메뉴 건너뛰기




Volumn 1, Issue 1, 2013, Pages 82-106

Which is better? Regularization in RKHS vs ℝm on reduced SVMs

Author keywords

Newton algorithms; Regularizer; Representer theorem; RSVM; SVMs

Indexed keywords


EID: 84978884081     PISSN: 2311004X     EISSN: 23105070     Source Type: Journal    
DOI: 10.19139/soic.v1i1.27     Document Type: Article
Times cited : (4)

References (52)
  • 1
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. N. Vapnik. An overview of statistical learning theory. IEEE trans on Neural Network, 10(5):988-999, 1999.
    • (1999) IEEE trans on Neural Network , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 5
    • 33745789043 scopus 로고    scopus 로고
    • Building Support Vector Machines with reduced classifier complexity
    • S. S. Keerthi, O. Chapelle, and D. Decoste. Building Support Vector Machines with reduced classifier complexity. J. of Machine Learning Research, 7:1493-1515, 2006.
    • (2006) J. of Machine Learning Research , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    Decoste, D.3
  • 7
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10(5):1299-1319, 1998.
    • (1998) Neural Comput , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 8
    • 0033337021 scopus 로고    scopus 로고
    • Fisher discriminant analysis with kernels
    • E. Wilson Y. H. Hu, J. Larsen and S. Douglas, editors, IEEE
    • S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant analysis with kernels. In E. Wilson Y. H. Hu, J. Larsen and S. Douglas, editors, Proc. NNSP'99, pages 41-48. IEEE, 1999.
    • (1999) Proc. NNSP'99 , pp. 41-48
    • Mika, S.1    Rätsch, G.2    Weston, J.3    Schölkopf, B.4    Müller, K.R.5
  • 9
    • 0000406385 scopus 로고
    • A correspondence between bayesian estimation on stochastic processes and smoothing by splines
    • G. S. Kimeldorf and G. Wahba. A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41:495-502, 1970.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 13
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. J. of Machine Learning Research, 10:803-826, 2009.
    • (2009) J. of Machine Learning Research , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 14
    • 73549115421 scopus 로고    scopus 로고
    • When is there a representer theorem? Vector versus matrix regularizers
    • A. Argyriou, C. A. Micchelli, and M. Pontil. When is there a representer theorem? Vector versus matrix regularizers. J. of Machine Learning Research, 10:2507-2529, 2009.
    • (2009) J. of Machine Learning Research , vol.10 , pp. 2507-2529
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3
  • 16
    • 0004236492 scopus 로고    scopus 로고
    • The John Hopkins University Press, Baltimore, Maryland
    • G. H. Golub and C. F. V. Loan. Matrix Computations. The John Hopkins University Press, Baltimore, Maryland, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 17
    • 0001777975 scopus 로고    scopus 로고
    • Generalized Support Vector Machine
    • A. J. Smola, P. Bartlett, B. Schökopf, and D. Schuurmans, editors, MIT Press
    • O. L. Mangasarian. Generalized Support Vector Machine. In A. J. Smola, P. Bartlett, B. Schökopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135-146. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 135-146
    • Mangasarian, O.L.1
  • 20
    • 0036817951 scopus 로고    scopus 로고
    • A finite Newton method for classification
    • O. L. Mangasarian. A finite Newton method for classification. Optimization Methods and Software, 17(5):1155-1178, 2002.
    • (2002) Optimization Methods and Software , vol.17 , Issue.5 , pp. 1155-1178
    • Mangasarian, O.L.1
  • 22
    • 34247849152 scopus 로고    scopus 로고
    • Training a Support Vector Machine in the primal
    • O. Chapelle. Training a Support Vector Machine in the primal. Neural Computation, 19(5):1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of Support Vector Machines using Sequential Minimal Optimization
    • B. Schölkopf, C. J. Burges, and A. J. Smola, editors, MIT Press
    • J. C. Platt. Fast training of Support Vector Machines using Sequential Minimal Optimization. In B. Schölkopf, C. J. Burges, and A. J. Smola, editors, Advances in Kernel Method-Support Vector Learning, pages 185-208. MIT Press, 1999.
    • (1999) Advances in Kernel Method-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 25
    • 0032638628 scopus 로고    scopus 로고
    • Least square Support Vector Machine classifiers
    • J. Suykens and J. Vandewalle. Least square Support Vector Machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 27
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 28
    • 23944458072 scopus 로고    scopus 로고
    • Semismooth Support Vector Machines
    • Ser. B-101
    • M. C. Ferris and T. S. Munson. Semismooth Support Vector Machines. Mathematical Programming, Ser. B-101:185-204, 2004.
    • (2004) Mathematical Programming , pp. 185-204
    • Ferris, M.C.1    Munson, T.S.2
  • 29
  • 31
    • 0742321291 scopus 로고    scopus 로고
    • A study on reduced Support Vector Machines
    • K.-M. Lin and C.-J. Lin. A study on reduced Support Vector Machines. IEEE Trans. on Neural Networks, 14(6):1449-1459, 2003.
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.6 , pp. 1449-1459
    • Lin, K.-M.1    Lin, C.-J.2
  • 32
    • 21244486307 scopus 로고    scopus 로고
    • Multicategory proximal Support Vector Machine classifiers
    • Glenn M. Fung and O. L. Mangasarian. Multicategory proximal Support Vector Machine classifiers. Mach. Learn., 59(1-2):77-97, 2005.
    • (2005) Mach. Learn , vol.59 , Issue.1-2 , pp. 77-97
    • Fung, G.M.1    Mangasarian, O.L.2
  • 34
    • 69249202291 scopus 로고    scopus 로고
    • Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes
    • S. Ghorai, S. J. Hossain, A. Mukherjee, and P. K. Dutta. Newton's method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Processing, 90(1):93-104, 2010.
    • (2010) Signal Processing , vol.90 , Issue.1 , pp. 93-104
    • Ghorai, S.1    Hossain, S.J.2    Mukherjee, A.3    Dutta, P.K.4
  • 41
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods-Support Vector Learning, pages 169-184. MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 42
    • 84890144380 scopus 로고    scopus 로고
    • New smoothing SVM algorithm with tight error bound and efficient reduced techniques
    • Shuisheng Zhou, Jiangtao Cui, Feng Ye, Hongwei Liu, and Qiang Zhu. New smoothing SVM algorithm with tight error bound and efficient reduced techniques. Computational Optimization and Applications, 56(3):599-618, 2013. DOI 10.1007/s10589-013-9571-6.
    • (2013) Computational Optimization and Applications , vol.56 , Issue.3 , pp. 599-618
    • Zhou, S.1    Cui, J.2    Ye, F.3    Liu, H.4    Zhu, Q.5
  • 44
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for Support Vector Machines
    • C.-J. Lin. On the convergence of the decomposition method for Support Vector Machines. IEEE Trans. on Neural Networks, 12:1288-1298, 2001.
    • (2001) IEEE Trans. on Neural Networks , vol.12 , pp. 1288-1298
    • Lin, C.-J.1
  • 45
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumptions
    • C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. on Neural Networks, 13:248-250, 2002.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , pp. 248-250
    • Lin, C.-J.1
  • 46
    • 34548701574 scopus 로고    scopus 로고
    • Semismooth Newton Support Vector Machine
    • Shuisheng Zhou, Hongwei Liu, Lihua Zhou, and Feng Ye. Semismooth Newton Support Vector Machine. Pattern Recognition Letters, 28:2054-2062, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 2054-2062
    • Zhou, S.1    Liu, H.2    Zhou, L.3    Ye, F.4
  • 47
    • 42649126009 scopus 로고    scopus 로고
    • A smoothing trust-region Newton-CG method for minimax problem
    • Feng Ye, Hongwei Liu, Shuisheng Zhou, and Sanyang Liu. A smoothing trust-region Newton-CG method for minimax problem. Applied Mathematics and Computation, 199(2):581-589, 2008.
    • (2008) Applied Mathematics and Computation , vol.199 , Issue.2 , pp. 581-589
    • Ye, F.1    Liu, H.2    Zhou, S.3    Liu, S.4
  • 48
    • 0003203460 scopus 로고    scopus 로고
    • A survey of some nonsmooth equations and smoothing Newton methods
    • A. Eberhard, B. Glover, R. Hill, and D. Ralph, editors, Dordrecht, Kluwer Academic Publishers
    • L. Qi and D. Sun. A survey of some nonsmooth equations and smoothing Newton methods. In A. Eberhard, B. Glover, R. Hill, and D. Ralph, editors, Progress in Optimization, volume 30 of Applied Optimization, pages 121-146, Dordrecht, 1999. Kluwer Academic Publishers.
    • (1999) Progress in Optimization, volume 30 of Applied Optimization , pp. 121-146
    • Qi, L.1    Sun, D.2
  • 49
    • 0000919259 scopus 로고    scopus 로고
    • On piecewise quadratic Newton and trust region problems
    • J. Sun. On piecewise quadratic Newton and trust region problems. Mathematical programming, 76:451-467, 1997.
    • (1997) Mathematical programming , vol.76 , pp. 451-467
    • Sun, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.