메뉴 건너뛰기




Volumn 96, Issue 4, 2009, Pages 419-433

Designing model based classifiers by emphasizing soft targets

Author keywords

Classification; GMM; GP; Sample selection; Smoothing target

Indexed keywords

CLASSIFICATION; DESIGN PARAMETERS; GAUSSIAN PROCESS; GAUSSIAN PROCESSES; GAUSSIANS; GENERATIVE MODEL; LOW SENSITIVITY; MISCLASSIFICATION RATES; MISSING VALUES; MODEL-BASED CLASSIFIERS; SAMPLE SELECTION; SIMULATION RESULT; SOFT TARGETS;

EID: 77049107099     PISSN: 01692968     EISSN: None     Source Type: Journal    
DOI: 10.3233/FI-2009-186     Document Type: Article
Times cited : (4)

References (47)
  • 1
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F.: The Perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65, 1958, 386-408.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 2
    • 0029182227 scopus 로고
    • Decision-based neural networks with signal/image classification applications
    • Kung, S. Y., Taur, J. S.: Decision-based neural networks with signal/image classification applications, IEEE Trans. Neural Networks, 6, 1995, 170-181.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 170-181
    • Kung, S.Y.1    Taur, J.S.2
  • 3
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A.: The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, Pt. II, 1936, 179-188.
    • (1936) Annals of Eugenics , vol.7 , Issue.PART II , pp. 179-188
    • Fisher, R.A.1
  • 4
    • 0027940939 scopus 로고
    • Energy functions for minimizing misclassification error with minimum-complexity networks
    • Telfer, B. A., Szu, H. H.: Energy functions for minimizing misclassification error with minimum-complexity networks, Neural Networks, 7, 1994, 809-818.
    • (1994) Neural Networks , vol.7 , pp. 809-818
    • Telfer, B.A.1    Szu, H.H.2
  • 5
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • (D. Hassler, Ed.), ACM Press, Pittsburgh, PA
    • Boser, B. E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers, Proc. 5th Annual Workshop Comp. Learning Theory (D. Hassler, Ed.), ACM Press, Pittsburgh, PA, 1992, 144-152.
    • (1992) Proc. 5th Annual Workshop Comp. Learning Theory , pp. 144-152
    • Boser, B.E.1    Guyon, I.2    Vapnik, V.3
  • 6
    • 34249753618 scopus 로고
    • Support Vector networks
    • Cortes, C., Vapnik, V.: Support Vector networks, Machine Learning, 20, 1995, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart, P. E.: The condensed nearest neighbor rule, IEEE Trans. Information Theory, 14, 1968, 515-516.
    • (1968) IEEE Trans. Information Theory , vol.14 , pp. 515-516
    • Hart, P.E.1
  • 10
    • 0027560678 scopus 로고
    • Selecting concise training sets from clean data
    • Plutowski, M., White, H.: Selecting concise training sets from clean data, IEEE Trans. Neural Networks, 4, 1993, 305-318.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 305-318
    • Plutowski, M.1    White, H.2
  • 12
    • 0039677504 scopus 로고
    • Repeat until bored: A pattern selection strategy
    • (J. E. Moody et al., Eds.), Morgan Kaufmann, San Mateo, CA
    • Munro, P. W.: Repeat until bored: A pattern selection strategy, Adv. in Neural Inf. Proc. Sys., vol.4, (J. E. Moody et al., Eds.), Morgan Kaufmann, San Mateo, CA, 1992, 1001-1100
    • (1992) Adv. in Neural Inf. Proc. Sys. , vol.4 , pp. 1001-1100
    • Munro, P.W.1
  • 13
    • 0028262841 scopus 로고
    • Pedagogical pattern selection strategies
    • Cachin, C.: Pedagogical pattern selection strategies, Neural Networks, 7, 1994, 171-181.
    • (1994) Neural Networks , vol.7 , pp. 171-181
    • Cachin, C.1
  • 17
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions, Machine Learning, 37, 1999, 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 20
    • 0034293035 scopus 로고    scopus 로고
    • Generalization and selection of examples in feed-forward neural networks
    • Franco, L., Cannas, S. A.: Generalization and selection of examples in feed-forward neural networks, Neural Computation, 12, 2000, 2405-2426.
    • (2000) Neural Computation , vol.12 , pp. 2405-2426
    • Franco, L.1    Cannas, S.A.2
  • 21
    • 0029306953 scopus 로고
    • Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
    • Reed, R., Oh, S., Marks, II, R. J.: Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter, IEEE Trans. Neural Networks, 6, 1995, 529-538.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 529-538
    • Reed, R.1    Oh, S.2    Marks II, R.J.3
  • 28
    • 0000761366 scopus 로고
    • A competitive modular connectionist architecture in Advances in Neural Info
    • (D. Touretzky, Ed.), Morgan Kaufmann, San Mateo, CA
    • Jacobs, R. A., Jordan, M. I.: A competitive modular connectionist architecture, in Advances in Neural Info. Proc. Sys., vol.5, (D. Touretzky, Ed.), Morgan Kaufmann, San Mateo, CA, 1991, 767-773.
    • (1991) Proc. Sys. , vol.5 , pp. 767-773
    • Jacobs, R.A.1    Jordan, M.I.2
  • 29
    • 0000262562 scopus 로고
    • Hierarchical Mixtures of Experts and the em algorithm
    • Jordan, M. I., Jacobs, R. A.: Hierarchical Mixtures of Experts and the EM algorithm, Neural Computation, 6, 1994, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 31
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • Neal, R. M.: Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR- 93-101, Department of Computer Science, University of Toronto, 1993.
    • (1993) Technical Report CRG-TR- 93-101
    • Neal, R.M.1
  • 34
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka, T. P.: Expectation Propagation for Approximate Bayesian Inference, Uncertainty in Artificial Intelligence, 17, 2001, 362-369.
    • (2001) Uncertainty in Artificial Intelligence , vol.17 , pp. 362-369
    • Minka, T.P.1
  • 36
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the output of Support Vector classifiers
    • Kwok, J. T.: Moderating the output of Support Vector classifiers, IEEE Trans. Neural Networks, 10, 1999, 1018-1031.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1018-1031
    • Kwok, J.T.1
  • 37
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • (with discussion)
    • Ripley, B. D.: Neural networks and related methods for classification (with discussion), J. Royal Statistical Soc. Series B, 56, 1994, 409-456.
    • (1994) J. Royal Statistical Soc. Series B , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 41
    • 40649094216 scopus 로고    scopus 로고
    • Mixtures of robust probabilistic principal component analyzers
    • Archambeau, C., Delannay, N., Verleysen, M.: Mixtures of robust probabilistic principal component analyzers, Neurocomputing, 71(7-9), 2008, 1274-1282.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1274-1282
    • Archambeau, C.1    Delannay, N.2    Verleysen, M.3
  • 42
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian clustering
    • Archambeau, C., Verleysen,M.: Robust Bayesian clustering, Neural Networks, 20(1), 2007, 129-138.
    • (2007) Neural Networks , vol.20 , Issue.1 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 47
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • Kuss, M., Rasmussen, C. E.: Assessing approximate inference for binary Gaussian process classification, Journal of Machine Learning Research, 6, 2005, 1679-1704.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.