메뉴 건너뛰기




Volumn 26, Issue 3, 2015, Pages 181-204

The application of machine learning to the modelling of percutaneous absorption: An overview and guide

Author keywords

Gaussian process; machine learning; percutaneous absorption; quantitative structure permeability relationships (QSPRs); skin permeation

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOLOGICAL SYSTEMS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); LEARNING SYSTEMS; MECHANICAL PERMEABILITY; REGRESSION ANALYSIS;

EID: 84925141108     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/1062936X.2015.1018941     Document Type: Article
Times cited : (12)

References (58)
  • 2
    • 77953557596 scopus 로고    scopus 로고
    • The application of feature selection to the development of Gaussian Process models for percutaneous absorption
    • L.T. Lam, Y. Sun, N. Davey, R.G. Adams, M. Prapopoulou, M.B. Brown, and G.P. Moss, The application of feature selection to the development of Gaussian Process models for percutaneous absorption, J. Pharm. Pharmacol. 62 (2010), pp. 738–749.
    • (2010) J. Pharm. Pharmacol. , vol.62 , pp. 738-749
    • Lam, L.T.1    Sun, Y.2    Davey, N.3    Adams, R.G.4    Prapopoulou, M.5    Brown, M.B.6    Moss, G.P.7
  • 4
    • 0026606514 scopus 로고
    • Predicting skin permeability
    • R.O. Potts and R.H. Guy, Predicting skin permeability, Pharm. Res. 9 (1992), pp. 663–669.
    • (1992) Pharm. Res. , vol.9 , pp. 663-669
    • Potts, R.O.1    Guy, R.H.2
  • 5
    • 2342599148 scopus 로고    scopus 로고
    • Molecular size as the main determinant of solute maximum flux across the skin
    • B.M. Magnusson, Y.G. Anissimov, S.E. Cross, and M.S. Roberts, Molecular size as the main determinant of solute maximum flux across the skin, J. Invest. Dermatol. 122 (2004), pp. 993–999.
    • (2004) J. Invest. Dermatol. , vol.122 , pp. 993-999
    • Magnusson, B.M.1    Anissimov, Y.G.2    Cross, S.E.3    Roberts, M.S.4
  • 6
    • 0037093709 scopus 로고    scopus 로고
    • Quantitative structure–permeability relationships for percutaneous absorption: Re-analysis of steroid data
    • G.P. Moss and M.T.D. Cronin, Quantitative structure–permeability relationships for percutaneous absorption: Re-analysis of steroid data, Int. J. Pharm. 238 (2002), pp. 105–109.
    • (2002) Int. J. Pharm. , vol.238 , pp. 105-109
    • Moss, G.P.1    Cronin, M.T.D.2
  • 7
    • 0036675501 scopus 로고    scopus 로고
    • Quantitative structure–activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals
    • H. Patel, W. ten Berge, and M.T.D. Cronin, Quantitative structure–activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals, Chemosphere 48 (2002), pp. 603–613.
    • (2002) Chemosphere , vol.48 , pp. 603-613
    • Patel, H.1    ten Berge, W.2    Cronin, M.T.D.3
  • 8
    • 0036096659 scopus 로고    scopus 로고
    • Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption
    • G.P. Moss, J.C. Dearden, H. Patel, and M.T.D. Cronin, Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption, Toxicol. In Vitro 16 (2002), pp. 299–317.
    • (2002) Toxicol. In Vitro , vol.16 , pp. 299-317
    • Moss, G.P.1    Dearden, J.C.2    Patel, H.3    Cronin, M.T.D.4
  • 10
    • 0002584744 scopus 로고
    • Physicochemical determinants of skin absorption
    • Gerrity T.R., Henry C.J., (eds), Elsevier, New York:
    • G.L. Flynn, Physicochemical determinants of skin absorption, in Principles of Route-to-Route Extrapolation for Risk Assessment, T.R. Gerrity and C.J. Henry, eds., Elsevier, New York, 1990, pp. 93–127.
    • (1990) Principles of Route-to-Route Extrapolation for Risk Assessment , pp. 93-127
    • Flynn, G.L.1
  • 11
    • 0029618807 scopus 로고
    • A predictive algorithm for skin permeability: The effects of molecular size and hydrogen bond activity
    • R.O. Potts and R.H. Guy, A predictive algorithm for skin permeability: The effects of molecular size and hydrogen bond activity, Pharm. Res. 12 (1995), pp. 1628–1633.
    • (1995) Pharm. Res. , vol.12 , pp. 1628-1633
    • Potts, R.O.1    Guy, R.H.2
  • 13
    • 0037331609 scopus 로고    scopus 로고
    • Fuzzy modelling of skin permeability coefficients
    • A.K. Pannier, R.M. Brand, and D.D. Jones, Fuzzy modelling of skin permeability coefficients, Pharm. Res. 20 (2003), pp. 143–148.
    • (2003) Pharm. Res. , vol.20 , pp. 143-148
    • Pannier, A.K.1    Brand, R.M.2    Jones, D.D.3
  • 14
    • 26444486428 scopus 로고    scopus 로고
    • Tagaki–Sugeno fuzzy modelling of skin permeability
    • D.R. Keshwani, D.D. Jones, and R.M. Brand, Tagaki–Sugeno fuzzy modelling of skin permeability, Cutan. Ocul. Toxicol. 24 (2005), pp. 149–163.
    • (2005) Cutan. Ocul. Toxicol. , vol.24 , pp. 149-163
    • Keshwani, D.R.1    Jones, D.D.2    Brand, R.M.3
  • 15
    • 0034213103 scopus 로고    scopus 로고
    • Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research
    • S. Agatonovic-Kustrin and R. Beresford, Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research, J. Pharm. Biomed. Anal. 22 (2000), pp. 717–727.
    • (2000) J. Pharm. Biomed. Anal. , vol.22 , pp. 717-727
    • Agatonovic-Kustrin, S.1    Beresford, R.2
  • 16
    • 0034904843 scopus 로고    scopus 로고
    • ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors
    • S. Agatonovic-Kustrin, R. Beresford, A. Pauzi, and M. Yusof, ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors, J. Pharm. Biomed. Anal. 26 (2001), pp. 241–254.
    • (2001) J. Pharm. Biomed. Anal. , vol.26 , pp. 241-254
    • Agatonovic-Kustrin, S.1    Beresford, R.2    Pauzi, A.3    Yusof, M.4
  • 17
    • 0031393965 scopus 로고    scopus 로고
    • Application of artificial neural networks (ANN) in the development of solid dosage forms
    • J. Bourquin, H. Schmidt, P. Van Hoogevest, and H. Leuen-Berger, Application of artificial neural networks (ANN) in the development of solid dosage forms, Pharm. Dev. Technol. 2 (1997), pp. 111–121.
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 111-121
    • Bourquin, J.1    Schmidt, H.2    Van Hoogevest, P.3    Leuen-Berger, H.4
  • 18
    • 0013645825 scopus 로고    scopus 로고
    • Comparison of artificial neural networks (ANN) with classical modelling technologies using different experimental designs and data from a galenical study on a solid dosage form
    • J. Bourquin, H. Schmidt, P. Van Hoogevest, and H. Leuen-Berger, Comparison of artificial neural networks (ANN) with classical modelling technologies using different experimental designs and data from a galenical study on a solid dosage form, Eur. J. Pharm. Sci. 7 (1998), pp. 1–12.
    • (1998) Eur. J. Pharm. Sci. , vol.7 , pp. 1-12
    • Bourquin, J.1    Schmidt, H.2    Van Hoogevest, P.3    Leuen-Berger, H.4
  • 19
    • 0030760466 scopus 로고    scopus 로고
    • Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations
    • J. Takahara, K. Takayama, and T. Nagai, Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations, J. Cont. Rel. 49 (1998), pp. 11–20.
    • (1998) J. Cont. Rel. , vol.49 , pp. 11-20
    • Takahara, J.1    Takayama, K.2    Nagai, T.3
  • 20
    • 0033008788 scopus 로고    scopus 로고
    • Use of artificial neural network to predict quaternary phase systems from limited experimental data
    • R.G. Alany, S. Agatonovic-Kustrin, T. Rades, and I.G. Tucker, Use of artificial neural network to predict quaternary phase systems from limited experimental data, J. Pharm. Biomed. Anal. 19 (1999), pp. 443–452.
    • (1999) J. Pharm. Biomed. Anal. , vol.19 , pp. 443-452
    • Alany, R.G.1    Agatonovic-Kustrin, S.2    Rades, T.3    Tucker, I.G.4
  • 21
    • 21644468970 scopus 로고    scopus 로고
    • Formulation optimisation of paclitaxel carried by PEGylated emulsions based on artificial neural network
    • T. Fan, K. Takayama, Y. Hattori, and Y. Maitani, Formulation optimisation of paclitaxel carried by PEGylated emulsions based on artificial neural network, Pharm. Res. 21 (2004), pp. 1692–1697.
    • (2004) Pharm. Res. , vol.21 , pp. 1692-1697
    • Fan, T.1    Takayama, K.2    Hattori, Y.3    Maitani, Y.4
  • 22
    • 82255162804 scopus 로고    scopus 로고
    • Reliability of nonlinear design space in pharmaceutical product development
    • Y. Hayashi, S. Kikuchi, Y. Onuki, and K. Takayama, Reliability of nonlinear design space in pharmaceutical product development, J. Pharm. Sci. 101 (2012), pp. 333–341.
    • (2012) J. Pharm. Sci. , vol.101 , pp. 333-341
    • Hayashi, Y.1    Kikuchi, S.2    Onuki, Y.3    Takayama, K.4
  • 23
    • 0030810006 scopus 로고    scopus 로고
    • Prediction of protein supersecondary structures based on the artificial neural network method
    • Z. Sun, X. Rao, L. Peng, and D. Xu, Prediction of protein supersecondary structures based on the artificial neural network method, Protein Eng. 10 (1997), pp. 763–769.
    • (1997) Protein Eng. , vol.10 , pp. 763-769
    • Sun, Z.1    Rao, X.2    Peng, L.3    Xu, D.4
  • 24
    • 0031283308 scopus 로고    scopus 로고
    • Artificial neural networks for molecular sequence analysis
    • C.H. Wu, Artificial neural networks for molecular sequence analysis, Comput. Chem. 21 (1997), pp. 237–256.
    • (1997) Comput. Chem. , vol.21 , pp. 237-256
    • Wu, C.H.1
  • 25
    • 0029363235 scopus 로고
    • Analysis of tRNA gene sequences by neural network
    • J. Sun, W.Y. Song, L.H. Zhu, and R.S. Chen, Analysis of tRNA gene sequences by neural network, J. Comput. Biol. 2 (1995), pp. 409–416.
    • (1995) J. Comput. Biol. , vol.2 , pp. 409-416
    • Sun, J.1    Song, W.Y.2    Zhu, L.H.3    Chen, R.S.4
  • 27
    • 0031105866 scopus 로고    scopus 로고
    • Generic properties of combinatory maps – Neural networks of RNA secondary structures
    • C.M. Reidys, P.F. Stadler, and P. Schuster, Generic properties of combinatory maps – Neural networks of RNA secondary structures, Bull. Math. Biol. 59 (1997), pp. 339–397.
    • (1997) Bull. Math. Biol. , vol.59 , pp. 339-397
    • Reidys, C.M.1    Stadler, P.F.2    Schuster, P.3
  • 28
    • 0028863971 scopus 로고
    • Genetic algorithms in molecular recognition and design
    • P. Willett, Genetic algorithms in molecular recognition and design, Trends Biotechnol. 13 (1995), pp. 516–521.
    • (1995) Trends Biotechnol. , vol.13 , pp. 516-521
    • Willett, P.1
  • 29
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure–activity relationship: An application of genetic neural networks
    • S.S. So and M. Karplus, Evolutionary optimization in quantitative structure–activity relationship: An application of genetic neural networks, J. Med. Chem. 39 (1996), pp. 1521–1530.
    • (1996) J. Med. Chem. , vol.39 , pp. 1521-1530
    • So, S.S.1    Karplus, M.2
  • 30
    • 0031434910 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Methods and validations
    • S.S. So and M. Karplus, Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Methods and validations, J. Med. Chem. 40 (1997), pp. 4347–4359.
    • (1997) J. Med. Chem. , vol.40 , pp. 4347-4359
    • So, S.S.1    Karplus, M.2
  • 31
    • 0031466773 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure–activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications
    • S.S. So and M. Karplus, Three-dimensional quantitative structure–activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications, J. Med. Chem. 40 (1997), pp. 4360–4371.
    • (1997) J. Med. Chem. , vol.40 , pp. 4360-4371
    • So, S.S.1    Karplus, M.2
  • 32
    • 0037372694 scopus 로고    scopus 로고
    • Prediction of skin penetration using artificial neural network (ANN) modelling
    • T. Degim, J. Hadgraft, S. Illbasmis, and Y. Ozkan, Prediction of skin penetration using artificial neural network (ANN) modelling, J. Pharm. Sci. 92 (2003), pp. 656–664.
    • (2003) J. Pharm. Sci. , vol.92 , pp. 656-664
    • Degim, T.1    Hadgraft, J.2    Illbasmis, S.3    Ozkan, Y.4
  • 33
    • 0031260659 scopus 로고    scopus 로고
    • Using artificial neural networks to classify the activity of capsaicin and its analogues
    • M. Hosseini, D.J. Madalena, and I. Spence, Using artificial neural networks to classify the activity of capsaicin and its analogues, J. Chem. Inf. Comput. 37 (1997), pp. 1129–1137.
    • (1997) J. Chem. Inf. Comput. , vol.37 , pp. 1129-1137
    • Hosseini, M.1    Madalena, D.J.2    Spence, I.3
  • 34
    • 33947704073 scopus 로고    scopus 로고
    • Prediction of human skin permeability using artificial neural network (ANN) modelling
    • L.J. Chen, G.P. Lian, and L.J. Han, Prediction of human skin permeability using artificial neural network (ANN) modelling, Acta Pharmacol. Sinica. 28 (2007), pp. 591–600.
    • (2007) Acta Pharmacol. Sinica. , vol.28 , pp. 591-600
    • Chen, L.J.1    Lian, G.P.2    Han, L.J.3
  • 35
    • 0030769232 scopus 로고    scopus 로고
    • Algorithms for skin permeability using hydrogen bond descriptors: The problem of steroids
    • M.H. Abraham, F. Martins, and R.C. Mitchell, Algorithms for skin permeability using hydrogen bond descriptors: The problem of steroids, J. Pharm. Pharmacol. 49 (1997), pp. 858–865.
    • (1997) J. Pharm. Pharmacol. , vol.49 , pp. 858-865
    • Abraham, M.H.1    Martins, F.2    Mitchell, R.C.3
  • 36
    • 0036513217 scopus 로고    scopus 로고
    • Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network
    • C.W. Lim, S. Fujiwara, F. Yamashita, and M. Hashida, Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network, Bio. Pharm. Bull. 25 (2002), pp. 361–366.
    • (2002) Bio. Pharm. Bull. , vol.25 , pp. 361-366
    • Lim, C.W.1    Fujiwara, S.2    Yamashita, F.3    Hashida, M.4
  • 38
    • 78751628653 scopus 로고    scopus 로고
    • The application of stochastic Machine Learning methods in the prediction of skin penetration
    • Y. Sun, G.P. Moss, N. Davey, R. Adams, and M.B. Brown, The application of stochastic Machine Learning methods in the prediction of skin penetration, App. Soft Comput. 11 (2011), pp. 2367–2375.
    • (2011) App. Soft Comput. , vol.11 , pp. 2367-2375
    • Sun, Y.1    Moss, G.P.2    Davey, N.3    Adams, R.4    Brown, M.B.5
  • 39
    • 84876437454 scopus 로고    scopus 로고
    • Computer-aided diagnosis (CAD) of the skin disease based an intelligent classification of sonogram using neural network
    • S. Kia, S. Setayeshi, M. Shamsaei, and M. Kia, Computer-aided diagnosis (CAD) of the skin disease based an intelligent classification of sonogram using neural network, Neural Comput. Applic. 22 (2013), pp. 1049–1062.
    • (2013) Neural Comput. Applic. , vol.22 , pp. 1049-1062
    • Kia, S.1    Setayeshi, S.2    Shamsaei, M.3    Kia, M.4
  • 41
    • 0029582936 scopus 로고
    • Epidermal permeability-penetrant structure relationships: 1. An analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions
    • M.S. Roberts, W.J. Pugh, J. Hadgraft, and A.C. Watkinson, Epidermal permeability-penetrant structure relationships: 1. An analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions, Int. J. Pharm. 126 (1995), pp. 219–233.
    • (1995) Int. J. Pharm. , vol.126 , pp. 219-233
    • Roberts, M.S.1    Pugh, W.J.2    Hadgraft, J.3    Watkinson, A.C.4
  • 42
    • 0029950564 scopus 로고    scopus 로고
    • Epidermal permeability–penetrant structure relationships. 2. The effect of H-bonding groups in penetrants on their diffusion through the stratum corneum
    • M.S. Roberts, W.J. Pugh, and J. Hadgraft, Epidermal permeability–penetrant structure relationships. 2. The effect of H-bonding groups in penetrants on their diffusion through the stratum corneum, Int. J. Pharm. 132 (1996), pp. 23–32.
    • (1996) Int. J. Pharm. , vol.132 , pp. 23-32
    • Roberts, M.S.1    Pugh, W.J.2    Hadgraft, J.3
  • 43
    • 0029768028 scopus 로고    scopus 로고
    • Epidermal permeability–penetrant structure relationships: 3. The effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum
    • W.J. Pugh, M.S. Roberts, and J. Hadgraft, Epidermal permeability–penetrant structure relationships: 3. The effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum, Int. J. Pharm. 138 (1996), pp. 149–165.
    • (1996) Int. J. Pharm. , vol.138 , pp. 149-165
    • Pugh, W.J.1    Roberts, M.S.2    Hadgraft, J.3
  • 44
    • 70349638463 scopus 로고    scopus 로고
    • Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient
    • B. Neely, S. Madihally, R.J. Robinson, and K. Gasem, Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient, J. Pharm. Sci. 98 (2009), pp. 4069–4084.
    • (2009) J. Pharm. Sci. , vol.98 , pp. 4069-4084
    • Neely, B.1    Madihally, S.2    Robinson, R.J.3    Gasem, K.4
  • 45
    • 83655201097 scopus 로고    scopus 로고
    • The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers
    • G.P. Moss, A.J. Shah, R.G. Adams, N. Davey, S.C. Wilkinson, W.J. Pugh, and Y. Sun, The application of discriminant analysis and Machine Learning methods as tools to identify and classify compounds with potential as transdermal enhancers, Eur. J. Pharm. Sci. 45 (2012), pp. 116–127.
    • (2012) Eur. J. Pharm. Sci. , vol.45 , pp. 116-127
    • Moss, G.P.1    Shah, A.J.2    Adams, R.G.3    Davey, N.4    Wilkinson, S.C.5    Pugh, W.J.6    Sun, Y.7
  • 47
    • 0029087244 scopus 로고
    • Permeation of steroids through human skin
    • M.E. Johnson, D. Blankstein, and R. Langer, Permeation of steroids through human skin, J. Pharm. Sci. 84 (1995), pp. 1144–1146.
    • (1995) J. Pharm. Sci. , vol.84 , pp. 1144-1146
    • Johnson, M.E.1    Blankstein, D.2    Langer, R.3
  • 49
    • 25444526652 scopus 로고    scopus 로고
    • Predicting skin permeability from complex chemical mixtures
    • J.E. Riviere and J.D. Brooks, Predicting skin permeability from complex chemical mixtures, Toxicol. Appl. Pharmacol. 208 (2005), pp. 99–100.
    • (2005) Toxicol. Appl. Pharmacol. , vol.208 , pp. 99-100
    • Riviere, J.E.1    Brooks, J.D.2
  • 50
    • 33847050326 scopus 로고    scopus 로고
    • Prediction of dermal absorption from complex chemical mixtures: Incorporation of vehicle effects and interactions into a QSPR framework
    • J.E. Riviere and J.D. Brooks, Prediction of dermal absorption from complex chemical mixtures: Incorporation of vehicle effects and interactions into a QSPR framework, SAR QSAR Environ. Res. 18 (2007), pp. 31–44.
    • (2007) SAR QSAR Environ. Res. , vol.18 , pp. 31-44
    • Riviere, J.E.1    Brooks, J.D.2
  • 51
    • 77956226894 scopus 로고    scopus 로고
    • Modelling the effect of mixture components on permeation through skin
    • T. Ghafourian, E.G. Samaras, J.D. Brooks, and J. Riviere, Modelling the effect of mixture components on permeation through skin, Int. J. Pharm. 398 (2010), pp. 28–32.
    • (2010) Int. J. Pharm. , vol.398 , pp. 28-32
    • Ghafourian, T.1    Samaras, E.G.2    Brooks, J.D.3    Riviere, J.4
  • 52
    • 78650545496 scopus 로고    scopus 로고
    • Predicting skin permeability from complex chemical mixtures: Dependency of quantitative structure permeation relationships on biology of skin models used
    • J.E. Riviere and J.D. Brooks, Predicting skin permeability from complex chemical mixtures: Dependency of quantitative structure permeation relationships on biology of skin models used, Toxicol. Sci. 119 (2011), pp. 224–232.
    • (2011) Toxicol. Sci. , vol.119 , pp. 224-232
    • Riviere, J.E.1    Brooks, J.D.2
  • 54
    • 85194974585 scopus 로고    scopus 로고
    • Predictions of skin penetration using Machine Learning methods, in ICDM2008 Proceedings of 8th IEEE International Conference on Data Mining
    • Giannotti F, Gunopulos D, Turini F, Zaniolo C, Ramakrishnan N, Wu X.D, (eds)
    • Y. Sun, G.P. Moss, M. Prapodopolou, N. Davey, R. Adams, and M.B. Brown, Predictions of skin penetration using Machine Learning methods, in ICDM2008 Proceedings of 8th IEEE International Conference on Data Mining, F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X.D. Wu, eds., IEEE Computer Society, Los Alamitos, CA, USA, pp. 1049–1054.
    • Sun, Y.1    Moss, G.P.2    Prapodopolou, M.3    Davey, N.4    Adams, R.5    Brown, M.B.6
  • 56
    • 85194979333 scopus 로고    scopus 로고
    • Gaussian Process software
    • A. Geiger, Gaussian Process software; software available at: http://www.gaussianprocess.org/#code.
    • Geiger, A.1
  • 57
    • 85194975958 scopus 로고    scopus 로고
    • MathWorks Ltd, Nitick, MA, USA:
    • MatLab2012a. MathWorks Ltd, Nitick, MA, USA, 2012; software available at http://jmlr.org/papers/v11/rasmussen10a.html.
    • (2012)
  • 58
    • 79551489429 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning (GPML) toolbox
    • C.E. Rasmussen and H. Nickisch, Gaussian Processes for Machine Learning (GPML) toolbox, J. Mach. Learn. Res. 11 (2010), pp. 3011–3015.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3011-3015
    • Rasmussen, C.E.1    Nickisch, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.