-
1
-
-
11144273669
-
The Perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt, F.: The Perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65, 1958, 386-408.
-
(1958)
Psychological Review
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
2
-
-
0029182227
-
Decision-based neural networks with signal/image classification applications
-
Kung, S. Y., Taur, J. S.: Decision-based neural networks with signal/image classification applications, IEEE Trans. Neural Networks, 6, 1995, 170-181.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 170-181
-
-
Kung, S.Y.1
Taur, J.S.2
-
3
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. A.: The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, Pt. II, 1936, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, Issue.PART II
, pp. 179-188
-
-
Fisher, R.A.1
-
4
-
-
0027940939
-
Energy functions for minimizing misclassification error with minimum-complexity networks
-
Telfer, B. A., Szu, H. H.: Energy functions for minimizing misclassification error with minimum-complexity networks, Neural Networks, 7, 1994, 809-818.
-
(1994)
Neural Networks
, vol.7
, pp. 809-818
-
-
Telfer, B.A.1
Szu, H.H.2
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
(D. Hassler, Ed.), ACM Press, Pittsburgh, PA
-
Boser, B. E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers, Proc. 5th Annual Workshop Comp. Learning Theory (D. Hassler, Ed.), ACM Press, Pittsburgh, PA, 1992, 144-152.
-
(1992)
Proc. 5th Annual Workshop Comp. Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.3
-
6
-
-
34249753618
-
Support Vector networks
-
Cortes, C., Vapnik, V.: Support Vector networks, Machine Learning, 20, 1995, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
0035272287
-
An introduction to kernel-based learning algorithm
-
Müller, K. R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithm, IEEE Trans. Neural Networks, 12, 2001, 181-201.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
8
-
-
84931162639
-
The condensed nearest neighbor rule
-
Hart, P. E.: The condensed nearest neighbor rule, IEEE Trans. Information Theory, 14, 1968, 515-516.
-
(1968)
IEEE Trans. Information Theory
, vol.14
, pp. 515-516
-
-
Hart, P.E.1
-
9
-
-
0018995536
-
Locally trained piecewise linear classifiers
-
Sklansky, J., Michelotti, L.: Locally trained piecewise linear classifiers, IEEE Trans. Pattern Anal. Machine Intelligence, 2, 1980, 101-111.
-
(1980)
IEEE Trans. Pattern Anal. Machine Intelligence
, vol.2
, pp. 101-111
-
-
Sklansky, J.1
Michelotti, L.2
-
10
-
-
0027560678
-
Selecting concise training sets from clean data
-
Plutowski, M., White, H.: Selecting concise training sets from clean data, IEEE Trans. Neural Networks, 4, 1993, 305-318.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 305-318
-
-
Plutowski, M.1
White, H.2
-
11
-
-
0036532473
-
The training of neural classifiers with condensed datasets
-
Choi, S. H., Rockett, P.: The training of neural classifiers with condensed datasets, IEEE Trans. Sys., Man, and Cybernetics, Pt. B, 32, 2002, 202-206.
-
(2002)
IEEE Trans. Sys., Man, and Cybernetics Pt B
, vol.32
, pp. 202-206
-
-
Choi, S.H.1
Rockett, P.2
-
12
-
-
0039677504
-
Repeat until bored: A pattern selection strategy
-
(J. E. Moody et al., Eds.), Morgan Kaufmann, San Mateo, CA
-
Munro, P. W.: Repeat until bored: A pattern selection strategy, Adv. in Neural Inf. Proc. Sys., vol.4, (J. E. Moody et al., Eds.), Morgan Kaufmann, San Mateo, CA, 1992, 1001-1100
-
(1992)
Adv. in Neural Inf. Proc. Sys.
, vol.4
, pp. 1001-1100
-
-
Munro, P.W.1
-
13
-
-
0028262841
-
Pedagogical pattern selection strategies
-
Cachin, C.: Pedagogical pattern selection strategies, Neural Networks, 7, 1994, 171-181.
-
(1994)
Neural Networks
, vol.7
, pp. 171-181
-
-
Cachin, C.1
-
14
-
-
0033309093
-
Sample selection via clustering to construct Support Vector-like classifiers
-
Lyhyaoui, A., Martinez-Raḿon,M., Mora-Jiḿenez, I., V́azquez Castro, M., Sancho Goḿez, J. L., Figueiras- Vidal, A. R.: Sample selection via clustering to construct Support Vector-like classifiers, IEEE Trans. Neural Networks, 10, 1999, 1474-1481.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 1474-1481
-
-
Lyhyaoui, A.1
Martinez-Raḿon, M.2
Mora-Jiḿenez, I.3
V́azquez Castro, M.4
Sancho Goḿez, J.L.5
Figueiras- Vidal, A.R.6
-
15
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Bari, Italy
-
Freund, Y., Schapire, R. E.: Experiments with a new boosting algorithm, Proc. 13th Intl. Conf. Machine Learning, Bari, Italy, 1996, 148-156.
-
(1996)
Proc. 13th Intl. Conf. Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
0030419058
-
Game theory, on-line prediction, and boosting
-
Italy
-
Freund, Y., Schapire, R. E.: Game theory, on-line prediction, and boosting, Proc. 9th Annual Conf. on Comput. Learning Theory, Desenzano di Garda, Italy, 1996, 325-332.
-
(1996)
Proc. 9th Annual Conf. on Comput. Learning Theory, Desenzano di Garda
, pp. 325-332
-
-
Freund, Y.1
Schapire, R.E.2
-
17
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R. E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions, Machine Learning, 37, 1999, 297-336.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
18
-
-
32544445427
-
Boosting by weighting critical and erroneous samples
-
Ǵomez-Verdejo, V., Ortega-Moral, M., Arenas-Garćia, J., Figueiras-Vidal, A. R.: Boosting by weighting critical and erroneous samples, Neurocomputing, 69, 2006, 679-685.
-
(2006)
Neurocomputing
, vol.69
, pp. 679-685
-
-
Ǵomez-Verdejo, V.1
Ortega-Moral, M.2
Arenas-Garćia, J.3
Figueiras-Vidal, A.R.4
-
19
-
-
39549086158
-
A dynamically adjusted mixed emphasis method for building boosting ensembles
-
Ǵomez-Verdejo, V., Arenas-Garćia, J., Figueiras-Vidal, A. R.: A dynamically adjusted mixed emphasis method for building boosting ensembles, IEEE Trans. Neural Networks, 19, 2008, 3-17.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, pp. 3-17
-
-
Ǵomez-Verdejo, V.1
Arenas-Garćia, J.2
Figueiras-Vidal, A.R.3
-
20
-
-
0034293035
-
Generalization and selection of examples in feed-forward neural networks
-
Franco, L., Cannas, S. A.: Generalization and selection of examples in feed-forward neural networks, Neural Computation, 12, 2000, 2405-2426.
-
(2000)
Neural Computation
, vol.12
, pp. 2405-2426
-
-
Franco, L.1
Cannas, S.A.2
-
21
-
-
0029306953
-
Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
-
Reed, R., Oh, S., Marks, II, R. J.: Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter, IEEE Trans. Neural Networks, 6, 1995, 529-538.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 529-538
-
-
Reed, R.1
Oh, S.2
Marks II, R.J.3
-
22
-
-
0031105896
-
The new ERA in supervised learning
-
Gorse, D., Shepperd, A. J., Taylor, J. G.: The new ERA in supervised learning, Neural Networks, 10, 1997, 343-352.
-
(1997)
Neural Networks
, vol.10
, pp. 343-352
-
-
Gorse, D.1
Shepperd, A.J.2
Taylor, J.G.3
-
23
-
-
70349415514
-
An emphasized target smoothing procedure to improve MLP classifiers performance
-
Bruges, Belgium
-
El Jelali, S., Lyhyaoui, A., Figueiras-Vidal, A. R.: An emphasized target smoothing procedure to improve MLP classifiers performance, Proc. 16th European Symp. Artificial Neural Networks, Bruges, Belgium, 2008, 499-504.
-
(2008)
Proc. 16th European Symp. Artificial Neural Networks
, pp. 499-504
-
-
El Jelali, S.1
Lyhyaoui, A.2
Figueiras-Vidal, A.R.3
-
24
-
-
70349409315
-
Applying emphasized soft target for Gaussian mixture model based classification
-
Wisla, Poland
-
El Jelali, S., Lyhyaoui, A., Figueiras-Vidal, A. R.: Applying emphasized soft target for Gaussian mixture model based classification, Proc. Intl. Multiconf. on Computer Science and Information Technology, 3rd Intl. Symp. Advances in Artificial Intelligence and Applications, vol.3, Wisla, Poland, 2008, 131-136.
-
(2008)
Proc. Intl. Multiconf. on Computer Science and Information Technology, 3rd Intl. Symp. Advances in Artificial Intelligence and Applications
, vol.3
, pp. 131-136
-
-
El Jelali, S.1
Lyhyaoui, A.2
Figueiras-Vidal, A.R.3
-
26
-
-
25444448065
-
-
TheMIT Press, Cambridge, MA
-
Rasmussen, C. E.,Williams, C. K. I.: Gaussian Processes forMachine Learning, TheMIT Press, Cambridge, MA, 2006.
-
(2006)
Gaussian Processes ForMachine Learning
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
27
-
-
0001963137
-
Combining predictors
-
A. J. C. Sharkey, Ed.
-
Breiman, L.: Combining predictors, in Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems (A. J. C. Sharkey, Ed.), Springer, London, UK, 1999, 31-50.
-
(1999)
Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems
, pp. 31-50
-
-
Breiman, L.1
-
28
-
-
0000761366
-
A competitive modular connectionist architecture in Advances in Neural Info
-
(D. Touretzky, Ed.), Morgan Kaufmann, San Mateo, CA
-
Jacobs, R. A., Jordan, M. I.: A competitive modular connectionist architecture, in Advances in Neural Info. Proc. Sys., vol.5, (D. Touretzky, Ed.), Morgan Kaufmann, San Mateo, CA, 1991, 767-773.
-
(1991)
Proc. Sys.
, vol.5
, pp. 767-773
-
-
Jacobs, R.A.1
Jordan, M.I.2
-
29
-
-
0000262562
-
Hierarchical Mixtures of Experts and the em algorithm
-
Jordan, M. I., Jacobs, R. A.: Hierarchical Mixtures of Experts and the EM algorithm, Neural Computation, 6, 1994, 181-214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
30
-
-
85140116568
-
An alternative model for Mixtures of Experts
-
MIT Press
-
Xu, L., Jordan, M. I., Hinton, G. E.: An alternative model for Mixtures of Experts, in Advances in Neural Information Processing Systems, 7, MIT Press, 1995, 633-640.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 633-640
-
-
Xu, L.1
Jordan, M.I.2
Hinton, G.E.3
-
31
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
Department of Computer Science, University of Toronto
-
Neal, R. M.: Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR- 93-101, Department of Computer Science, University of Toronto, 1993.
-
(1993)
Technical Report CRG-TR- 93-101
-
-
Neal, R.M.1
-
32
-
-
0032382838
-
Markov Chain Monte Carlo in practice: A roundtable discussion
-
Kass, R. E., Carlin, B. P., Gelman, A., Neal, R. M.: Markov Chain Monte Carlo in Practice: A Roundtable Discussion, The American Statistician, 52, 93-100, 1998.
-
(1998)
The American Statistician
, vol.52
, pp. 93-100
-
-
Kass, R.E.1
Carlin, B.P.2
Gelman, A.3
Neal, R.M.4
-
34
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Minka, T. P.: Expectation Propagation for Approximate Bayesian Inference, Uncertainty in Artificial Intelligence, 17, 2001, 362-369.
-
(2001)
Uncertainty in Artificial Intelligence
, vol.17
, pp. 362-369
-
-
Minka, T.P.1
-
35
-
-
0032289422
-
Bayesian classification with Gaussian processes
-
Williams, C. K. I., Barber, D.: Bayesian Classification with Gaussian Processes, IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(12), 1998, 1342-1351.
-
(1998)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.12
, pp. 1342-1351
-
-
Williams, C.K.I.1
Barber, D.2
-
36
-
-
0032594960
-
Moderating the output of Support Vector classifiers
-
Kwok, J. T.: Moderating the output of Support Vector classifiers, IEEE Trans. Neural Networks, 10, 1999, 1018-1031.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 1018-1031
-
-
Kwok, J.T.1
-
37
-
-
0000696616
-
Neural networks and related methods for classification
-
(with discussion)
-
Ripley, B. D.: Neural networks and related methods for classification (with discussion), J. Royal Statistical Soc. Series B, 56, 1994, 409-456.
-
(1994)
J. Royal Statistical Soc. Series B
, vol.56
, pp. 409-456
-
-
Ripley, B.D.1
-
40
-
-
0035111818
-
Nonlinear kernel-based statistical pattern analysis
-
Ruiz, A., Ĺopez-de-Teruel, P. E.: Nonlinear kernel-based statistical pattern analysis, IEEE Trans. Neural Networks, 12, 2001, 16-32.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, pp. 16-32
-
-
Ruiz, A.1
Ĺopez-De-Teruel, P.E.2
-
41
-
-
40649094216
-
Mixtures of robust probabilistic principal component analyzers
-
Archambeau, C., Delannay, N., Verleysen, M.: Mixtures of robust probabilistic principal component analyzers, Neurocomputing, 71(7-9), 2008, 1274-1282.
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1274-1282
-
-
Archambeau, C.1
Delannay, N.2
Verleysen, M.3
-
42
-
-
33845659662
-
Robust Bayesian clustering
-
Archambeau, C., Verleysen,M.: Robust Bayesian clustering, Neural Networks, 20(1), 2007, 129-138.
-
(2007)
Neural Networks
, vol.20
, Issue.1
, pp. 129-138
-
-
Archambeau, C.1
Verleysen, M.2
-
44
-
-
33947156329
-
Bayesian Gaussian Process Classification with the EM-EP algorithm
-
Kim, H.-C., Ghahramani, Z.: Bayesian Gaussian Process Classification with the EM-EP algorithm, IEEE Trans. Pattern Analysis and Machine Intelligence, 28, 2006, 1948-1959.
-
(2006)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.28
, pp. 1948-1959
-
-
Kim, H.-C.1
Ghahramani, Z.2
-
45
-
-
84864038646
-
Sparse Gaussian Processes using Pseudo-inputs
-
MIT Press
-
Snelson, E., Ghahramani, Z.: Sparse Gaussian Processes using Pseudo-inputs, in Advances Neural Information Processing Systems, 18, MIT Press, 2006, 1257-1264.
-
(2006)
Advances Neural Information Processing Systems
, vol.18
, pp. 1257-1264
-
-
Snelson, E.1
Ghahramani, Z.2
-
47
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
Kuss, M., Rasmussen, C. E.: Assessing approximate inference for binary Gaussian process classification, Journal of Machine Learning Research, 6, 2005, 1679-1704.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
|