메뉴 건너뛰기




Volumn 25, Issue , 2015, Pages 63-71

A new boosting design of Support Vector Machine classifiers

Author keywords

Ensemble classifiers; Linear programming; Real AdaBoost; Subsampling; Support vector machines

Indexed keywords

ADAPTIVE BOOSTING; ALGORITHMS; DESIGN; ITERATIVE METHODS; LINEAR PROGRAMMING; STRUCTURE (COMPOSITION);

EID: 84924807118     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2014.10.005     Document Type: Article
Times cited : (16)

References (63)
  • 4
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. Kimeldorf, and G. Wahba Some results on Tchebycheffian spline functions J. Math. Anal. Appl. 33 1971 82 95
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 10
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • J. Shawe-Taylor, and S. Sun A review of optimization methodologies in support vector machines Neurocomputing 74 17 2011 3609 3618
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Proces. Lett. 9 1999 293 300
    • (1999) Neural Proces. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 17
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufman San Francisco, CA
    • P.S. Bradley, and O.L. Mangasarian Feature selection via concave minimization and support vector machines Proc. 15th Intl. Conf. on Machine Learning 1998 Morgan Kaufman San Francisco, CA 82 90
    • (1998) Proc. 15th Intl. Conf. on Machine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 18
    • 0033681936 scopus 로고    scopus 로고
    • Support vectors selection by linear programming
    • Como, Italy
    • V. Kecman, I. Hadzic, Support vectors selection by linear programming, in: Proc. Intl. Joint Conf. on Neural Networks, vol. 5, Como, Italy, 2000, pp. 193-198.
    • (2000) Proc. Intl. Joint Conf. on Neural Networks , vol.5 , pp. 193-198
    • Kecman, V.1    Hadzic, I.2
  • 19
    • 0036887673 scopus 로고    scopus 로고
    • Linear programming support vector machines
    • W. Zhou, L. Zhang, and L. Jiao Linear programming support vector machines Pattern Recogn. 35 2002 2927 2936
    • (2002) Pattern Recogn. , vol.35 , pp. 2927-2936
    • Zhou, W.1    Zhang, L.2    Jiao, L.3
  • 20
    • 84899024917 scopus 로고    scopus 로고
    • 1-Norm support vector machines
    • S. Thrun, L. Saul, B. Schölkopf, MIT Press Cambridge, MA
    • J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani 1-Norm support vector machines S. Thrun, L. Saul, B. Schölkopf, Advances in Neural Information Proc. Sys. vol. 16 2004 MIT Press Cambridge, MA 49 56
    • (2004) Advances in Neural Information Proc. Sys. , vol.16 VOL. , pp. 49-56
    • Zhu, J.1    Rosset, S.2    Hastie, T.3    Tibshirani, R.4
  • 22
    • 77049107099 scopus 로고    scopus 로고
    • Designing model based classifiers by emphasizing soft targets
    • S. El Jelali, A. Lyhyaoui, and A.R. Figueiras-Vidal Designing model based classifiers by emphasizing soft targets Fundam. Inf. 96 2009 419 433
    • (2009) Fundam. Inf. , vol.96 , pp. 419-433
    • El Jelali, S.1    Lyhyaoui, A.2    Figueiras-Vidal, A.R.3
  • 23
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu, and X. Yao Ensemble learning via negative correlation Neural Networks 12 1999 1399 1404
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 24
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Y. Liu, and X. Yao Simultaneous training of negatively correlated neural networks in an ensemble IEEE Trans. Syst. Man Cybern., Part B: Cybern. 29 1999 716 725
    • (1999) IEEE Trans. Syst. Man Cybern., Part B: Cybern. , vol.29 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 25
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 26
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire, and Y. Singer Improved boosting algorithms using confidence-rated predictions Mach. Learn. 37 1999 297 336
    • (1999) Mach. Learn. , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 31
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Mach. Learn. 36 1999 105 139
    • (1999) Mach. Learn. , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 32
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 33
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • L. Breiman Prediction games and arcing algorithms Neural Comput. 11 1999 1493 1517
    • (1999) Neural Comput. , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 35
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • G. Rätsch, and M.K. Warmuth Efficient margin maximizing with boosting J. Mach. Learn. Res. 6 2005 2131 2152
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 36
    • 33845953137 scopus 로고    scopus 로고
    • Reducing the overfitting of AdaBoost by controlling its data distribution skewness
    • Y. Sun, S. Todorovic, and J. Li Reducing the overfitting of AdaBoost by controlling its data distribution skewness Intl. J. Pattern Recogn. Artif. Intell. 20 2006 1093 1116
    • (2006) Intl. J. Pattern Recogn. Artif. Intell. , vol.20 , pp. 1093-1116
    • Sun, Y.1    Todorovic, S.2    Li, J.3
  • 39
    • 39049086240 scopus 로고    scopus 로고
    • An efficient modified boosting method for solving classification problems
    • C.-X. Zhang, J.-S. Zhang, and G.-Y. Zhang An efficient modified boosting method for solving classification problems J. Comput. Appl. Math. 214 2008 381 392
    • (2008) J. Comput. Appl. Math. , vol.214 , pp. 381-392
    • Zhang, C.-X.1    Zhang, J.-S.2    Zhang, G.-Y.3
  • 40
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • C. Shen, and H. Li Boosting through optimization of margin distributions IEEE Trans. Neural Networks 21 4 2010 659 666
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.4 , pp. 659-666
    • Shen, C.1    Li, H.2
  • 41
    • 84937643696 scopus 로고    scopus 로고
    • Neighborhood guided smoothed emphasis for real adaboost ensembles
    • A. Aachad, A. Omari, and A.R. Figueiras-Vidal Neighborhood guided smoothed emphasis for real adaboost ensembles Neural Proc. Lett. 10 2014 1 11
    • (2014) Neural Proc. Lett. , vol.10 , pp. 1-11
    • Aachad, A.1    Omari, A.2    Figueiras-Vidal, A.R.3
  • 43
    • 55749096877 scopus 로고    scopus 로고
    • Boosting method for local learning in statistical pattern recognition
    • M. Kawakita, and S. Eguchi Boosting method for local learning in statistical pattern recognition Neural Comput. 20 2008 2792 2838
    • (2008) Neural Comput. , vol.20 , pp. 2792-2838
    • Kawakita, M.1    Eguchi, S.2
  • 47
    • 70449389296 scopus 로고    scopus 로고
    • Creating an ensemble of diverse support vector machines using AdaBoost
    • Atlanta, GA, USA
    • N. Lima, A. Neto, J. de Melo, Creating an ensemble of diverse support vector machines using AdaBoost, in: Proc. Intl. Joint Conf. on Neural Networks, Atlanta, GA, USA, 2009, pp. 1802-1806.
    • (2009) Proc. Intl. Joint Conf. on Neural Networks , pp. 1802-1806
    • Lima, N.1    Neto, A.2    De Melo, J.3
  • 48
    • 77956501257 scopus 로고    scopus 로고
    • A boosting method based on SVM for relevance feedback in content-based 3D model retrieval
    • Chengdu, China
    • T. Wei, Z. Qin, X. Cao, B. Leng, A boosting method based on SVM for relevance feedback in content-based 3D model retrieval, in: Proc. 2nd Intl. Conf. on Software Engineering and Data Mining, Chengdu, China, 2010, pp. 517-522.
    • (2010) Proc. 2nd Intl. Conf. on Software Engineering and Data Mining , pp. 517-522
    • Wei, T.1    Qin, Z.2    Cao, X.3    Leng, B.4
  • 49
    • 44649197212 scopus 로고    scopus 로고
    • AdaBoost with SVM-based component classifiers
    • X. Li, L. Wang, and E. Sung AdaBoost with SVM-based component classifiers Eng. Appl. Artif. Intell. 21 2008 785 795
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 785-795
    • Li, X.1    Wang, L.2    Sung, E.3
  • 53
    • 84861596906 scopus 로고    scopus 로고
    • Bootstrapping boosted random ferns for discriminative and efficient object classification
    • M. Villamizar, J. Andrade-Cetto, A. Sanfeliu, and F. Moreno-Noguer Bootstrapping boosted random ferns for discriminative and efficient object classification Pattern Recogn. 45 2012 3141 3153
    • (2012) Pattern Recogn. , vol.45 , pp. 3141-3153
    • Villamizar, M.1    Andrade-Cetto, J.2    Sanfeliu, A.3    Moreno-Noguer, F.4
  • 54
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines. Theory and application to the classification of microarray data and satellite radiance data
    • Y. Lee, Y. Lin, and G. Wahba Multicategory support vector machines. Theory and application to the classification of microarray data and satellite radiance data J. Am. Stat. Assoc. 99 2004 67 81
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 55
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines: Model and experiments
    • Y. Ji, and S. Sun Multitask multiclass support vector machines: model and experiments Pattern Recogn. 46 3 2013 914 924
    • (2013) Pattern Recogn. , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 59
    • 84898409192 scopus 로고    scopus 로고
    • Weighted sampling for large-scale boosting
    • M. Everingham, C.J. Needham, R. Fraile, British Machine Vision Assoc. Leeds, UK
    • Z. Kalal, J. Matas, and K. Mikolajczyk Weighted sampling for large-scale boosting M. Everingham, C.J. Needham, R. Fraile, Proc. of the British Machine Vision Conference 2008 British Machine Vision Assoc. Leeds, UK 42.1 42.10
    • (2008) Proc. of the British Machine Vision Conference , pp. 421-4210
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 60
    • 78649934709 scopus 로고    scopus 로고
    • School of Information and Computer Sciences, University of California Irvine < >
    • A. Frank, and A. Asuncion UCI Machine Learning Repository 2010 School of Information and Computer Sciences, University of California Irvine < http://archive.ics.uci.edu/ml >
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 61
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of support vector machine classifiers
    • J.Y. Kwok Moderating the outputs of support vector machine classifiers IEEE Trans. Neural Networks 10 1999 1018 1031
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1018-1031
    • Kwok, J.Y.1
  • 62
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • B.D. Ripley Neural networks and related methods for classification J. Roy. Stat. Soc. 56 1994 409 456
    • (1994) J. Roy. Stat. Soc. , vol.56 , pp. 409-456
    • Ripley, B.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.