. 6943-6955
-
-
Baert, B.1
Deconinck, E.2
van Gele, M.3
Slodicka, M.4
Stoppie, P.5
Bode, S.6
Slegers, G.7
van der Heyden, Y.8
Lambert, J.9
Beetens, J.10
de Spiegeleer, B.11
-
41
-
-
0029582936
-
Epidermal permeability-penetrant structure relationships: 1. An analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions
-
M.S. Roberts, W.J. Pugh, J. Hadgraft, and A.C. Watkinson, Epidermal permeability-penetrant structure relationships: 1. An analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions, Int. J. Pharm. 126 (1995), pp. 219–233.
-
(1995)
Int. J. Pharm.
, vol.126
, pp. 219-233
-
-
Roberts, M.S.1
Pugh, W.J.2
Hadgraft, J.3
Watkinson, A.C.4
-
42
-
-
0029950564
-
Epidermal permeability–penetrant structure relationships. 2. The effect of H-bonding groups in penetrants on their diffusion through the stratum corneum
-
M.S. Roberts, W.J. Pugh, and J. Hadgraft, Epidermal permeability–penetrant structure relationships. 2. The effect of H-bonding groups in penetrants on their diffusion through the stratum corneum, Int. J. Pharm. 132 (1996), pp. 23–32.
-
(1996)
Int. J. Pharm.
, vol.132
, pp. 23-32
-
-
Roberts, M.S.1
Pugh, W.J.2
Hadgraft, J.3
-
43
-
-
0029768028
-
Epidermal permeability–penetrant structure relationships: 3. The effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum
-
W.J. Pugh, M.S. Roberts, and J. Hadgraft, Epidermal permeability–penetrant structure relationships: 3. The effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum, Int. J. Pharm. 138 (1996), pp. 149–165.
-
(1996)
Int. J. Pharm.
, vol.138
, pp. 149-165
-
-
Pugh, W.J.1
Roberts, M.S.2
Hadgraft, J.3
-
44
-
-
70349638463
-
Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient
-
B. Neely, S. Madihally, R.J. Robinson, and K. Gasem, Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient, J. Pharm. Sci. 98 (2009), pp. 4069–4084.
-
(2009)
J. Pharm. Sci.
, vol.98
, pp. 4069-4084
-
-
Neely, B.1
Madihally, S.2
Robinson, R.J.3
Gasem, K.4
-
45
-
-
83655201097
-
The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers
-
G.P. Moss, A.J. Shah, R.G. Adams, N. Davey, S.C. Wilkinson, W.J. Pugh, and Y. Sun, The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers, Eur. J. Pharm. Sci. 45 (2012), pp. 116–127.
-
(2012)
Eur. J. Pharm. Sci.
, vol.45
, pp. 116-127
-
-
Moss, G.P.1
Shah, A.J.2
Adams, R.G.3
Davey, N.4
Wilkinson, S.C.5
Pugh, W.J.6
Sun, Y.7
-
46
-
-
0014448269
-
Percutaneous absorption of steroids
-
R.J. Scheuplein, I.H. Blank, G.I. Brauner, and D.J. MacFarlane, Percutaneous absorption of steroids, J. Invest. Dermatol. 52 (1969), pp. 63–70.
-
(1969)
J. Invest. Dermatol.
, vol.52
, pp. 63-70
-
-
Scheuplein, R.J.1
Blank, I.H.2
Brauner, G.I.3
MacFarlane, D.J.4
-
47
-
-
0029087244
-
Permeation of steroids through human skin
-
M.E. Johnson, D. Blankstein, and R. Langer, Permeation of steroids through human skin, J. Pharm. Sci. 84 (1995), pp. 1144–1146.
-
(1995)
J. Pharm. Sci.
, vol.84
, pp. 1144-1146
-
-
Johnson, M.E.1
Blankstein, D.2
Langer, R.3
-
48
-
-
20144388993
-
Inter- and intra-laboratory variation of in vitro diffusion cell measurements: An international multicenter study using quasi-standardised methods and materials
-
R.P. Chilcott, N. Barai, A.E. Beezer, S.L. Brain, M.B. Brown, A.L. Bunge, S.E. Burgess, S. Cross, C.H. Dalton, M. Dias, A. Farinha, B.C. Finnin, S.J. Gallagher, D.M. Green, H. Gunt, R.L. Gwyther, C.M. Heard, C.A. Jarvis, F. Kamiyama, G.B. Kasting, E.E. Ley, S.T. Lim, G.S. McNaughton, A. Morris, M.H. Nazemi, M.A. Pellett, J. Du Plessis, Y.S Quan, S.L. Raghavan, M. Roberts, W. Romonchuk, C.S. Roper, D. Schenk, L. Simonsen, A. Simpson, B.D. Traversa, L. Trottet, A. Watkinson, S.C. Wilkinson, F.M. Williams, A. Yamamoto, and J. Hadgraft, Inter- and intra-laboratory variation of in vitro diffusion cell measurements: An international multicenter study using quasi-standardised methods and materials, J. Pharm. Sci. 94 (2005), pp. 632–638.
-
(2005)
J. Pharm. Sci.
, vol.94
, pp. 632-638
-
-
Chilcott, R.P.1
Barai, N.2
Beezer, A.E.3
Brain, S.L.4
Brown, M.B.5
Bunge, A.L.6
Burgess, S.E.7
Cross, S.8
Dalton, C.H.9
Dias, M.10
Farinha, A.11
Finnin, B.C.12
Gallagher, S.J.13
Green, D.M.14
Gunt, H.15
Gwyther, R.L.16
Heard, C.M.17
Jarvis, C.A.18
Kamiyama, F.19
Kasting, G.B.20
Ley, E.E.21
Lim, S.T.22
McNaughton, G.S.23
Morris, A.24
Nazemi, M.H.25
Pellett, M.A.26
Du Plessis, J.27
Quan, Y.S.28
Raghavan, S.L.29
Roberts, M.30
Romonchuk, W.31
Roper, C.S.32
Schenk, D.33
Simonsen, L.34
Simpson, A.35
Traversa, B.D.36
Trottet, L.37
Watkinson, A.38
Wilkinson, S.C.39
Williams, F.M.40
Yamamoto, A.41
Hadgraft, J.42
more..
-
49
-
-
25444526652
-
Predicting skin permeability from complex chemical mixtures
-
J.E. Riviere and J.D. Brooks, Predicting skin permeability from complex chemical mixtures, Toxicol. Appl. Pharmacol. 208 (2005), pp. 99–100.
-
(2005)
Toxicol. Appl. Pharmacol.
, vol.208
, pp. 99-100
-
-
Riviere, J.E.1
Brooks, J.D.2
-
50
-
-
33847050326
-
Prediction of dermal absorption from complex chemical mixtures: Incorporation of vehicle effects and interactions into a QSPR framework
-
J.E. Riviere and J.D. Brooks, Prediction of dermal absorption from complex chemical mixtures: Incorporation of vehicle effects and interactions into a QSPR framework, SAR QSAR Environ. Res. 18 (2007), pp. 31–44.
-
(2007)
SAR QSAR Environ. Res.
, vol.18
, pp. 31-44
-
-
Riviere, J.E.1
Brooks, J.D.2
-
51
-
-
77956226894
-
Modelling the effect of mixture components on permeation through skin
-
T. Ghafourian, E.G. Samaras, J.D. Brooks, and J. Riviere, Modelling the effect of mixture components on permeation through skin, Int. J. Pharm. 398 (2010), pp. 28–32.
-
(2010)
Int. J. Pharm.
, vol.398
, pp. 28-32
-
-
Ghafourian, T.1
Samaras, E.G.2
Brooks, J.D.3
Riviere, J.4
-
52
-
-
78650545496
-
Predicting skin permeability from complex chemical mixtures: Dependency of quantitative structure permeation relationships on biology of skin models used
-
J.E. Riviere and J.D. Brooks, Predicting skin permeability from complex chemical mixtures: Dependency of quantitative structure permeation relationships on biology of skin models used, Toxicol. Sci. 119 (2011), pp. 224–232.
-
(2011)
Toxicol. Sci.
, vol.119
, pp. 224-232
-
-
Riviere, J.E.1
Brooks, J.D.2
-
54
-
-
85194974585
-
Predictions of skin penetration using Machine Learning methods, in ICDM2008 Proceedings of 8th IEEE International Conference on Data Mining
-
Giannotti F, Gunopulos D, Turini F, Zaniolo C, Ramakrishnan N, Wu X.D, (eds)
-
Y. Sun, G.P. Moss, M. Prapodopolou, N. Davey, R. Adams, and M.B. Brown, Predictions of skin penetration using Machine Learning methods, in ICDM2008 Proceedings of 8th IEEE International Conference on Data Mining, F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X.D. Wu, eds., IEEE Computer Society, Los Alamitos, CA, USA, pp. 1049–1054.
-
-
-
Sun, Y.1
Moss, G.P.2
Prapodopolou, M.3
Davey, N.4
Adams, R.5
Brown, M.B.6
-
56
-
-
85194979333
-
Gaussian Process software
-
A. Geiger, Gaussian Process software; software available at: http://www.gaussianprocess.org/#code.
-
-
-
Geiger, A.1
-
57
-
-
85194975958
-
-
MathWorks Ltd, Nitick, MA, USA:
-
MatLab2012a. MathWorks Ltd, Nitick, MA, USA, 2012; software available at http://jmlr.org/papers/v11/rasmussen10a.html.
-
(2012)
-
-
-
58
-
-
79551489429
-
Gaussian Processes for Machine Learning (GPML) toolbox
-
C.E. Rasmussen and H. Nickisch, Gaussian Processes for Machine Learning (GPML) toolbox, J. Mach. Learn. Res. 11 (2010), pp. 3011–3015.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3011-3015
-
-
Rasmussen, C.E.1
Nickisch, H.2
|