-
1
-
-
0032594959
-
An overview of statistical learning theory
-
V. N. Vapnik. An overview of statistical learning theory. IEEE trans on Neural Network, 10(5):988-999, 1999.
-
(1999)
IEEE trans on Neural Network
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
7
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10(5):1299-1319, 1998.
-
(1998)
Neural Comput
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
8
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
E. Wilson Y. H. Hu, J. Larsen and S. Douglas, editors, IEEE
-
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant analysis with kernels. In E. Wilson Y. H. Hu, J. Larsen and S. Douglas, editors, Proc. NNSP'99, pages 41-48. IEEE, 1999.
-
(1999)
Proc. NNSP'99
, pp. 41-48
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.R.5
-
9
-
-
0000406385
-
A correspondence between bayesian estimation on stochastic processes and smoothing by splines
-
G. S. Kimeldorf and G. Wahba. A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41:495-502, 1970.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
12
-
-
23244462944
-
Some properties of regularized kernel methods
-
E. De Vito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized kernel methods. Journal of Machine Learning Research, 5:1363-1390, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1363-1390
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
Piana, M.4
Verri, A.5
-
13
-
-
64149107285
-
A new approach to collaborative filtering: Operator estimation with spectral regularization
-
J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. J. of Machine Learning Research, 10:803-826, 2009.
-
(2009)
J. of Machine Learning Research
, vol.10
, pp. 803-826
-
-
Abernethy, J.1
Bach, F.2
Evgeniou, T.3
Vert, J.-P.4
-
14
-
-
73549115421
-
When is there a representer theorem? Vector versus matrix regularizers
-
A. Argyriou, C. A. Micchelli, and M. Pontil. When is there a representer theorem? Vector versus matrix regularizers. J. of Machine Learning Research, 10:2507-2529, 2009.
-
(2009)
J. of Machine Learning Research
, vol.10
, pp. 2507-2529
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
-
15
-
-
84867858407
-
Kernelization of matrix updates, when and how?
-
ALT'12, Berlin, Heidelberg, Springer-Verlag
-
Manfred K. Warmuth, Wojciech Kotlowski, and Shuisheng Zhou. Kernelization of matrix updates, when and how? In Proceedings of the 23rd international conference on Algorithmic Learning Theory, ALT'12, pages 350-364, Berlin, Heidelberg, 2012. Springer-Verlag.
-
(2012)
Proceedings of the 23rd international conference on Algorithmic Learning Theory
, pp. 350-364
-
-
Warmuth, M.K.1
Kotlowski, W.2
Zhou, S.3
-
16
-
-
0004236492
-
-
The John Hopkins University Press, Baltimore, Maryland
-
G. H. Golub and C. F. V. Loan. Matrix Computations. The John Hopkins University Press, Baltimore, Maryland, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Loan, C.F.V.2
-
17
-
-
0001777975
-
Generalized Support Vector Machine
-
A. J. Smola, P. Bartlett, B. Schökopf, and D. Schuurmans, editors, MIT Press
-
O. L. Mangasarian. Generalized Support Vector Machine. In A. J. Smola, P. Bartlett, B. Schökopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135-146. MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 135-146
-
-
Mangasarian, O.L.1
-
20
-
-
0036817951
-
A finite Newton method for classification
-
O. L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):1155-1178, 2002.
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 1155-1178
-
-
Mangasarian, O.L.1
-
21
-
-
0035789613
-
Proximal Support Vector Machine classifiers
-
F. Provost and R. Srikant, editors, New York, ACM
-
G. Fung and O. L. Mangasarian. Proximal Support Vector Machine classifiers. In F. Provost and R. Srikant, editors, Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26-29, San Francisco, CA, pages 77-86, New York, 2001. ACM.
-
(2001)
Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26-29, San Francisco, CA
, pp. 77-86
-
-
Fung, G.1
Mangasarian, O.L.2
-
22
-
-
34247849152
-
Training a Support Vector Machine in the primal
-
O. Chapelle. Training a Support Vector Machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
24
-
-
0003120218
-
Fast training of Support Vector Machines using Sequential Minimal Optimization
-
B. Schölkopf, C. J. Burges, and A. J. Smola, editors, MIT Press
-
J. C. Platt. Fast training of Support Vector Machines using Sequential Minimal Optimization. In B. Schölkopf, C. J. Burges, and A. J. Smola, editors, Advances in Kernel Method-Support Vector Learning, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Method-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
25
-
-
0032638628
-
Least square Support Vector Machine classifiers
-
J. Suykens and J. Vandewalle. Least square Support Vector Machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
27
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
28
-
-
23944458072
-
Semismooth Support Vector Machines
-
Ser. B-101
-
M. C. Ferris and T. S. Munson. Semismooth Support Vector Machines. Mathematical Programming, Ser. B-101:185-204, 2004.
-
(2004)
Mathematical Programming
, pp. 185-204
-
-
Ferris, M.C.1
Munson, T.S.2
-
30
-
-
0037695279
-
-
World Scientific, River Edge, NJ
-
J. A. K. Suykens, T. V. Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least squares Support Vector Machines. World Scientific, River Edge, NJ, 2002.
-
(2002)
Least squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
31
-
-
0742321291
-
A study on reduced Support Vector Machines
-
K.-M. Lin and C.-J. Lin. A study on reduced Support Vector Machines. IEEE Trans. on Neural Networks, 14(6):1449-1459, 2003.
-
(2003)
IEEE Trans. on Neural Networks
, vol.14
, Issue.6
, pp. 1449-1459
-
-
Lin, K.-M.1
Lin, C.-J.2
-
32
-
-
21244486307
-
Multicategory proximal Support Vector Machine classifiers
-
Glenn M. Fung and O. L. Mangasarian. Multicategory proximal Support Vector Machine classifiers. Mach. Learn., 59(1-2):77-97, 2005.
-
(2005)
Mach. Learn
, vol.59
, Issue.1-2
, pp. 77-97
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
34
-
-
69249202291
-
Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes
-
S. Ghorai, S. J. Hossain, A. Mukherjee, and P. K. Dutta. Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Processing, 90(1):93-104, 2010.
-
(2010)
Signal Processing
, vol.90
, Issue.1
, pp. 93-104
-
-
Ghorai, S.1
Hossain, S.J.2
Mukherjee, A.3
Dutta, P.K.4
-
36
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
39
-
-
70349629126
-
A new iterative algorithm training SVM
-
Shuisheng Zhou, Hongwei Liu, Feng Ye, and Lihua Zhou. A new iterative algorithm training SVM. Optimization Methods and Software, 24(6):913-932, 2009.
-
(2009)
Optimization Methods and Software
, vol.24
, Issue.6
, pp. 913-932
-
-
Zhou, S.1
Liu, H.2
Ye, F.3
Zhou, L.4
-
41
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning, pages 169-184. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
42
-
-
84890144380
-
New smoothing SVM algorithm with tight error bound and efficient reduced techniques
-
Shuisheng Zhou, Jiangtao Cui, Feng Ye, Hongwei Liu, and Qiang Zhu. New smoothing SVM algorithm with tight error bound and efficient reduced techniques. Computational Optimization and Applications, 56(3):599-618, 2013. DOI 10.1007/s10589-013-9571-6.
-
(2013)
Computational Optimization and Applications
, vol.56
, Issue.3
, pp. 599-618
-
-
Zhou, S.1
Cui, J.2
Ye, F.3
Liu, H.4
Zhu, Q.5
-
44
-
-
0035506741
-
On the convergence of the decomposition method for Support Vector Machines
-
C.-J. Lin. On the convergence of the decomposition method for Support Vector Machines. IEEE Trans. on Neural Networks, 12:1288-1298, 2001.
-
(2001)
IEEE Trans. on Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.-J.1
-
45
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumptions
-
C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. on Neural Networks, 13:248-250, 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, pp. 248-250
-
-
Lin, C.-J.1
-
46
-
-
34548701574
-
Semismooth Newton Support Vector Machine
-
Shuisheng Zhou, Hongwei Liu, Lihua Zhou, and Feng Ye. Semismooth Newton Support Vector Machine. Pattern Recognition Letters, 28:2054-2062, 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, pp. 2054-2062
-
-
Zhou, S.1
Liu, H.2
Zhou, L.3
Ye, F.4
-
47
-
-
42649126009
-
A smoothing trust-region Newton-CG method for minimax problem
-
Feng Ye, Hongwei Liu, Shuisheng Zhou, and Sanyang Liu. A smoothing trust-region Newton-CG method for minimax problem. Applied Mathematics and Computation, 199(2):581-589, 2008.
-
(2008)
Applied Mathematics and Computation
, vol.199
, Issue.2
, pp. 581-589
-
-
Ye, F.1
Liu, H.2
Zhou, S.3
Liu, S.4
-
48
-
-
0003203460
-
A survey of some nonsmooth equations and smoothing Newton methods
-
A. Eberhard, B. Glover, R. Hill, and D. Ralph, editors, Dordrecht, Kluwer Academic Publishers
-
L. Qi and D. Sun. A survey of some nonsmooth equations and smoothing Newton methods. In A. Eberhard, B. Glover, R. Hill, and D. Ralph, editors, Progress in Optimization, volume 30 of Applied Optimization, pages 121-146, Dordrecht, 1999. Kluwer Academic Publishers.
-
(1999)
Progress in Optimization, volume 30 of Applied Optimization
, pp. 121-146
-
-
Qi, L.1
Sun, D.2
-
49
-
-
0000919259
-
On piecewise quadratic Newton and trust region problems
-
J. Sun. On piecewise quadratic Newton and trust region problems. Mathematical programming, 76:451-467, 1997.
-
(1997)
Mathematical programming
, vol.76
, pp. 451-467
-
-
Sun, J.1
|